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Aircraft loss-of-control (LOC) is a significant contributor to accidents and fatalities
across all vehicle classes and phases of flight, and has been the subject of several studies.
LOC events are usually precipitated by an adverse onboard condition or an external hazard
or disturbance leading to a deficiency in the control inputs needed to counteract the adverse
event. The paper presents an approach using an adaptive prediction method to identify
in real-time the control deficiency to counteract the adverse condition. This deficiency
signal can either be used to provide a feedback to the pilot (via a tactile, aural and/or
visual feedback) or to augment the existing control signal to keep the aircraft stable. We
document results and its efficacy using the NASA Generic Transport Model that simulates
typical adverse conditions.

I. Introduction

Aircraft system faults, failures, and errors are the leading initial factors in many LOC events.! Inap-
propriate crew response is the second most likely initial event that leads to such events. This is due to the
fact that flying near the edge of a safe operating envelope is an inherently unsafe proposition. Edge of the
envelope here implies that small changes or disturbances in system state or system dynamics can take the
system out of the safe envelope in a short time and could result in catastrophic failures. Performance that
fully exploits available resources to maintain safe flight in the midst of either greater uncertainty or greater
needed performance than originally planned is non trivial.

Quantitative measures of the LOC events are proposed in Re in the form of five envelopes in the
two dimensional parameter space. When the aircraft dynamics is known, the analysis of the effects of
nonlinearities on the LOC are provided in Ref.,* and the estimation of the region of attraction around a trim
point is provided in Ref.® However, the real-time estimation of the envelope boundaries for the uncertain
aircraft is not an easy task. It requires some form of online identification, which in turn requires special
maneuvers to provide sufficiently rich signals necessary for the parameter convergence. Examples of online
identifications include but are not limited to application of the dual unscented Kalman filter,® two-stage
extended Kalman filter,? Fourier Transform Regression,® adaptive estimation,'! etc.

In this paper, we outline a novel approach to the detection and mitigation of LOC situation by providing
a control deficiency needed to keep the aircraft within the safe envelope. Real-time assessment and prediction
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Figure 1. The schematics of the system with the prediction model.

of flight control deficiency to counteract the adverse conditions will provide a key capability in providing
improved onboard situational awareness to the pilot and options for adaptive control for aircraft recovery.
The novel control framework uses an adaptive prediction method, which works parallel to the flight control
system without interacting with it. It takes the aircraft’s input and state measurement signals to generate
the adaptive estimates of the unknown parameters. Unlike the traditional identification methods, it does
not require parameter convergence, hence there is no need for the special maneuvers. In traditional model
reference adaptive control, a closed loop controller is designed with adaptable controller parameters or gains.
The output of the system is compared to a desired response from a reference model. The control parameters
are update based on this error. As the adaptation converges, the plant model closely matches the reference
model response. In our approach (See Figure 1), a predicted model is used to derive adaptive control signals
that are compared with the aircraft control signals to estimate a control deficiency. This deficiency can be
either used to make the system control the aircraft to keep it within the safe envelope or provide the feedback
to the pilot to improve the situational awareness.

In the rest of the paper, we present details of the adaptive prediction concept and present simulation
study results using the NASA Generic Transport model that enables high-fidelity simulation of certain
adverse conditions.

II. Nominal System

The nominal aircraft’s inner-loop dynamics is given by the equation

Jow(t) + w(t) x Jow(t) = m(w, o), (1)
where Jy is the nominal inertia matrix, w = [p ¢ 7] is the aircraft’s angular rate, o = [L a 8 M &] " represents
the outer-loop variables and the effect of trim conditions, and m(w, o) is the aerodynamic moment, which
is assumed to be linear in its variables at nominal flight conditions. Expressing the term J; 'w(t) x Jow(t)
as a linear parametric form Wyg(w), where g(w) = [p? ¢% r% pq qr pr]T, the inner-loop dynamics can be
represented in the form

w(t) = Wog(w) + Agw(t) + Goo (t) + Boul(t), (2)

where u = [d, 0 5T]T is the control input, 49 € R3*3, Gy € R3*® and By € R?>*3 are constant matrices
representing the stability and control derivatives.

We assume that for the nominal aircraft a dynamic inversion flight control is designed such that the
angular rate vector w(t) tracks the output w,, (t) of a reference model, driven by the pilot’s command w.(t),
which is assumed to be smooth and bounded with a bounded integral. The reference model has the form

(1) = —Kplwm(t) — we(t)] — K, /0 W) — we(r)]dr (3)

where K), = diag (kp,1, kp,2, kp,3) and K; = diag (ki 1, ki 2, ki 3) are the proportional and integral gains chosen
for the reference model to satisfy the performance specifications and provide good handling qualities. In
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particular, we set k; ; = wjz- and kp ; = 2¢;w;, where w; and (; represents the frequency and the damping

ratio of the j-th channel. The nominal control has the form
uo(t) = By ' [-Wog(w) — Agw(t) — Goo(t) + wa(t)] (4)
where wg(t) is the desired angular acceleration given by
¢
a(t) = ~Kplolt) ~ wn(®)] = Ki | () = wm(r)dr + (0. 5)
0

Denoting the tracking error by e, = w — wy,, it is easy to see that the error dynamics reduce to the
exponentially stable system

é(t) = Apel(t), (6)
where
e(t) = [ f(;ﬁ eu(T)dr Ay, = O3x3  Is3x3 ‘| )
ew(t) _Ki _Kp

We immediately notice that for a given positive definite symmetric matrix Q) there exists a positive definite
symmetric matrix P satisfying the Lyapunov equation

AP+ PA, =-Q. (7)

III. Adaptive Prediction Model
Under the off-nominal conditions the aircraft dynamics can be described by the equation
w(t) =Wg(w)+ Aw(t) + Go(t) + Bu(t) + Up(w, o), (8)

where W = Wy + AW, A = Ag + AA, G = Gy + AG, B = By + AB, and U are unknown constant
matrices representing the system’s uncertainties. The last term has been introduced to represent the possible
nonlinearities in the expression of the aerodynamic moment under the off-nominal conditions, and is assumed
to be linearly parameterized. Assuming that the system still operates with the nominal controller u(t) =
uo(t), the error dynamics take the form

é(t) = Ame(t) + BpO f(w,0), (9)
where we denote
g(w)

B, — O3x3
I3x3

w
,@z[AW AA AG AB U], flw,o) = o
u
w

¢(w,0)

Obviously, © = 0 for the nominal system.
In order to detect the anomalies in the system we introduce an adaptive prediction model for the error
dynamics as follows

Ané(t) + BnO@) f(w, o) + Né(t)
Crmeé(t), (10)

e(t) =
eult) =

o>

where é(t) is the prediction of the error signal e(t), Cp, = [03x3 I3x3], €4(t) is the prediction of the tracking
error, é(t) = e(t) — é(¢) is the prediction error, A > 0 is a design parameter, ©(t) is the parameter estimate
generated online according to the adaptive law

O(t) = vf(w,0)&" (t)PBp,, (11)
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where v > 0 is the adaptation rate. Clearly, the prediction error é(t) satisfies the dynamic equation
é(t) = (Am — Nsx6)e(t) + BnO(1) f(w, ), (12)

where ©(t) = © — O(t) is the parameter estimation error. The prediction of the state is readily constructed
from the error estimate as w(t) = wy,(t) + é,(t). On the other hand, it can be generated by the dynamic
equation

B(t) = — K, [@(t) — w(t)] — K /0 [6(7) — w(r)]dr + Bou(t) + O(8) f(w, o) + A&(E), (13)

where @(t) = w(t) — w(t) is the state prediction error, and is identical with the error signal C,,é(t), since
w(t) — ‘:J(t) = (Wi (t) + ew(t)) — (wn(t) + eu(t)) = eu(t) = Cmé(t)- (14)

Therefore, the properties of the state prediction signal @(t) can be investigated via the error prediction é(t),
whose dynamics are more suitable for the analysis.

IV. Control Deficiency Signal

It can be observed from the error dynamics (9) that the tracking error e(t) cannot converge to zero in the
presence of nonzero uncertainty O f(w, o), when the system operates under the nominal control law. That
is, the controller is missing the signal u,(t) = By '© f(w, o) needed to provide the required performance.
From this point of view wu,(t) is called the control deficiency. Since © is unknown, u,(t) is inaccessible.
However, its estimate @, (t) = By 1@(15) f(w, o) can be readily computed, which can be used to detect the
loss-of-control situation. As it is shown in the next section, @, (t) closely follows u,(t) not only on steady
state, but also in transient. Therefore, a nonzero signal 7, (t) (or when @,(t) exceeds a given threshold)
alerts the pilot about the emergency.

Obviously if we close the loop with the adaptive augmentation @, (t) = By 1é(t) f(w, o), that is if we set

u(t) = uo(t) + g (t), (15)
the tracking error dynamics take the form
é(t) = Ame(t) + BpO(t)f(w, o), (16)

which means that the tracking error can still converge to zero when the term O(t) f (w, o) converges to zero.
When the estimate of the control deficiency signal is applied to the system, the state prediction dynamics
(13) reduce to the system

() = —Kplo(t) — welt)] — K, /0 (@ (r) — we(r)dr + A@(t), (17)

which is in the form of the modified reference model as in the Ref.!® Therefore, the analysis methods of the
M-MRAC (Modified Reference Model MRAC) architecture can be applied here as well. This is done in the
next section, where we show that the adaptive signals have nice transient and steady state properties, which
makes the control deficiency signal an attractive option for the pilots to use in the closed-loop in loss-of
control situations. The schematics of the estimation algorithm with an optional control path is shown in
Figure 1.

‘We notice that closing the loop with the estimate of the control deficiency signal generates an algebraic
loop in the control definition, which can be written in the expanded form as

u(t) = uo(t) — By [AW(t)g(w) + NA(Dw(t) + NA)o(t) + AB(E)u(t) + Ut)d(w, 0')] . (18)
Solving the equation (18) for u(t) we obtain
[BO + AAB(t)] u(t) = Bouo(t) — AW (H)g(w) — AA)w(t) — KA o (t)ult) — Ut)p(w, o), (19)

implying that the algebraic loop is solvable if the matrix B (t) = Bo + AB (t) is non-singular. Since the
uncertain matrix b is usually non-singular, the adaptive law for the estimate of AB can be defined by means
of the projection operator to provide the non-singularity of matrix E(t). However, this requires a priori
knowledge of the bounds on the entries of matrix B, which are available in most situations.
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V. Analysis of Adaptive Signals

In this section, we analyze the asymptotic and transient properties of the estimates signals. The following
lemma presents the asymptotic properties.

Lemma V.1 Consider the error system (9) and the prediction model (10) along with the adaptive law (11).
If e(t) remains bounded, then the following asymptotic relationships hold

ety — et (20)
ety — et (21)
e(g(z,r) — Og(z,r). (22)

ast — 00.

Proof. Consider the following candidate Lyapunov function
1 ~ -
V(t) =& (t)Pe (t) + ~tr <9T(t)A@(t)) .
Its derivative can be readily computed to be

V(t) = —e'(t)Qe(t) —2xe' (t)Peé(t) + 2tr (éT(t) [f(w,a)éT(t)PBm + %éWt)]) . (23)

Since é(t) = —é(t), substituting the adaptive laws results in
V(t)=—&' (t)Qe' (t)—2xe' (t)Pe’(t), (24)

which implies that the error signals &(¢) and ©(t) are globally stable. On the other hand, if e(t) is bounded,
then w(t), w(t), fot w(7)dr and fg w(7)dr are bounded, implying that uo(t) and f(w,o) are bounded as
well (it is assumed that the outer-loop variables are kept bounded by the pilot’s input when the inner-loop
variables are bounded). That is, all closed-loop signals are bounded. Therefore, from the prediction error
dynamics (12) it follows that é(t) is bounded. Application of the Barbalat’s lemma?® results in the limit
(20). Further, &(t) can be shown to be bounded by differentiation of the error system (12) and by taking
into account the boundedness of the the closed loop signals. Therefore, &(t) is uniformly continuous (it has
a bounded derivative). Since it has a finite integral &(t), it follows from the Barbalat’s lemma that &(t) — 0
as t — 0o, which proves (21). The last limit follows from the first two and the prediction error dynamics
(12). O

Lemma V.1 states that the prediction error is stable for any initial conditions. However, the asymptotic
prediction is guaranteed when the state of the operating aircraft remains bounded. The next lemma shows
that the prediction error bounds can be decreased as desired by increasing the adaptation rate without
assuming the boundedness of the operating system.

Lemma V.2 Consider the system (9) and the prediction model (10) along with the adaptive law (11). The
following bounds are true

le@)lc. < (25)

IN

SERNE

1)z, ; (26)

where ¢1 and co are positive constants.

Proof. Lemma V.1 assures that the Lyapunov function V(¢) is non-increasing. Therefore, the following
relationships hold

Amin(P)[| ()] < V() < V(0), (27)
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where Apin (P) denotes the minimum eigenvalue of matrix P. Since the prediction model can be initialized
such that &(0) = 0, we can write

e < ; (28)
)\mm(P)ﬁ
where the positive constant u is defined as
p=/tr (é(O)éT(O)). (29)

Since the inequality (28) holds uniformly in ¢ we conclude that (25) is true with ¢; = ﬁ.

On the other hand, integrating the equation (24) and taking into account positive definiteness of V'(¢)
we obtain

Ponin (Q) + 2\ min(P) /0 l&(r)|2dr < V(0), (30)

which implies the bound (25) with

7
Vmin(Q) + 22 A min (P)

Cy =

O

From the derived norm bounds in (25) and (26) it follows that the error signal é(¢) can be arbitrarily
decreased by increasing the adaptation rate y. Therefore, a satisfactory prediction can be obtained even for
the unstable aircraft.

One of our objectives is to provide an on-demand cue to the pilot in a loss-of-control situation. One of
this type of cues is the estimate of the control deficiency, which can be plugged into the closed loop operating
system as a recovery option.

It follows from Lemma V.1 that when w(t) = wo(t) + @,(f) is applied to the uncertain aircraft and
the prediction model, then O(t)f(w, o) — O f(w,o). Therefore, @, (t) converges to its ideal value g (t).
The next lemma shows that with the presented algorithm the adaptive signal 4, (¢) cannot exhibit large
excursions or high frequency oscillations, unlike the conventional adaptive estimation methods.

Lemma V.3 Consider the system (9) and the prediction model (10) along with the adaptive law (11). If
e(t) is bounded, then the inequality

C4

V7

holds, where 1(t) = Botia(t) = Bo[ug(t) — @4 (t)] = —O(t) f(w, o), and v, c3 and c4 are positive constants.

@) < ese™ + (31)

Proof. It is straightforward to show that n(t) satisfies the differential equation
i(t) + M) +1p(t) By PBrn(t) = 7 [0(6) By, P + p(t) B, P Am] (1) + Ah(t) + h(t) (32)

where we denote

pt) = fl(w,0)f(w,0) (33)
h(t) = OT(t) g—iw(t)+g—£d(t) ,

which are bounded as long as w(t) and o(t) are bounded. In particular, there exist positive constants
a1, aa, ag such that ||p(t)]|z., < aa, [|p(t)]z.. < a2 and ||h(t)]|z., < as. Since all the terms in equation
(32) are bounded functions in time, it can be considered as a second order linear equation with time varying
coefficients in 77(¢). Although equation (32) is non-autonomous, it can still be concluded that the adaptation
rate v determines the frequency of 7(t). Therefore, increasing v increases the oscillations in the adaptive
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signal n(t). On the other hand, A determines the damping ratio. Therefore increasing A suppresses the
oscillations in the adaptive signal n(t).

Next we show that the peak value of 1(¢) can be decreased as desired by increasing the adaptation rate,
when a proper value for the parameter ) is selected. Let ag > p(t)B,] PB,, > co, where ¢g is a positive
constant. Denoting ag = 245 B, (t) = p(t) B, P+ p(t)B,, PA,, and Es(t) = aol — p(t)B,), PBy,, A, we write
the equation (32) in the following form

i)(t) + M) +vaon(t) = yE1(D)e(t) +yE)n(t) + Ah(t) + h(t), (34)

the solution of which is readily represented in the equivalent integral form

;

n(t) =¥ [ n0) 20) | +

y / ot — 7)[Er(1)E(r) + Ba(r)m(r)]dr +
0

/0 [V1(t — 7) + Mpa(t — 7)]h(T)dT, (35)

where ¥(t) = [ P1(t)  a(t) ] is the first row of the state transition matrix e(4<?), where

0 1
—vag —\ |
Therefore, n(t) can be upper bounded as follows

@)z < e (nO)] + I900)[)
+ 2®)lle 1B ()et) + Ex(t)n ()]l c.
+ Y1) + A2 ()|, [|P(E) | (36)

where v = min Re(A(4.)). Solving the inequality for (36) for ||n(t)| z.. and substituting for ||&(t)||z.. and
| E1(t)] 2. , We obtain

A=

(1 =[Ol o 1 E2() ]| 2] I £
< e " ([n(0)] + 7 0))
+ei(az|| By, Pl + ca|| B, PAm|)y/Allt2(t)] c,
+asl[Yi(t) + Mp2(t)]| 2, -
Since ¢o < p(t) B, PB,, A < ap we have
Qg — Co
2

On the other hand, it can be shown (see!? for details) that the £; norm of ¥ (t) is minimized when \g =
2,/7ao and is equal to % Therefore the left hand side coefficient can be evaluated as follows

[Er(t)ll e = a0 —co =

260

119248 ool - p(t) BY PBoA| .. = ———. (37)
For the same Ay, we have
t)+ A t < .
[11(8) + Aot () 2, < i
Substituting these results into (37) we obtain the inequality (31) with
ao .
o= [m(O) + [l (0)]]]
e - Jasvoo c1(an]| By PAm|| + ao|| B Pl))
! co co '
This concludes the proof. O

Lemma V.3 implies that the control deficiency estimation error signal B, 177(75) can be made as close to a
decaying exponential cze™"¢ as desired by increasing the adaptation rate in the presented adaptive scheme.
Hence the estimate 4,(t) can be used in the closed loop as a recovery option in the loss-of-control situation.
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Pilot input (normalized)
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Figure 2. Pilot’s normalized input.

Nominal Control surface deflection commands in degrees
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Figure 3. Nominal control signal generated by the PI controller, failure initiated at ¢t = 18 sec.

VI. Simulation results

In this section we present simulation results for the developed detection and mitigation algorithm using
Generic Transport Model (GTM).%7
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Angular rate performance in deg/sec
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Figure 4. Performance of the nominal controller in the presence of uncertainties at ¢t = 18 sec.

Angular rate prediction error in deg/sec
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Figure 5. Angular rates prediction errors.

The nominal aircraft is in the steady level flight at an altitude of 15000 ft and speed of 0.65 M. The
pilot’s input is displayed in Figure 2 and is a series of doublet commands in the pitch channel. The nominal
proportional-integral control is designed with frequencies 3.5 2.5 2.0 rad/sec respectively in roll, pitch and
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Control surface deflection command deficiencies in degrees
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Figure 6. Control deficiency signal in the open loop.

yaw channels and with the damping ratio of 0.707 in all channels. The aircraft experiences a left horizontal
tail damage and loss of left elevator at ¢ = 18 sec. Although the aircraft is still stable, it can be observed
from Figure 4 that the nominal controller cannot provide adequate tracking. Figure 4 also displays the
performance of the prediction model, which is practically indistinguishable from the operating aircraft for
the chosen parameters v = 5000 and A = 184. To give a better understanding of the prediction error
we present it in Figure 5, where small peaks are attributed to the parameter changes at ¢ = 18 sec and
discontinuities in the pilot’s inputs. The estimates of the control signal deficiencies are presented in Figure
6. It can be observed that these estimates experience large changes in magnitude right after the damage
occurs signaling the loss-of-control situation.

In the next simulation we close the loop with the adaptive estimates of control deficiencies at t = 32 sec.
It can be observed from Figure 7 that the tracking of the reference model is smoothly recovered, implying
that these adaptive signals are viable options for the pilot to save the situation. Figure 8 displays the applied
control signal with the adaptive estimates in the loop. It can be observed that this signal is not affected
with the high frequency oscillations and big excursions.

VII. Conclusion

We have presented an adaptive prediction based algorithm for aircraft loss-of-control detection, which
also provides an optional solution to the pilot. The prediction system does not interact with the aircraft
flight control system and can be implemented in the onboard computer during the entire flight. Unlike
the online parameter identification methods the algorithm does not require any additional maneuver. The
loss-of-control situation is detected whenever the algorithm generates nonzero (or exceeding the specified
threshold) control deficiency signal. It has been shown that the state prediction and its derivative converge
to the true values fast, and the generated adaptive signals are smooth and oscillation free. When the control
deficiency is included in the closed loop, the tracking of the reference model is smoothly recovered.
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