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Abstract

Bayesian optimization through Gaussian process regression is an effective method of opti-
mizing an unknown function for which every measurement is expensive. It approximates
the objective function and then recommends a new measurement point to try out. This
recommendation is usually selected by optimizing a given acquisition function. After a suf-
ficient number of measurements, a recommendation about the maximum is made. However,
a key realization is that the maximum of a Gaussian process is not a deterministic point,
but a random variable with a distribution of its own. This distribution cannot be calculated
analytically. Our main contribution is an algorithm, inspired by sequential Monte Carlo
samplers, that approximates this maximum distribution. Subsequently, by taking samples
from this distribution, we enable Thompson sampling to be applied to (armed-bandit) op-
timization problems with a continuous input space. All this is done without requiring the
optimization of a nonlinear acquisition function. Experiments have shown that the result-
ing optimization method has a competitive performance at keeping the cumulative regret
limited.

Keywords: Gaussian processes, optimization methods, particle methods, model-free,
controller tuning.

1. Introduction

Consider the problem of maximizing a continuous nonlinear reward function f(x) (or equiv-
alently minimizing a cost function) over a compact set Xf . In the case where f(x) can be
easily evaluated, where derivative data is available and where the function is convex (or
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concave), the solution is relatively straightforward, as is for instance discussed by Boyd and
Vandenberghe (2004). However, we will consider the case where convexity and derivative
data are not known. In addition, every function evaluation is expensive and we can only
obtain noisy measurements of the function. In this case, as was also indicated by Jones
et al. (1998), we need a data-driven approach to optimize the function.

The main idea is to try out certain inputs x1, . . . ,xn. After selecting a so-called try-out
input xk, we feed it into the function and obtain a noisy measurement yk = f(xk) + ε,
with ε = N

(
0, σ2n

)
. We then use all measurements obtained so far to make a Bayesian

approximation of the function f(x), based on which we choose the next try-out input xk+1.
As such, this problem is known as Bayesian optimization (Lizotte, 2008; Brochu et al., 2010;
Shahriari et al., 2016). In particular, we can approximate f(x) through Gaussian process
regression (Rasmussen and Williams, 2006). This gives us a mean µ(x) and a standard
deviation σ(x) for our estimate of f(x). The resulting optimization method is also known
as Gaussian process optimization (Osborne et al., 2009). Bayesian methods like Gaussian
process regression are known to efficiently deal with data, requiring only little data to make
relatively accurate approximations. This makes these techniques suitable for a data-driven
approach to problems in which data is expensive.

The main question is how to choose the try-out inputs xk. There are two different
problem formulations available. In the first, after performing all n measurements, we have to
give a recommendation x̂∗ of what we believe is the true optimum x∗. The difference f∗−f̂∗
between the corresponding function values f∗ ≡ f(x∗) and f̂∗ ≡ f(x̂∗) is known as the
error or the instantaneous regret . As such, this problem formulation is known as the error
minimization formulation or also as the probabilistic global optimization problem. It is useful
in applications like sensor placement (Osborne, 2010) and controller tuning in damage-free
environments (Lizotte et al., 2007; Marco et al., 2016). These are all applications in which
every try-out input (every experiment) has the same high set-up cost.

In the second problem formulation, our aim is to maximize the sum of all the rewards
f(x1), . . . , f(xn), which is known as the value V . Equivalently, we could also minimize the
(cumulative) regret

n∑
k=1

(f∗ − f(xk)) = nf∗ − V. (1)

This formulation is known as the regret minimization formulation or also as the continuous
armed bandit problem. It is useful in applications like advertisement optimization (Pandey
and Olston, 2007) or controller tuning for damage minimization (see Section 4.4). These
are applications where the reward or cost of an experiment actually depends on the result
of the experiment. Because our applications fall in the latter category, we will focus on the
regret minimization formulation in this paper. However, with the two formulations being
similar, we also take error minimization strategies into account.

The main contribution of this paper is a new algorithm, inspired by the sequential Monte
Carlo method (Del Moral et al., 2006), that approximates the maximum distribution. This
algorithm can then be used to sample from the maximum distribution. This enables us
to formulate an efficient Bayesian optimization algorithm with Thompson sampling for
problems with a continuous input space, which is highly suitable for regret minimization
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problems. To the best of our knowledge, such an approach has not been applied before in
literature and it is hence our main contribution.

We start by providing links to related work in Section 2. We will then present our main
developments resulting in the Monte Carlo maximum distribution algorithm for approxi-
mating the distribution of the maximum in Section 3. We also analyze it and examine how
we can use it to apply Thompson sampling. Experimental results are presented in Section 4,
with conclusions and recommendations given in Section 5.

2. Related work

Both the error minimization and the regret minimization problems have been examined in
literature before. In this section we examine the solutions that have already been proposed.

2.1 Existing error minimization methods

Several Bayesian optimization methods already exist. Good overviews are given by Lizotte
(2008); Brochu et al. (2010); Shahriari et al. (2016), though we will provide a brief summary
here. The recurring theme is that, when selecting the next input xk, we optimize some kind
of Acquisition Function. In the literature, the discussion is mainly concerned with selecting
and tuning an acquisition function.

The first to suggest the Probability of Improvement (PI) acquisition function was Kush-
ner (1964). This function is defined as PI(x) = P(f(x) ≥ y+), where P(A) denotes the
probability of event A to occur and y+ denotes the highest value of the observation ob-
tained so far. This was expanded by Torn and Zilinskas (1989); Jones (2001) to the form
PI(x) = P(f(x) ≥ y+ +ξ), with ξ being a tuning parameter trading off between exploration
(high ξ) and exploitation (zero ξ).

Later on, Mockus et al. (1978) suggested an acquisition function which also takes the
magnitude of the potential improvement into account. It is known as the Expected Im-
provement (EI) acquisition function EI(x) = E [max(0, f(x)− y+)]. Similar methods were
used by others. For instance, multi-step lookahead was added by Osborne (2010), a trust
region to ensure small changes to the tried inputs xk was used by Park and Law (2015),
and an additional exploration/exploitation parameter ξ similar to the one used in the PI
acquisition function was introduced by Brochu et al. (2010). An analysis was performed
by Vazquez and Bect (2010).

Alternatively, Cox and John (1997) suggested the Upper Confidence Bound (UCB) ac-
quisition function UCB(x) = µ(x) + κσ(x). Here the parameter κ determines the amount
of exploration/exploitation, with high values resulting in more exploration. Often κ = 2 is
used. The extreme case of κ = 0 is also known as the Expected Value (EV) acquisition func-
tion EV(x) = µ(x). It applies only exploitation, so it is not very useful by itself. Methods
to determine the value of κ optimizing regret bounds were studied by Srinivas et al. (2012).

A significant shift in focus was made through the introduction of the so-called en-
tropy search method. This method was first developed by Villemonteix et al. (2009), al-
though Hennig and Schuler (2012) independently set up a similar method and introduced
the name entropy search. The method was subsequently developed further as predictive
entropy search by Hernández-Lobato et al. (2014). The main idea here is to look at the
so-called maximum distribution: the probability pmax(x) ≡ P(x = x∗) that a certain point
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x equals the (unknown) optimum x∗, or for continuous problems the corresponding prob-
ability density. We then focus on the relative entropy (the Kullback-Leibler divergence)
of the maximum distribution compared to the flat probability density function over Xf .
Initially this relative entropy is zero, but the more information we gain, the higher this
relative entropy becomes. As such, we want to pick the try-out point xk which is expected
to increase the relative entropy the most.

At the same time, portfolio methods were developed with the aim to optimally use a
whole assortment (a portfolio) of acquisition functions. These methods were introduced
by Hoffman et al. (2011), using results from Auer et al. (1995); Chaudhuri et al. (2009) and
subsequently expanded on by Shahriari et al. (2014), who suggested to use the change in
entropy as criterion to select recommendations.

2.2 Existing regret minimization methods

In the error minimization formulation, the focus is on obtaining as much information as
possible. The regret minimization formulation is more involved, since it requires a trade-off
between obtaining information and incurring costs (regret). Here, most of the research has
focused on the case where the number of possible inputs x is finite. It is then known as the
armed bandit problem and has been analyzed by for instance Kleinberg (2004); Grünewälder
et al. (2010); de Freitas et al. (2012).

One of the more promising acquisition methods for the armed bandit problem is Thomp-
son sampling . This method was first suggested by Thompson (1933) and has more recently
been analyzed by Chapelle and Li (2011); Agrawal and Goyal (2012). It is fundamentally
different from other methods, because it does not use an acquisition function. Instead, we
select an input point x as the next try-out point xk with probability equal to the probabil-
ity that x is the optimal input x∗. This is equivalent to sampling xk from the maximum
distribution pmax(x). Generally this distribution is not known though. When only finitely
many different input points x are possible, the solution is to consider the vector f ≡ f(X)
of all possible function outputs. Using Bayesian methods, we approximate f as a random
variable, take a sample f̂ from it, find for which input point x this sample has its maximum,
and subsequently use that input x as the next try-out point xk.

This method has proven to work well when the number of input points is finite. When
there are infinitely many possible input points, like in continuous problems, it is impossible
to sample from f . This means that a new method to sample from the maximum distribution
pmax(x) is needed. However, in the existing literature this maximum distribution is not
studied much at all. The idea of it was noted (but not evaluated) by Lizotte (2008).
The maximum distribution was calculated by Villemonteix et al. (2009) through a brute
force method. An expansion to this was developed by Hennig and Schuler (2012), who
used a method from Minka (2001) to approximate the minimum distribution. Though
the approximation method used is quite accurate, it has a runtime of O

(
n4
)
, making it

infeasible to apply to most problems. An alternative method was described by Hernández-
Lobato et al. (2014) who approximated function samples of a Gaussian process through
a finite number of basis functions and then optimized these function samples to generate
samples from the maximum distribution. Though effective, this method requires solving a
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nonlinear optimization problem for each sample, which is computationally expensive and
subject to the risk of finding only a local optimum.

3. Finding the maximum distribution

In this section we introduce an algorithm to find/approximate the distribution of the max-
imum of a Gaussian process. We then apply this algorithm to implement Thompson sam-
pling.

3.1 A Gaussian process and its maximum

Consider a function f(x). We assume that we have taken n measurements yi = f(xi) + ε,
where ε ∼ N

(
0, σ2n

)
is Gaussian white noise. We merge all the measurement (training)

input points xi into a set X and all the measured output values yi into a vector y.
Now suppose that we want to predict the (noiseless) function values f∗ = f(X∗) at a

given set of trial (test) input points X∗. In this case we can use the standard GP regression
equation from Rasmussen and Williams (2006). We use a mean function m(x) and a
covariance function k(x,x′), and we shorten m(Xa) to ma and k(Xa, Xb) to Kab for any
subscripts a and b. (The subscript for the training set is omitted.) We then have

f∗ ∼ N (µ∗,Σ∗∗) , (2)

µ∗ = m∗ +KT
∗ (K + Σn)−1 (y −m) ,

Σ∗∗ = K∗∗ −KT
∗ (K + Σn)−1K∗.

A Gaussian process can be seen as a distribution over functions. That is, we can take
samples of f∗ and plot those as if they are functions, as is for instance done in Figure 1.
These sample functions generally have their maximum at different locations x∗. This implies
that x∗ is a random variable, and hence has a distribution pmax(x). An example of this is
shown in Figure 2.

The distribution pmax(x) cannot be analytically calculated, but it can be approximated
through various methods. The most obvious one is through brute force: for a finite number
of trial input points X∗, we take a large number of samples f∗, for each of these samples we
find the location of the maximum, and through a histogram we determine the distribution
of x∗. This method is far from ideal as it is computationally very intensive, even for low-
dimensional functions, but it is guaranteed to converge to the true maximum distribution.

For larger problems the brute force method is too computationally intensive, motivating
the need for a way of approximating the maximum distribution. Methods to do so already
exist, like those used by Hennig and Schuler (2012); Hernández-Lobato et al. (2014). How-
ever, these methods are all also computationally intensive for larger problems, and so a
different way to approximate pmax(x) would be beneficial.

3.2 Approximating the maximum distribution

We propose a new algorithm, inspired by Sequential Monte Carlo (SMC) samplers, to find
the maximum distribution pmax(x). Note that the algorithm presented here is not an
actual SMC sampler, but merely uses techniques also found in SMC samplers. For more
background, see e.g. Del Moral et al. (2006); Owen (2013).
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The main idea is that we have np so-called particles at positions x1, . . . ,xnp . Each
of these particles has a corresponding weight w1, . . . , wnp . Eventually these particles are
supposed to converge to the maximum distribution, at which time we can approximate this
distribution through kernel density estimation as

pmax(x) ≈
∑np

i=1w
ikx(x,xi)∑np

i=1w
i

, (3)

with kx(x,x′) some manually chosen kernel. It is common to make use of a squared expo-
nential kernel with a small length scale.

Initially we distribute these particles xi at random positions across the input space.
That is, we sample the particles xi from the flat distribution q(x) = c. Note that, because
we have assumed that the input space Xf is compact, the constant c is nonzero.

To learn more about the position of the maximum, we will challenge existing particles.
To challenge an existing particle xi, we first sample a number nc of random challenger par-
ticles xi

c1
, . . . ,xi

cnc
from a proposal distribution q′(x). We then set up the joint distribution

f(xi)
f(xi

c1
)

...
f(xi

cnc
)

 ∼ N


µ(xi)
µ(xi

c1
)

...
µ(xi

cnc
)

 ,


Σ(xi,xi) Σ(xi,xi
c1

) · · · Σ(xi,xi
cnc

)

Σ(xi
c1
,xi) Σ(xi

c1
,xi

c1
) · · · Σ(xi

c1
,xi

cnc
)

...
...

. . .
...

Σ(xi
cnc

,xi) Σ(xi
cnc

,xi
c1

) · · · Σ(xi
cnc

,xi
cnc

)


 , (4)

and subsequently generate a sample
[
f̂ i f̂ ic1 · · · f̂ icnc

]T
from it. Finally, we find the

largest element from this vector. If this element equals f̂ i, we do nothing. If, however, it
equals f̂ icj , then we have f̂ icj > f̂ i. In this case there is a challenger that has ‘beaten’ the

current particle and it takes its place. In other words, we replace the particle xi by xi
cj

.
The challenger particle also has a weight associated with. In SMC methods this weight

is usually given by

wic =
q(xi

c)

q′(xi
c)
. (5)

However, to speed up convergence, we use a proposal distribution q′(x) based on the ideas
of mixture importance sampling and defensive importance sampling. Specifically, we use

q′(x) = αpmax(x) + (1− α)q(x). (6)

Here, α is manually chosen (often roughly 1
2) and pmax(x) is approximated through the

mixture proposal distribution (3), based on the current particle distribution. To generate a
challenger particle xi

cj
, we hence randomly (according to the particle weights) select one of

the particles xk. Then, in a part α of the cases, we sample xi
cj

from kx(x,xk), while in the

remaining (1− α) part of the cases, we sample xi
cj

from q(x). If we sample our challenger
particles in this way, it is computationally more efficient to use the weight

wicj =
q(xi

cj
)

αkx(xi
cj
,xk) + (1− α)q(xi

cj
)
. (7)
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Based on this formulation, we will challenge every existing particle once. This is called
one round of challenges. Afterwards, we apply systematic resampling (Kitagawa, 1996) to
make sure all particles have the same weight again. We repeat this until the distribution of
particles has mostly converged.

We call the resulting algorithm the Monte Carlo Maximum Distribution (MCMD) al-
gorithm. Pseudo-code for it is given in Algorithm 1.

Data: A known Gaussian process, user-defined parameters np, nc, α and a kernel
kx(x,x′).

Result: An approximate distribution pmax(x) of the optimal input x∗, given
through (3).

Initialization:
for i← 1 to np do

Sample xi from q(x). Assign wi = 1.
end

end
Iteration:

repeat
Apply systematic resampling to all particles.
for i← 1 to np do

for j ← 1 to nc do
Select a random particle xk, taking into account weights wk.
if we select a challenger based on xk (probability α) then

Sample a challenger particle xi
cj

from the kernel kx(x,xj).

else
Sample a challenger particle xi

cj
from the flat distribution q(x).

end

end

Sample a vector
[
f̂ i f̂ ic1 · · · f̂ icnc

]T
based on (4) and find its maximum.

if the maximum equals f̂ icj > f̂ i then

Replace particle xi by its challenger xi
cj

.

Set the new weight wi according to (7).
end

end

until a sufficient number of rounds has passed ;

end
Algorithm 1: The Monte Carlo maximum distribution algorithm. Self-normalized im-
portance sampling, mixture importance sampling and systematic resampling are used.
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3.3 Analysing the limit distribution of the algorithm

The distribution of the particles converges to a limit distribution. But does this limit
distribution equal the true maximum distribution? We can answer this question for a few
special cases.

First consider the case where nc → ∞. In this case, the algorithm is equivalent to
the brute force method of finding the maximum distribution. Assuming that a sufficient
number of particles np is used, it hence is guaranteed to find the true maximum distribution
directly, in only a single round of challenges.

Using nc → ∞ challenger particles is infeasible, because generating a sample from (4)
takes O(n3c) time. Instead, we consider a very simplified case with nc = 1 and α = 0.
Additionally, we consider the discrete case, where there are finitely many possible input
points x1, . . . ,xn. With finitely many points, we can use the kernel kx(x,x′) = δ(x− x′),
with δ(. . .) the delta function. In this simplified case, we can analytically calculate the
distribution that the algorithm converges to.

Consider the given Gaussian process. Let us denote the probability P(f(xi) > f(xj)),
based on the data in this Gaussian process, as Pij . Here we have

Pij = P(f(xi) > f(xj)) = Φ

(
µ(xi)− µ(xj)√

Σ(xi,xi) + Σ(xj ,xj)− 2Σ(xi,xj)

)
, (8)

where Φ(. . .) is the standard Gaussian cumulative density function. Through this expression
we find the matrix P element-wise. Additionally, we write the part of the particles that
will eventually be connected to the input xi as pi. In this case, the resulting vector p (with
elements pi) can be shown to satisfy

(P − diag (1nP ))p = 0, (9)

where 1n is an n × n matrix filled with ones, and diag(. . .) is the function which sets all
non-diagonal elements to zero. If we also use the fact that the sum of all probabilities 1Tp
equals 1, we can find p for this discrete problem.

If the algorithm would converge to the true maximum distribution in this simplified case
(with nc = 1) then we must have pi = pmax(xi). In other words, the vector p would then
describe the maximum distribution. However, since we can calculate the values pi analyt-
ically, while it is known to be impossible to find pmax(xi) like this, we already know that
this is not the case. pi must be different from pmax(xi), and the algorithm hence does not
converge to the maximum distribution when nc = 1. However, the example from Figure 2
on page 11 does show that the algorithm gives a fair approximation. The limit distribution
of the algorithm is generally less peaked than the true maximum distribution, which means
it contains less information about where the maximum is (lower relative entropy) but overall
its predictions are accurate. Furthermore, the difference will decrease when the variance
present within the Gaussian process decreases, or when we raise nc.

3.4 Applying the MCMD algorithm for Thompson sampling

We can now use the MCMD algorithm to apply Thompson sampling in a Gaussian pro-
cess optimization setting. To do so, we sample an input point x from the approximated
maximum distribution pmax(x) whenever we need to perform a new measurement.
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The downside of this method is that samples are not drawn from the true maximum
distribution, but only from an approximation of it. However, the upside is that this ap-
proximation can be obtained by making simple comparisons between function values. No
large matrix equations need to be solved or nonlinear function optimizations need to be
performed, providing a significant computational advantage over other methods that ap-
proximate the maximum distribution.

4. Experimental results

Here we show the results of the presented algorithm. First we study how the MCMD
algorithm works for a fixed one-dimensional Gaussian process. Then we apply it through
Thompson sampling to optimize the same function, expand to a two-dimensional problem
and finally apply it to a real-life application. Code related to the experiments can be found
through Bijl (2017b) (Chapter 6).

4.1 Execution of the MCMD algorithm

Consider the function

f(x) = cos(3x)− 1

9
x2 +

1

6
x. (10)

From this function, we take 20 noisy measurements, at random locations in the interval
[−3, 3], with σn = 0.3 as standard deviation of the white noise. We then apply GP regression
with a squared exponential covariance function with predetermined hyperparameters. The
subsequent GP approximating these measurements is shown in Figure 1.

We can apply the MCMD algorithm to approximate the maximum distribution pmax(x)
of this Gaussian process. This approximation, during successive challenge rounds of the
algorithm with α = 1

2 and nc = 1, is shown in Figure 2. (We always use nc = 1 in these
experiments, because it allows us to analytically calculate the limit distribution. For real-life
experiments we would recommend larger values.) In this figure we see that the algorithm
has mostly converged to the limit distribution after nr = 10 rounds of challenges, but this
limit distribution has a slightly higher entropy compared to the true maximum distribution.

4.2 Application to an optimization problem

We will now apply the newly developed method for Thompson sampling to Bayesian opti-
mization. We will compare it with the UCB, the PI and the EI acquisition functions. After
some tuning their parameters were set to κ = 2 and ξ = 0.1, which gave the best results
we could obtain for these algorithms. To optimize these acquisition functions, we use a
multi-start optimization method, because otherwise we occasionally end up with a local
optimum of the acquisition function, resulting in a detrimental performance. We do not
compare our results with entropy search or portfolio methods, because they are designed
for the error minimization formulation.

The first problem we apply these methods to is the maximization of the function f(x)
of (10). We use n = 50 input points x1, . . . , xn and look at the obtained regret. To keep the
memory and runtime requirements of the GP regression algorithm somewhat limited, given
the large number of experiments that will be run, we will apply the FITC approximation

9
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Figure 1: An example Gaussian process. The circles denote the measurements from which
the GP was generated. The thick line denotes the (posterior) mean of the GP
and the grey area represents the 95% certainty region. The three thinner lines
are samples from the GP distribution. It is worthwhile to note that they have
their maximum values (the crosses) at very different positions.

described by Candela and Rasmussen (2005), implemented in an online fashion according
to Bijl et al. (2015). As inducing input points, we use the chosen input points, but only when
they are not within a distance du (decreasing from 0.3 to 0.02 during the execution of the
algorithm) of any already existing inducing input point. For simplicity the hyperparameters
are assumed known and are hence fixed to reasonable values. Naturally, it is also possible
to learn hyperparameters on-the-go as well, using the techniques described by Rasmussen
and Williams (2006).

The result is shown in Figure 3. In this particular case, it seems that Thompson sam-
pling and the PI acquisition function applied mostly exploitation: they have a better short
term performance. On the other hand, the UCB and EI acquisition functions apply more
exploration: the cost of quickly exploring is higher, but because the optimum is found
sooner, it can also be exploited sooner.

It should also be noted that all algorithms occasionally end up in the wrong optimum
(near x = 2). This can be seen from the fact that the regret graph does not level out. For
this particular problem, the UCB acquisition function seems to be the best at avoiding the

10
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Figure 2: The maximum distribution for the Gaussian process shown in Figure 1.
The black/grey lines represent the approximate maximum distribution after
1, 2, . . . , 10 rounds of challenges for np = 10 000 particles. The red line is the
limit distribution of the particles as derived in Section 3.3. The blue line is the
true maximum distribution, found through brute force methods.

local optima, but it still falls for them every now and then. As noted earlier, only Thompson
sampling has the guarantee to escape local optima given infinitely many measurements.

4.3 Extension to a two-dimensional problem

Next, we apply the optimization methods to a two-dimensional problem. We will mini-
mize the well-known Branin function from (among others) Dixon and Szegö (1978). Or
equivalently, we maximize the negative Branin function,

f(x1, x2) = −
(
x2 −

51x21
40π2

+
5x1
π
− 6

)2

− 10

(
1− 1

8π

)
cos(x1)− 10, (11)

where x1 ∈ [−5, 10] and x2 ∈ [0, 15]. This function is shown in Figure 4. We can find
analytically that the optima occur at

(
−π, 49140

)
,
(
π, 9140

)
and

(
3π, 9940

)
, all with value − 5

4π .

The performance of the various optimization methods, averaged out over fifty full runs,
is shown in Figure 5. Here we see that Thompson sampling now performs significantly
better at keeping the regret small compared to the UCB (κ = 2), the PI and the EI (ξ = 2)
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Figure 3: The cumulative regret (1) of the various Bayesian optimization algorithms for the
function in (10). Results shown are the mean performance of fifty complete runs
of each algorithm.

acquisition functions. We can find the reason behind this, if we look at which try-out points
the various algorithms select. When we do (not shown here), we see that all acquisition
functions often try out points at the border of the input space, while Thompson sampling
does not. In particular, the acquisition functions (nearly) always try out all four corners of
the input space, including the very detrimental point (−5, 0). It is this habit which makes
these acquisition functions perform worse on this specific problem.

Other than this, it is also interesting to note that in all examined runs, all optimization
methods find either two or three of the optima. So while multiple optima are always found,
it does regularly happen that one of the three optima is not found. All of the methods have
shown to be susceptible to this. In addition, the three acquisition functions have a slightly
lower average recommendation error than Thompson sampling, but since all optimization
methods find various optimums, the difference is negligible. On the flip side, an advantage
of using the MCMD algorithm is that it can provide us with the posterior distribution of
the maximum, given all the measurement data. An example of this is shown in Figure 6.
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Figure 4: The (negative) Branin function, defined by (11).

4.4 Optimizing a wind turbine controller

Finally we test our algorithm on an application: data-based controller tuning for load mit-
igation within a wind turbine. More specifically, we use a linearized version of the so-called
TURBU model, described by van Engelen and Braam (2004). TURBU is a fully integrated
wind turbine design and analysis tool. It deals with aerodynamics, hydrodynamics, struc-
tural dynamics and control of modern three bladed wind turbines, and as such gives very
similar results as an actual real-life wind turbine.

We will consider the case where trailing edge flaps have been added to the turbine blades.
These flaps should then be used to reduce the vibration loads within the blades. To do so,
the Root Bending Moment (RBM) of the blades is used as input to the control system.

To determine the effectiveness of the controller, we look at two quantities. The first
is the Damage Equivalent Load (DEL; see Freebury and Musial (2000)). The idea here is
that the blades are subject to lots of vibrations, some with large magnitudes and some with
small magnitudes. For fatigue damage, large oscillations are much more significant. To take
this into account, we look at which 1 Hz sinusoidal load would result in the same fatigue
damage as all measured oscillations put together. To accomplish this, the RBM signal is
separated into individual oscillations using the rainflow algorithm (Nies lony, 2009). We then
use Miner’s rule (Wirsching et al., 1995), applying a Wöhler exponent of m = 11 for the
glass fiber composite blades (Savenije and Peeringa, 2009), to come up with an equivalent
1 Hz load.

The second quantity to optimize is the mean rate of change of the input signal. The
reason here is that the lifetime of bearings is often expressed in the number of revolutions, or
equivalently in the angular distance traveled, and dividing this distance traveled by the time
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Figure 5: The cumulative regret (1) of the various Bayesian optimization algorithms for the
Branin function (11). Results shown are the mean performance of fifty complete
runs of each algorithm.

passed will result in the mean rate of change of the flap angle. The eventual performance
score for a controller will now be a linearly weighted sum of these two parameters, where a
lower score is evidently better.

As controller, we apply a proportional controller. That is, we take the RBM in the
fixed reference frame (so after applying a Coleman transformation; see van Solingen and
van Wingerden (2015)) and feed the resulting signal, multiplied by a constant gain, to the
blade flaps. Since the wind turbine has three blades, there are three gains which we can
apply. The first of these, the collective flap mode, interferes with the power control of the
turbine. We will hence ignore this mode and only tune the gains of the tilt and yaw modes.
Very low gains (in the order of 10−8) will result in an inactive controller which does not
reduce the RBM, while very high gains (in the order of 10−5) will react to every small bit of
turbulence, resulting in an overly aggressive controller with a highly varying input signal.
Both are suboptimal, and the optimal controller will have gains somewhere between these
two extreme values.

To learn more about the actual score function, we can apply a brute force method – just
applying 500 random controller settings – and apply GP regression. This gives us Figure 7.
Naturally, this is not possible in real life as it would cause unnecessary damage to the wind
turbine. It does tell us, however, that the score function is mostly convex and that there
does not seem to exist any local optimums.
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Figure 6: The probability distribution of the maximum of the GP approximating the Branin
function, after generating measurements according to Thompson sampling. The
three optimums have been identified, some stray particles still reside in the lesser
explored regions, and no particles remain in the part of the input space that has
been explored but was found suboptimal.

The results from the Bayesian optimization experiments, which are remarkably similar
to earlier experiments, are shown in Figure 8. (We used κ = 1 and ξ = 0.005 here.)
They once more show that Thompson sampling has a competitive performance at keeping
the regret limited. A similar experiment, though with far fewer measurements, has been
performed on a scaled wind turbine placed in a wind tunnel, and the results there were
similar as well. See Bijl (2017a) for further details on this wind tunnel test.

5. Conclusions and recommendations

We have introduced the MCMD algorithm, which uses particles to approximate the dis-
tribution of the maximum of a Gaussian process. This particle approximation can then
be used to set up a Bayesian optimization method using Thompson sampling. Such op-
timization methods are suitable for tuning the parameters of systems with large amounts
of uncertainty in an online data-based way. As an example, we have tuned the controller
gains of a wind turbine simulation to reduce the fatigue load using performance data that
was obtained during the operation of the wind turbine.

The main advantage of Thompson sampling with the MCMD algorithm is that it does
not require the optimization of a nonlinear function to select the next try-out point. In
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Figure 7: An approximation of the wind turbine controller score with respect to the con-
troller gain. This approximation was made by taking 500 random points and
applying a GP regression algorithm to the resulting measurements.

addition, it has shown to have a competitive performance at keeping the cumulative regret
limited. However, we cannot conclude that Thompson sampling, or any other optimization
method, works better than its competitors. Which method works well depends on a variety
of factors, like how much the method has been fine-tuned to the specific function that
is being optimized, as well as which function is being optimized in the first place. Also
the number of try-out points used matters, where a lower number gives the advantage
to exploitation-based methods, while a higher number benefits the more exploration-based
methods. It is for this very reason that any claim that a Bayesian optimization works better
than its competitors may be accepted only after very careful scrutiny.
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