
GAUSSIAN PROCESS REGRESSION TECHNIQUES

WITH APPLICATIONS TO WIND TURBINES

A student version of the thesis

by HILDO BIJL

This is not my official thesis but an adjusted ‘student’ version, made for people aspiring
to learn more about Gaussian process regression. It provides more explanations, back-
ground information and intuitive approaches, as compared to my official thesis.

The latest version can be downloaded at http://www.hildobijl.com/Research.php.
Source code has been uploaded at https://github.com/HildoBijl/GPRT.

http://www.hildobijl.com/Research.php
https://github.com/HildoBijl/GPRT

Life is about understanding the world well enough
that making a difference suddenly becomes easy.

CONTENTS

Preface xi
The goal of this student version . xi
Thoughts behind the writing style . xii
The set-up of the student version and its chapters xiii
Final words. xv

1 Introduction 1
1.1 Issues behind Gaussian process regression 2

1.1.1 What does Gaussian process regression do? 2
1.1.2 Limitations of Gaussian process regression 3

1.2 Why wind turbine control? . 4
1.2.1 The issue of cost . 4
1.2.2 The issue of size . 5
1.2.3 The issue of vibrations . 5
1.2.4 The issue of frequencies . 7
1.2.5 The issue of control . 8

1.3 Overview of this booklet . 9

2 An intuitive introduction to Gaussian process regression 11
2.1 Approximating a variable . 12

2.1.1 The prior distribution . 12
2.1.2 Making measurements of f . 13
2.1.3 Merging distributions . 14
2.1.4 Multiple variables to approximate 14
2.1.5 Measuring only a single variable 16

2.2 Approximating variables we have not measured 17
2.2.1 Making prior assumptions on function values 17
2.2.2 Making predictions about other function values 19
2.2.3 Splitting up the measurement and trial points 19
2.2.4 Implementing noisy measurements 20

2.3 Different views on Gaussian processes 22
2.3.1 The formal definition of a Gaussian process 23
2.3.2 The intuitive view of a Gaussian process 24
2.3.3 The mathematical view of Gaussian process regression 24

2.4 Multi-dimensional inputs and outputs 25
2.4.1 Using multi-dimensional input points 25
2.4.2 Using multi-dimensional output points 26
2.4.3 A simplification when using multi-dimensional outputs 27
2.4.4 The covariance functions within the covariance matrix 27

iii

iv CONTENTS

2.5 The derivative and integral of a Gaussian process 28
2.5.1 The derivative of a Gaussian process 28
2.5.2 The mean and covariance of the derivative 28
2.5.3 Implementing derivative measurements 29
2.5.4 Integrals of Gaussian processes 30

2.6 Identifying the dynamics of a pitch-plunge system 32
2.6.1 The pitch-plunge system set-up 32
2.6.2 The pitch-plunge system equations of motion 33
2.6.3 A first approximation of the state transition function 35
2.6.4 Making a higher-dimensional approximation 37

2.7 Literature – A short history of GP regression. 37

3 Details of the covariance function 39
3.1 The basics of tuning hyperparameters 40

3.1.1 Probabilities and likelihoods . 41
3.1.2 Integrating over hyperparameters 42
3.1.3 The maximum likelihood method 42
3.1.4 Optimizing the log-likelihood . 44
3.1.5 Using different hyper-priors . 47

3.2 Other covariance functions and tuning methods 48
3.2.1 Different kinds of covariance functions 48
3.2.2 The covariance function for linear functions 49
3.2.3 Trading off covariance functions 52
3.2.4 Combining covariance functions. 54

3.3 Applying GP regression to linear relations. 56
3.3.1 Measuring linear relations of function values 56
3.3.2 Applying constrained Gaussian process regression. 56
3.3.3 Hyperparameter tuning for constrained GP regression. 57
3.3.4 A practical use of constrained GP regression 58

3.4 Linearized modeling of the pitch-plunge system 60
3.4.1 The linearized discrete equations of motion 60
3.4.2 Applying the linear covariance function 61
3.4.3 Switching to the nonlinear system 62

3.5 Approximating a quadratic value function 64
3.5.1 The LQG problem set-up. 64
3.5.2 Approximating the value function for a single controller 65
3.5.3 Adding noise to the problem . 66
3.5.4 Varying the controller settings . 68
3.5.5 Further extensions: unstable and nonlinear systems. 70

3.6 Overview of literature . 72
3.6.1 Literature on hyperparameter tuning 72
3.6.2 Literature on covariance functions 72
3.6.3 Literature on constrained GP regression 73

CONTENTS v

4 Sparse and online Gaussian process regression 75
4.1 Sparse Gaussian process regression . 76

4.1.1 A notation for discussing computational requirements 76
4.1.2 Analyzing the computational requirements 77
4.1.3 Faster prediction: using inducing input points 78
4.1.4 Faster training: using measurements individually 81
4.1.5 More flexibility: using measurements in subgroups 83
4.1.6 An incorrect alternative view on sparse GP regression 84

4.2 Online Gaussian process regression. 87
4.2.1 Regular online Gaussian process regression 87
4.2.2 Sparse online Gaussian process regression. 88
4.2.3 Online FITC regression. 88
4.2.4 Online PITC regression. 90
4.2.5 Numerical stability of the online methods 92

4.3 Choosing the inducing input points. 93
4.3.1 Manually choosing the inducing input points offline 93
4.3.2 Automatically tuning the inducing input points offline 94
4.3.3 Adjusting the inducing input points online 97
4.3.4 A different merging order . 98

4.4 Applications of sparse online GP regression. 99
4.4.1 A comparison between algorithms 100
4.4.2 Application to the pitch-plunge system 103

4.5 Overview of literature and contributions 106
4.5.1 Literature overview . 106
4.5.2 Suggestions for further research 107

5 Noisy input Gaussian process regression 109
5.1 Using stochastic trial points. 110

5.1.1 Integrating over possible trial points 110
5.1.2 Intermezzo: background behind moment matching 112
5.1.3 The expected value of the trial function value 113
5.1.4 The variance of the trial function value 114
5.1.5 The mean and variance of sparse predictions 116
5.1.6 Using multiple trial input points 117

5.2 Using stochastic measurement points 119
5.2.1 The problem behind integrating over measurement points 119
5.2.2 The noisy input Gaussian process regression algorithm 120
5.2.3 Sparse and online algorithms – the main ideas. 121
5.2.4 The posterior distribution of the measurement point 122
5.2.5 Updating the distribution of the inducing function values 125
5.2.6 Derivatives needed for the SONIG algorithm. 127

5.3 Extensions to the SONIG algorithm . 128
5.3.1 Applying hyperparameter tuning 129
5.3.2 Using multiple outputs . 129
5.3.3 The posterior distribution of the measured output. 130
5.3.4 The posterior covariance between input and output 132

vi CONTENTS

5.3.5 An online system identification algorithm 132
5.4 Experiments . 135

5.4.1 Application to a test function . 135
5.4.2 Identification of a magneto-rheological fluid damper 138
5.4.3 Noisy state measurements of the pitch-plunge system 140

5.5 Overview of literature . 143
5.5.1 Literature overview . 143
5.5.2 Suggestions for further research 144

6 Gaussian process optimization 147
6.1 Finding the maximum of a Gaussian process 148

6.1.1 The maximum distribution . 148
6.1.2 An analytical approach to finding the maximum. 150
6.1.3 A derivative approach to finding the maximum 151
6.1.4 A particle approach to finding the maximum 153
6.1.5 Finding the limit distribution of the particles 154
6.1.6 An intuitive view on the two different distributions 156
6.1.7 Using multiple challengers. 157

6.2 Intermezzo: sequential Monte Carlo samplers 157
6.2.1 The idea behind Monte Carlo methods 159
6.2.2 Importance sampling . 161
6.2.3 Self-normalized importance sampling 162
6.2.4 Sequential importance sampling. 163
6.2.5 Resampling . 164
6.2.6 Mixture importance sampling . 166
6.2.7 Defensive importance sampling 167

6.3 Applying SMC ideas to find the maximum 168
6.3.1 Notations and definitions . 168
6.3.2 Improving the convergence rate 169
6.3.3 Adding weights to particles . 169
6.3.4 Resampling of particles . 170
6.3.5 Ensuring correct convergence . 170
6.3.6 Expanding the algorithm to continuous functions 171
6.3.7 The distribution of the maximum value 172

6.4 Gaussian process optimization . 174
6.4.1 The Gaussian process optimization problem set-up 175
6.4.2 Basic GPO methods: acquisition functions. 176
6.4.3 Intermezzo: the entropy of distributions 179
6.4.4 Entropy search . 180
6.4.5 Portfolio methods . 181
6.4.6 Thompson sampling . 182

6.5 Experiments . 183
6.5.1 Optimizing a one-dimensional function 183
6.5.2 Optimizing a two-dimensional function 185
6.5.3 A wind turbine simulation system 189
6.5.4 Multiple reference frames: the Coleman transformation 189

CONTENTS vii

6.5.5 A quality criterion: the damage equivalent load 191
6.5.6 Optimizing the controller settings of a wind turbine 194
6.5.7 Applying the methods to a wind tunnel test 196
6.5.8 Lessons learned from the optimization experiments 198

6.6 Overview of literature and contributions 198
6.6.1 Literature overview . 199
6.6.2 Suggestions for further research 200

7 Conclusion and recommendations 203

A Matrix algebra 205
A.1 Matrix operations . 206

A.1.1 The trace operator . 206
A.1.2 Matrix derivatives . 207
A.1.3 Vectorization and the Kronecker product 208

A.2 Matrix inverses . 209
A.2.1 Blockwise matrix inverses . 210
A.2.2 Inverting sums of matrices . 212

A.3 Gaussian exponentials . 214
A.3.1 Multiplying Gaussian exponentials 214
A.3.2 Multiplying/dividing Gaussian exponential functions 216
A.3.3 Joint Gaussian exponential functions 218
A.3.4 Other Gaussian exponential relations 219

A.4 Lyapunov equations . 223
A.4.1 Notations and definitions . 224
A.4.2 Finding the Lyapunov solution. 225
A.4.3 Basic properties of Lyapunov solutions 226
A.4.4 Combinations of Lyapunov solutions 229
A.4.5 More integral expressions . 231

A.5 Using matrix exponentials to solve integrals 234
A.5.1 Integrals within matrix exponentials 234
A.5.2 Using matrix exponentials to solve Lyapunov equations 240
A.5.3 A comparison between the two methods. 241

A.6 Miscellaneous. 243

B Probability theory 245
B.1 Introducing the probability density function 246

B.1.1 Definition of the probability density function 246
B.1.2 Joint distributions . 247
B.1.3 Conditional distributions . 247
B.1.4 Special cases of the probability density function 248

B.2 The mean and the covariance . 249
B.2.1 The fundamentals behind the mean and the covariance 249
B.2.2 Linear transformations of random variables 250
B.2.3 Further properties of the mean and the covariance 250

viii CONTENTS

B.3 Transformations of probability density functions 252
B.3.1 Linear transformations of a random variable. 252
B.3.2 Nonlinear transformations of random variables 253
B.3.3 Merging distributions . 254

B.4 The Gaussian distribution. 256
B.4.1 The Gaussian probability density function 257
B.4.2 The standard Gaussian distribution 257
B.4.3 Linear transformations of Gaussian distributions 259
B.4.4 Marginalization and conditioning of Gaussian distributions 260
B.4.5 Special cases of the Gaussian distribution 262
B.4.6 Power forms of Gaussian random variables 263

B.5 Manipulating Gaussian distributions . 266
B.5.1 Merging Gaussian distributions 266
B.5.2 Measuring linear relations of Gaussian variables 270
B.5.3 Linear functions with Gaussian weights 272

B.6 Conditionally independent Gaussian variables 274
B.6.1 Conditional independence of random vectors 274
B.6.2 Conditional independence between vector elements 279
B.6.3 Conditional independence of parts of a vector 283
B.6.4 Online updating of distributions 284

C Linear systems theory 289
C.1 Linear systems and their evolution . 290

C.1.1 System definition . 290
C.1.2 Evolution of the system state. 291

C.2 The expected cost . 296
C.2.1 The infinite-time cost function. 296
C.2.2 The cost of a system without noise 297
C.2.3 The finite-time cost function. 297
C.2.4 The discounted cost function . 298

C.3 Linear quadratic Gaussian control . 301
C.3.1 The input that optimizes the cost function. 301
C.3.2 Differences for the discounted cost function 306
C.3.3 Reintroducing process noise . 307
C.3.4 Estimating the state from noisy measurements 308
C.3.5 Optimal control based on the state estimate 310

C.4 The variance of the LQG cost . 316
C.4.1 The infinite-time case . 317
C.4.2 The non-discounted case . 321
C.4.3 The general case . 323
C.4.4 Solutions using matrix exponentials 325

C.5 Applications of the derived expression 329
C.5.1 A simulation verifying the derived equations. 329
C.5.2 A simulation applying the derived equations. 330

C.6 Overview of literature and contributions 332

CONTENTS ix

References 333

Index 347

PREFACE

Summary — The main rule while reading this student version of my thesis is ‘Only read
the parts that you are interested in.’ If something becomes boring, skip that part and go to
the next section/chapter.

I have set up this student version mostly as an educational book, because I feel that this is
the most effective way to contribute to science. It has been written with a different mindset
than most scientific papers. I have not tried to minimize the word or page count, but rather
the ‘science per cognitive load’, making the theory as intuitive as possible.

To accomplish this, each chapter focuses mainly on the ideas behind the theories, relegat-
ing mathematical derivations to the appendices. In addition, each chapter starts with a
summary, and it is relatively easy to jump between chapters, especially after obtaining the
intuitive view on Gaussian process regression explained in Sections 2.1, 2.2 and 2.4.1. Fi-
nally, all the source code for the examples and applications in this student version can be
found online, ready for you to play around with. For this, see Bijl (2016a).

This student version of my Ph.D. thesis has been written with as main philosophy to save
the reader time and energy. ‘How can that be? It is huge!’ you may be thinking. But it is
overly long exactly because of this goal. All the information you may need is right here
in this file, and more. And that is why the main rule while reading this thesis version is
simple.

Only read the parts that you are interested in.

In this preface I will tell you more about why I set up the thesis in this way, as well as give
you some tips and tricks on how best to read it. If you are interested, then read on. If not?
Then skip it. You will not miss anything crucial. Just check out the Table of Contents and
find something that sparks your imagination.

THE GOAL OF THIS STUDENT VERSION
‘The goal of a Ph.D. is to contribute to a certain scientific field,’ they told me when I
started my project. I liked that. Having a clear goal is always a good thing.

Then they told me how to do that. ‘You have to publish at least three journal pa-
pers.’ And that’s where things went awry. Because the way I think highly educated people
should be managed – or at least how I should be managed – is not by telling them how to
do things. They’re smart enough to figure that out for themselves. You just tell them the
goals they need to reach, and let them figure out the ideal way for them to reach those
goals, of course with sufficient coaching. So my goal was still to contribute to science.

xi

xii PREFACE

And quickly I realized that publishing papers did not feel like the best way to con-
tribute. To me it felt like the scientific world was already flooded with papers. In fact,
there were so many that I doubt anyone has a proper overview of the field anymore.

It all reminded me of some of my software projects. Sometimes these projects get
so many additions from just as many different people, at different times, from different
perspectives, that the whole project becomes a mess. It is nearly impossible to add stuff
then, because no one knows how it affects other parts of the system, or how all function-
alities relate to each other.

The solution there? A massive clean-up. A version 2.0. The best thing to do is to sort
things out. To actually remove code. To simplify. To make notations and conventions
uniform again. To create an overview. You don’t actually build new stuff during that time,
but the process itself is invaluable. Because after the clean-up, suddenly everything is
easier and new contributions, even big ones which were previously unimaginable, often
follow without much effort.

So what is different in the scientific world? Not much actually. I think the best thing
we can do in almost every scientific field, at least for now, is not to add more papers. It
is to sort things out. To get a uniform notation and language. To create an overview of
what we know, allowing new people to easily enter the field. And to keep this overview
updated with new developments as we go, though always keeping it structured. And that
is exactly my goal for the student version of my thesis. It serves as an introduction into
the wondrous world of Gaussian process regression. Of course it’s far from a complete
overview, but I hope it’s a step in the right direction. And hopefully I can find the time to
add updates every now and then to the online version, keeping track of developments in
the field.

THOUGHTS BEHIND THE WRITING STYLE
Throughout the years I have learned the ideas behind Gaussian process regression, as
well as various other mathematical techniques. In hindsight, learning these things took
more time and energy than it should have. So while writing this student version, I have
adopted a writing style whose goals is to save you time and energy while learning. How-
ever, the question ‘How can you save a reader time?’ is a hard one. How can I do this?
And how does it work in general, in the scientific world?

Within scientific writing, there have been different writing mindsets throughout the
years. In the old days, it was not about saving time at all. The focus was on minimizing
the page count of a paper. The reason for this was obvious. With the peer review system,
every paper had to be sent across the globe multiple times, resulting in significant costs.
The less pages a paper had, the lower the costs. Hence the double column formats with
tiny margins.

But with the advent of the digital era, this focus no longer makes sense. Yes, there
are still many journals making use of page limits, although in my eyes any journal which
desperately holds on to this criterion shows an ineptitude of using any of the other fo-
cuses we will discuss. If not for the very conservative and monopolized publishing world,
I believe these journals would have become obsolete several years ago.

Luckily other journals are making advances. Some are for instance focusing on the
word count and comparing this to the strength of the scientific contribution. This amount

PREFACE xiii

of ‘science per word’ is then used as measure for the efficiency of the writing. This seems
like a much better criterion. The word count is a measure of the time needed to read the
paper. So focusing on this would mean that any reader would get as much ‘science per
minute’ as possible. Right?

Well, partly. Though it is a significant improvement, I still find flaws in this philoso-
phy. I have often read a paper in only thirty minutes, only to spend the rest of the day
figuring out what the contents actually meant. I had to redo derivations (which were not
fully written down), I had to track down a one-line proof from a nearly intractable refer-
ence (which could have also been incorporated into the paper) and I had to figure out
the hidden assumptions made in the experiment section. Though the word count may
be low in such a paper, a quantity that I call cognitive load is often very high.

Instead, I think scientific writing should focus on optimizing the ‘science per cogni-
tive load’. The easier something is to read, the better you will understand it and also the
faster you can read it through. The only downside is that the cognitive load is not some-
thing which can easily be measured by a computer program or (worse) a manager. It
depends on the prior knowledge of the intended audience, estimating it requires expert
knowledge, and still the measure remains rather subjective and personal. Nevertheless,
the current peer review system already has an abundance of both expert knowledge and
subjective judgments. So such a system should be possible to set up.

To give the right example, I have written this thesis with the same focus: reducing the
cognitive load required to read it, while maximizing the amount of concepts conveyed.
This mindset has a few consequences for how parts of the chapter are set up, which is
what we will look at now.

THE SET-UP OF THE STUDENT VERSION AND ITS CHAPTERS
This student version of my thesis consists of a main body and appendices. In the main
body, each chapter starts with a summary, follows up with theory and ends with an ap-
plication and/or a literature overview. Let’s take a look at what the idea behind this whole
subdivision is, and how the appendices fit into this.

THE MAIN BODY VERSUS THE APPENDICES

There is a very clear distinction between the main body and the appendices. The main
body contains the intuitive explanation; so lots of pictures, clarifying viewpoints and the
most important equations needed to implement the methods. However, the amount of
derivations is strongly limited.

The large derivations and proofs for the theory have been put in the appendices.
Naturally, when the main body brings up a theorem, I will refer to the appendix where
the theorem resides, so you can easily look things up. And for the math fanatics out there,
these appendices can also be read by themselves.

One thing which I do as little as possible is bring in theorems from external refer-
ences. I know this is contrary to regular academic procedures, which always recom-
mend referring to other papers for everything. But personally I think that asking a reader
to look up a proof in an obscure and enormous reference, while it could have been in-
cluded in a few lines, is a very bad habit. Of course I do attribute my sources, but I want to

xiv PREFACE

prevent you from ever being stuck wondering ‘Where can I easily find more information
about this?’

JUMPING BETWEEN CHAPTERS AND SECTIONS
All the chapters and most of the sections in this booklet can mostly be read indepen-
dently. This makes it easier to look up things you want to learn more about, without
first having to plow through numerous other texts. When prior knowledge is required,
or when there are links to other subjects, this is indicated by referring to the appropriate
sections. Sometimes there are also small intermezzos to cover any potentially missing
prior knowledge.

However, all chapters do assume that you have some intuitive feeling of what a Gaus-
sian process entails, and that you are familiar with the Gaussian process regression equa-
tion. If you are not familiar with GP regression yet, make sure to at least read Sections 2.1,
2.2 and 2.4.1. Once you have mastered this, you can jump to any chapter you like.

SUMMARIES
Every chapter, including this preface, starts with a summary. If you are a first-time reader
of the subject, you should not read the summary though. So what is it for?

The summary is mostly for people already familiar with the subject, to quickly figure
out what is in the chapter and check whether it matches their expectations. It is also
useful to read after reading the chapter, to better memorize what you have learned.

After the summary you find an overview of what will be discussed in the chapter. This
is useful if you want to know how the subjects within the chapter relate to each other, but
it can also just as well be skipped.

MATLAB SCRIPTS AND APPLICATIONS
Each chapter contains a variety of plots showing the ideas discussed within that chapter.
To make sure you can play around with the theory for yourself, all Matlab scripts used
to generate the plots are available online. You can find them through Bijl (2016a). By
playing around, you can gain more of an intuitive feeling for the theory than you can get
from just reading explanations, so I would definitely encourage you to do so.

At the end of each chapter, I also apply the theory discussed in the chapter to a practi-
cal example. Each chapter uses a different set of examples and will introduce these itself.
The source files for each of these applications are also available in the above repository.
Wherever possible, the code has been set up such that each small experiment can be run
by itself, so you can easily get started with any piece of code.

ON EQUATIONS AND PROOFS
This thesis is about a mathematical subject. Naturally there are a lot of equations. This
especially holds for the appendices, where all the derivations and proofs reside. The goal
of these derivations is that you can understand how we got to our results. You need to
know what is going on. As such, I will explain every step that happens along the way.

I know that this is contrary to what most scientific articles do. I have read many
papers in which the average ‘proof’ consisted of a single sentence: ‘Through . . ., this is
trivial.’ Often it took me more than a day to figure out what was so trivial. And sure,

PREFACE xv

after I understood it, it was not all that difficult. In fact, the most difficult thing was the
process of obtaining that understanding. That was far from trivial.

I promise that you will not find a proof ‘This is trivial’ in this booklet. After all, if
the matter really is trivial, I could explain it in a single sentence, and I should write that
sentence instead. And if I could not explain it in a single sentence, then obviously it is
not trivial and I should not say that it is.

When dealing with mathematical derivations, I usually add a separate line for every
single step along the way. I have tuned the ‘cognitive size’ of these steps to what I think
you can reasonably follow. At the start of the chapter each adjustment will be small,
though as you get used to the theory, derivations will take bigger steps. So if a derivation
does go too fast for you to follow, I recommend you to read earlier parts of the chapter.
After doing so, I think you will be able to follow the derivation after all.

THE OVERVIEWS OF LITERATURE
The last section of most chapters is an overview of literature and contributions. This
section mainly discusses existing literature on the subject. It can be seen as the history
of the field. Who made which contribution at which time? It can also give suggestions for
further reading. Because let’s face it: no single file can contain all available knowledge. I
won’t pretend that this student version gives a complete overview of all GP knowledge.

You may wondering, ‘Should a literature overview not be at the start, as is normal in
papers?’ But personally I think that set-up is only useful for papers (and still not for all
papers). For educational resources, a literature overview functions more as background
information for interested people. It does not convey understanding. In fact, the liter-
ature review often already uses terminology that is only introduced in the main body of
the text, which makes it very hard to understand for readers new to the field.

Finally, these sections may outline suggestions for future research. Basically, they are
questions which I am still curious about and would like to look into further, if only I had
the time. They are also excellent starting points for master graduation projects. If you
happen to look into these matters, do send me a note about your discoveries.

FINAL WORDS
I just want to point out that the goal of this student version is to teach as many people
as possible the intricacies of Gaussian process regression. That works better if it reaches
as many people as possible. So I encourage you to spread this thesis among anyone who
might be interested in the subject.

Knowledge should be freely available, in a suitable format, to anyone who desires it.

Hildo Bijl
Delft, August 2016

1
INTRODUCTION

Summary — Wind turbines are growing bigger to become more cost-efficient. This does
increase the severity of the vibrations that are present in the turbine blades, both due to
predictable effects like wind shear and tower shadow, and due to less predictable effects
like turbulence and flutter. If wind turbines are to become bigger and more cost-efficient,
these vibrations need to be reduced.

This can be done by installing trailing-edge flaps to the blades. Because of the variety of
circumstances which the turbine should operate in, these flaps need to be controlled by an
algorithm that can adapt itself. As such, we need a machine learning algorithm that can
take stochastic effects into account.

Gaussian process regression has its basis in Bayesian probability theory, making it a very
suitable technique. However, it also has its limitations. It cannot feasibly be applied to
big and growing data sets, as well as to data with uncertainty in all its measurements.
Efficiently optimizing a Gaussian process is also a complicated problem. The goal of this
thesis is to solve these issues, and teach people how this is done, paving the way for future
applications of Gaussian process regression.

1

1

2 1. INTRODUCTION

This thesis is mainly about Gaussian process regression, with some applications in wind
turbine technologies. You are probably reading this because you want to learn more
about Gaussian process regression. In Section 1.1 we take a look, from a very global
perspective, at what Gaussian process regression can do, as well as what its limitations
are. Afterwards (Section 1.2) we examine why there are applications to wind turbines
in this thesis. We end with and overview (Section 1.3) of the thesis: what can be found
where?

1.1. ISSUES BEHIND GAUSSIAN PROCESS REGRESSION
We start off by looking at what Gaussian Process regression (GP regression) roughly comes
down to (Section 1.1.1). When doing so, we also discover a few of the strengths of GP
regression. Subsequently, we also consider its limitations (Section 1.1.2).

1.1.1. WHAT DOES GAUSSIAN PROCESS REGRESSION DO?
You may wonder, ‘What is regression?’ The idea of regression roughly comes down to
predicting the value of certain variables, based on measurements of other variables. As
such, it is useful when approximating some function f (x). We measure the function
value f (xm) at a few measurement input points xm (sometimes called training points)
and use those measurements, which may be corrupted by measurement noise, to predict
the function value f (x∗) for any trial (test) input point x∗. An example outcome is shown
in Figure 1.1.

Figure 1.1: An example of Gaussian process regression, applied to a sinusoid. The circles denote noisy mea-
surements, the line is the mean of the prediction, the dark region is one time the standard deviation of the
prediction and the light region is two times the standard deviation. In regions with few measurements, the
regression algorithm knows its predictions are more uncertain.

Many regression methods are already available. For linear functions, using the least-

1.1. ISSUES BEHIND GAUSSIAN PROCESS REGRESSION

1

3

squares method (see Lay et al. (2015), Björck (1996)) is often a good idea. For nonlin-
ear functions things get a lot more complicated. The obvious but often suboptimal ap-
proach is to go for the nonlinear least-squares method (see Strutz (2016), Kelley (1995)).
More promising methods are usually based on some sort of kernel or basis function.
Examples include artificial neural networks (see Haykin (1999), Lawrence (1994)), sup-
port vector machines (see Steinwart and Christmann (2008), Campbell and Ying (2011)),
splines (see Chapra and Canale (2015), Smith (1979)), and of course Gaussian process
regression.

Mathematically, most of these methods are very similar: they all use some kind of
basis functions. (See Section 2.3.3 for more information on this.) The philosophy and
starting point of all these methods is very different though. Gaussian process regression
uses Bayesian probability theory to make predictions. Because of this, its basis functions
have a more intuitive meaning (see Section 2.2.1 for the basic idea or Section 3.2 for
details), it has a built-in protection from overfitting (see the complexity penalty from
Section 3.1.3) and when making actual predictions, GP regression does not only provide
a mean estimate, but also a variance. This variance (see the colored area of Figure 1.1) is
an indication of the uncertainty within the prediction, which can be very valuable data
for certain applications.

These features all make Gaussian process regression a very powerful and useful re-
gression method. But the question remains whether it can be applied to practical appli-
cations. It turns out that, while GP regression is a very promising technique, there are of
course still various limitations.

1.1.2. LIMITATIONS OF GAUSSIAN PROCESS REGRESSION

There are several important questions we should ask ourselves, when we want Gaussian
process regression techniques to be applied to practical applications, like wind turbines.

1. How can GP regression be applied to a big and constantly growing data set?
When GP regression is applied to a data set, a large covariance matrix needs to be
inverted. This takes a lot of computational time. (Cubic in the number of measure-
ments.) Then, when new data is added, this covariance matrix needs to be inverted
all over again. This makes GP regression practically infeasible, unless methods can
be found to work around this. We will look into this in Chapter 4.

2. How can GP regression be applied subject to uncertainty in all measurements?
GP regression has been set up with its basis in probability theory. So when the mea-
surement of a function value f (xm) is corrupted by noise, this is not a significant
problem at all. However, if the function input point xm itself is corrupted by noise,
we get a completely different story. Now the regular GP regression algorithm fails.
Can we work around this? This is the subject of Chapter 5.

3. How can Gaussian processes be optimized with respect to various parameters?
GP regression is generally applied to approximate nonlinear functions, and finding
the maximum (or equivalently the minimum) of a nonlinear function can be a daunt-
ing task. How does that work for GP regression? Can we find methods to effectively
and efficiently optimize a Gaussian process? That is the main question of Chapter 6.

1

4 1. INTRODUCTION

4. How can other people apply GP regression algorithms to practical applications?
If GP regression algorithms are to become more widespread within various indus-
tries, like the wind turbine industry, then it should be relatively easy to learn more
about them and to start applying them. Otherwise the algorithms may exist, but no
one has the skills to implement them. So is there an educational resource through
which for instance master students and starting control engineers can learn more
about GP regression and how it can be applied? That is an issue which this entire
thesis is meant to tackle.

In general we can say that GP regression is a promising technique. However, before it
can be widely applied, there are still some issues that need to be solved. The goal of the
student version of this thesis is to help solve these issues; especially the latter one. Alto-
gether, this should pave the way for future applications of Gaussian process regression.

1.2. WHY WIND TURBINE CONTROL?
Why does this thesis have applications to wind turbines? The easy answer here is, ‘That’s
where the funding of my Ph.D. project came from.’ However, wind energy research is also
important for our planet as a whole. After all, we need more renewable energy to keep
our planet developing, without this development being hampered by serious problems
like global warming, extreme pollution or running out of fossil fuels.

Luckily, most people agree that wind energy is important. What people don’t un-
derstand is why I would spend four years on studying wind turbine control. It seems
ridiculous. ‘Why do we need to control a wind turbine in the first place? Just rotate it
into the wind! How hard can that be?’

Well, things turned out to be a ‘bit’ more complicated than that. Initially I thought
controlling an aircraft was hard. Compared to wind turbine control, it is actually a cake-
walk1. When controlling wind turbines, there are a lot more issues that are crucial to take
into account. So let’s first look at what kind of issues there are concerning wind turbine
control.

1.2.1. THE ISSUE OF COST

An important concept in the world of wind energy is the cost of wind energy. How much
does it cost to produce 1 kWh? The key to a more sustainable world is to get this cost
below the cost of producing 1 kWh of coal energy.

Some may argue that this is already the case. When producing coal energy, there will
be side-effects. For example, the emissions of coal plants cause health issues and envi-
ronmental issues, which the population in the end will pay for, in one way or another.
Because the population effectively pays for the coal energy pollution, this can be seen as
hidden subsidies. And when they are quantified and taken into account (see for instance
Holland et al. (2011), Alberici et al. (2014)) then coal energy is generally already far more
expensive than land-based wind energy and also slightly more expensive than offshore
wind energy.

However, governments have so far proven to be incapable of properly taking these

1To be honest, I have been wanting to use the word ‘cakewalk’ in my thesis for quite a while now.

1.2. WHY WIND TURBINE CONTROL?

1

5

hidden subsidies into account. To compensate, they provide financial subsidies to clean
energies like wind energy, through a variety of programs. However, as a consequence of
various financial crises, these subsidies are slowly being reduced. So the challenge for
the wind energy community is to reduce the price of wind energy so much that, even
when hidden subsidies are being ignored, wind energy is still cheaper than coal energy.

1.2.2. THE ISSUE OF SIZE
To reduce the cost of wind energy, wind turbines are gradually growing bigger. If we look
at the size of new wind turbines that are brought to the market, with respect to the year
they were introduced, then this trend is very obvious. Just take a look at Figure 1.2.

Figure 1.2: Development of the size of wind turbines over the years. The future sizes are a prognosis, whose
validity strongly depends on whether the technical challenges related to larger wind turbines can be solved.
Source: Rodrigues et al. (2016). Similar results are given by Philibert and Holttinen (2013).

The reason for this trend is related to scaling. The energy output of a wind turbine
is roughly proportional to the (circular) area of the actuator disc; so the area spanned
by the wind turbine blades. (See for instance Wagner and Mathur (2013), Bianchi et al.
(2007), also for further background on wind turbine technology.) This means that, if
the rotor diameter becomes twice as big, then the energy produced by the wind turbine
becomes four times as big.

The costs generally scale differently. A bigger wind turbine still only needs one gener-
ator, albeit one with a somewhat larger power range. It still needs one cable to transport
the produced energy. For land-based turbines it still requires one location to be placed
at, or for offshore wind turbines one foundation to be installed on. As such, bigger wind
turbines are generally more cost-efficient.

1.2.3. THE ISSUE OF VIBRATIONS
There are limits to how big a wind turbine can become though, and these limits are
mainly present due to the blades.

For aerodynamic reasons, these blades are very long and thin. And anyone who has
watched a piece of barrier tape hanging in the wind knows what happens with such long
and slender objects: it starts to flutter. Although this phenomenon is already present in
airplane wings, it occurs more in large wind turbines, whose blades are more than twice

1

6 1. INTRODUCTION

as long as the largest airplane wings being used today. This flutter behavior is the result
of a variety of factors, among which the current wind speed and how turbulent the wind
actually is. This makes it very hard to predict.

But flutter is only a small part of the problem. Another problem occurs because the
wind speed varies across the turbine. At high altitudes the wind speed is generally higher
than at lower altitudes; a phenomenon known as wind shear. (See Figure 1.3.) In addi-
tion, near the tower of the wind turbine the wind is mostly stopped. This so-called tower
shadow causes the wind speed near the tower to be roughly zero. These large varia-
tions in wind speed which a blade encounters during a full rotation also cause vibrations
within the turbine blade.

Figure 1.3: A wind turbine with the incoming wind visualized. Because the wind speed is lower on lower al-
titudes, the turbine experiences wind shear. In addition, because the tower blocks the incoming wind, tower
shadow also occurs.

Added to this are still more vibrations, because the wind field itself is also constantly
fluctuating, both in speed and direction. These variations can take the form of gusts
(a sudden increase in the wind speeds), turbulence (rapid variations in air pressure and
flow velocity) or other more stationary yet still unpredictable variations in the wind speed.

All these vibrations have various effects. First of all, they cause fatigue damage within
the blades. The bigger the blade, the more severe this damage will be. But the vibrations
also find their way through to the generator, which also takes damage. And in addition,
these vibrations also affect the energy that is produced. It is not (significantly) the case
that vibrations cause less energy to be produced, but they do cause the energy to be more
fluctuating, and hence of less value.

You may be wondering ‘Why don’t airplanes have this vibration problem?’ Well, they
do. However, for some reason airplanes often pass by airports, where they get regular
inspections and maintenance. Wind turbines are usually in remote locations, making
their inspections and maintenance rather expensive. That is why wind turbines need to
be built to last.

Currently, most wind turbines have a lifetime of roughly fifteen to twenty years. If
the blades become bigger, and the vibrations hence become worse, then this lifetime

1.2. WHY WIND TURBINE CONTROL?

1

7

will decrease, making the turbine economically less feasible. The conclusion of all this is
obvious. When wind turbines need to grow bigger, the vibrations must be reduced.

1.2.4. THE ISSUE OF FREQUENCIES
To reduce the vibrations, we need some way to control the blades. Luckily, there are
various methods of doing so.

The first is through the pitch angle of the blade. A pitch angle of 0◦ here means the
blades of the turbine are all in the same plane, while a pitch angle of 90◦ means the
blades are all pointing forward. In practice, the pitch angles are always small. You only
set the pitch angle of the turbine to 90◦ (called feathering of the turbine) when a storm is
coming and you want the turbine to ignore the wind.

In traditional wind turbines, the pitch angles of all the blades are equal. This is an
easy way to control the turbine. However, it is also possible to vary the pitch angle of
each individual blade. This technique is called Individual Pitch Control (IPC) and it is
gradually starting to be applied in modern wind turbines. Research has shown (see for
instance Selvam et al. (2008)) that it is possible to reduce the fatigue loads in this way.

The main problem with IPC is that it is relatively slow. It takes some time (in the order
of a full second) to adjust the pitch angle of a very long blade. So while this technique
can be useful to reduce the more predictable low-frequency vibrations, it cannot be used
to get rid of less predictable high-frequency vibrations.

Instead, we can also install flaps on the trailing edge of the blades, as shown in Fig-
ure 1.4. These flaps can then be actuated using small motors (see Berg et al. (2012)),
using shape memory alloys (see Hulskamp (2011)) or using piezo-actuators (see Bak
et al. (2007), Hulskamp (2011)). For a complete overview of control methods, see Pechli-
vanoglou (2012).

Figure 1.4: A wind turbine with trailing-edge flaps attached to the blades. Contrary to individual pitch control,
these flaps are capable of reducing relatively high-frequency oscillations.

As input data, we can use a variety of data, including pitot tubes to measure air pres-
sure (see Heinz et al. (2010)), strain gauges to measure moments (see Castaignet et al.

1

8 1. INTRODUCTION

(2012)), accelerometers to measure motion, or LiDAR technology to measure the incom-
ing airflow (see Pechlivanoglou (2012)). Through this data, we can then actuate the flaps.

These flaps can react much faster than any IPC method. So with these flaps it should,
in theory, be possible to also reduce the high-frequency vibrations. In fact, it has already
been shown (see for instance Castaignet et al. (2012), Andersen et al. (2006), Basualdo
(2005), Buhl et al. (2005)) that this method can significantly reduce the vibration load.
The main question that remains is: what is the best way to control these flaps? How
do we determine how much the flaps should deflect at each point in time? Or in other
words, what is the optimal control algorithm?

1.2.5. THE ISSUE OF CONTROL

In the field of control theory, the common way to develop a control algorithm for some
kind of system, is to first set up a model of the system. Once we have such a model, and
we know how everything works, we can set up an algorithm to control the system.

For our problem, this approach does not work very well. The first problem is that
the dynamics of the wind turbine strongly depend on one very important external pa-
rameter: the wind speed. To take this into account, we will have to look into parameter-
varying control techniques. Specifically, Linear Parameter-Varying control (LPV control)
has seen significant developments in recent years. See for instance Tóth (2010), Briat
(2015) for general theory, or van Wingerden (2008), Adegas and Stoustrup (2012) for ap-
plications to wind turbines.

However, LPV methods cannot solve all our problems here. This is partly because
turbulence and flutter are inherently hard to predict. But also the more predictable os-
cillations – the ones due to wind shear and tower shadow – are hard to get rid of with only
a single LPV controller. The reason is that, while manufacturing the wind turbine and its
blades, there are always minor variations in the manufacturing process. Every wind tur-
bine is inherently different. And this difference is also likely to grow as the wind turbine
ages. Added to this, the dynamics of the turbine are also made significantly more compli-
cated due to the addition of flaps. So devising any single controller that works optimally
for every wind turbine, even with robust control techniques as described by Skogestad
and Postlethwaite (2005), Green and Limebeer (1995), is pretty much impossible. The
system uncertainties are too large.

What we need instead is a control algorithm that adapts to the wind turbine it is run-
ning on. We need some kind of data-based approach. An algorithm that learns by itself
how to reduce vibrations. This method should be able to take into account uncertainties
which are inherently the result of a stochastic wind field.

Ideally, such a control algorithm should take into account the actual cost of energy.
It should be able to trade off the value of more energy being generated to the damage
that is caused to the turbine. Naturally, if energy had no value, we would simply let the
wind turbine stand still, giving us the least amount of damage. And on the other hand,
when the damage to the turbine was irrelevant, vibrations would be irrelevant and we
would simply maximize the generated power. We need a control algorithm that can find
the optimum between these two extremes.

The problem we are facing here is that the damage calculations are inherently non-
linear (see Section 6.5.5 for more background on this) while most control algorithms use

1.3. OVERVIEW OF THIS BOOKLET

1

9

linear or quadratic cost functions. Because of this, we need a technique that can approx-
imate nonlinear cost functions.

To summarize, we need a learning algorithm which can approximate nonlinear cost
functions subject to noise and uncertainties. The ideal method here seems to be Gaus-
sian process regression. This method can approximate a variety of functions, includ-
ing nonlinear functions, and because it has its basis in Bayesian probability theory, it
inherently takes uncertainty into account. The question remains whether this machine
learning technique is sufficiently developed to be applied to wind turbine problems. An-
swering that question has resulted in this thesis.

1.3. OVERVIEW OF THIS BOOKLET
In this thesis we start off with a basic introduction into Gaussian process regression
(Chapter 2). If you are new to GP regression, I most certainly recommend you to read
Sections 2.1, 2.2 and 2.4.1. The other sections are also useful but less critical for under-
standing the other chapters.

Afterwards, you can jump to any chapter you like. Every section mentions it when-
ever you require certain prior knowledge. Chapter 3 will look at already existing but
somewhat more advanced tricks behind GP regression. In chapter 4 we examine how
we can apply Gaussian process regression to large data sets without having to wait an
eternity. We also consider how we can efficiently incorporate new measurements as they
come. Chapter 5 then discusses what we can do when we run into input points that are
subject to measurement noise. In Chapter 6 we figure out how to optimize a Gaussian
process. Finally, we conclude the thesis in chapter 7 by looking at whether we have over-
come the four mentioned limitations of GP regression.

Also worth mentioning are the appendices, which contain all the mathematics be-
hind this thesis. Appendix A contains several theorems on Matrix algebra, ranging from
various matrix operations up to solutions of Lyapunov equations and their properties.
Appendix B discusses probability theory, starting from the basic definitions of the prob-
ability density function, and working up to incorporating new measurements into condi-
tionally independent Gaussian distributions. Finally, Appendix C goes into depth on lin-
ear systems theory, discussing how to optimally control a linear system subject to Gaus-
sian noise, even when the quadratic cost function is discounted. It also gives expressions
to calculate the mean and variance of the resulting cost.

2
AN INTUITIVE INTRODUCTION TO

GAUSSIAN PROCESS REGRESSION

Summary — The main idea behind GP regression is to consider function values f (x) as
Gaussian random variables. To be precise, any set of function values f (x1), f (x2), . . . is
assumed to have a joint Gaussian distribution. For the input points x, we can include
measurement points xm (where we will do measurements) and trial points x∗ (where we
want to predict the function value).

When applying GP regression, we first need to define the prior distribution of the vector
of function values f . We do this by defining a mean and a covariance function. Then we
start doing measurements. These measurements give us additional distributions over the
function values f . By merging all available distributions together, we get our predictions
for the trial function values f∗.

Intuitively, a Gaussian process can be seen as a distribution over functions. And by taking
the derivative, we wind up with another Gaussian process. It is also possible to take into
account multi-input functions and multi-output functions, though in the latter case it is
often more efficient to approximate each function output by a separate Gaussian process.

11

2

12 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

In this chapter we examine the basics behind Gaussian process regression from a very
intuitive point of view. It serves as a first introduction to the field. The theory here is not
new – it is already outlined by Rasmussen and Williams (2006) – but the method with
which we derive our equations is new. Those already familiar with Gaussian process
regression can skip this chapter altogether, or quickly browse through Sections 2.1 and
2.2 to check out the notation and method that we are using.

We will start this chapter by looking at a simple problem: approximating a single
variable (Section 2.1). These exact same concepts are then used for regression to ap-
proximate functions (Section 2.2). That is where we suddenly wind up with the Gaussian
process regression equations. Next, we check out various ways of looking at Gaussian
processes, from the official definition to a more intuitive view (Section 2.3). Afterwards
we look at a few extensions of our methods, from multi-input and multi-output func-
tions (Section 2.4) to derivatives and integrals of functions (Section 2.5). Finally, we ap-
ply the ideas that we have learned in an application (Section 2.6). At the back end of this
chapter, a short literature overview is given (Section 2.7).

If you are short on time, then I would recommend to read only Sections 2.1, 2.2
and 2.4.1. These form the basis of the theory and will be crucial for the rest of this thesis.
The rest of this chapter provides interesting but not crucial background information and
extensions.

2.1. APPROXIMATING A VARIABLE
In this section we will not look at Gaussian process regression just yet. We will look at a
simple case of approximating a single variable. This simple case teaches us a few basic
concepts which will be essential in Section 2.2, when we do look at GP regression.

We will start off (Section 2.1.1) with the concept of a prior distribution of a variable.
Then we look at what a measurement of that variable will tell us (Section 2.1.2) and how
to incorporate that data through a concept called merging distributions (Section 2.1.3).
We then expand this to the case where we have multiple variables (Section 2.1.4) and
what we can do when we only measure one of them (Section 2.1.5).

2.1.1. THE PRIOR DISTRIBUTION
Suppose that we have some number f . We want to know what it is, but at the moment
we do not know. We expect it to be roughly zero, but it is likely to be anywhere between
−2 and 2, although it might actually also fall outside of that range in a few special cases.

The way we treat this mathematically, is that we treat f as a random variable. We
hence write it as f . This random variable has a certain distribution. Based on our prior
knowledge of the number – knowledge that we have without doing any measurements
– we can for instance say that f is a Gaussian random variable with mean m = 0 and

standard deviation1 λ f = 2. (For further details about the Gaussian distribution, see Sec-
tion B.4.) Mathematically, we then say that the prior distribution of f , expressed through
the Probability Density Function (PDF; for details, see Section B.1) equals

f ∼N (f |m,λ2
f). (2.1)

1In literature, often the symbol α or σ f is used here instead of λ f . We will use λ f here to indicate that it is a
length scale related to the parameter f .

2.1. APPROXIMATING A VARIABLE

2

13

The ∼ sign officially means ‘has as probability density function’ though is more often
read as ‘is distributed according to’. The function N (f |m,λ2

f) is the (one-dimensional)

Gaussian probability density function with mean m and variance λ2
f . It per definition

equals

N (f |m,λ2
f) ≡ 1√

2πλ2
f

exp

(
−1

2

(
f −m

)2

λ2
f

)
. (2.2)

Note that the first parameter f in the function definition N
(

f |m,λ2
f

)
is only a running

variable in the Gaussian PDF. We could have used any symbol here. Often we simply omit
it and write N (m,λ2

f), which means the same. The parameter λ f in the above function

definition can be seen as a length scale for f . The larger it is, the larger the range of values
which f will take.

2.1.2. MAKING MEASUREMENTS OF f
To learn more about the exact value of f , we will do measurements. If we have an in-
finitely precise measurement, which tells us that f equals some number2 f̂ , then we
would be done. We would exactly know f .

But in the real world this is almost never the case. There is always some measurement
noise. As a result, we would only get a measured value f̂ , which is different from the true
value f due to the noise. Specifically, if we know the noise ν, we have

f̂ = f +ν. (2.3)

Before we do the measurement though, we can still see the measured value f̂ as a ran-
dom variable f̂ , and then we still have

f̂ = f +ν. (2.4)

We generally assume that we are dealing with Gaussian white noise. That is, ν has a
zero-mean Gaussian distribution with variance3 σ̂2

f ,

ν∼N (ν|0, σ̂2
f), (2.5)

and its exact value does not depend on the measurement noise of any other measure-
ment which we might do. As a result, prior to doing our measurement, we have

f̂ ∼N
(

f̂ |m +0,λ2
f + σ̂2

f

)
. (2.6)

(See Theorem B.4 to learn how to find the mean/variance of the sum of random vari-
ables.) Next, when we perform a measurement, we get to know f̂ deterministically.

2In literature measurements are often denoted by y . However, later on (Chapter 5) we will also start mea-
suring the input x, in which case this notation reaches its limits. That is why, in this thesis, we will denote
measurements through the hat-notation f̂ .

3In literature, often the symbol σn is used instead of σ̂ f . In addition, literature often uses σ f as output length
scale – where we use λ f . This results in a lot of ambiguity. In this thesis I will consistently use λ for length
scales andσ for noise scales, and I will use the hat-notation to indicate measurements or parameters indicat-
ing properties of measurements.

2

14 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

However, we do not know the measurement noise ν that was involved. As a result, we
have

f = f̂ −ν∼N
(

f | f̂ , σ̂2
f

)
. (2.7)

So this measurement has actually given us another distribution for f . And now we have
two distributions for f , being (2.1) and (2.7). Both have been obtained independently
and both are correct. We need to find a way to merge them.

2.1.3. MERGING DISTRIBUTIONS
So how likely is it that our random variable f actually equals some value f ? This prob-
ability depends on the two distributions that we have. Specifically, a possible value f
should correspond to the first distribution and the second distribution. This word ‘and’
means we need to multiply the two distributions. And to make sure that we get an actual
probability density, we also need to normalize the result. So,

f ∼
N (f |m,λ2

f)N (f | f̂ , σ̂2
f)∫ ∞

−∞N (f |m,λ2
f)N (f | f̂ , σ̂2

f)d f
. (2.8)

Note that this reasoning is not an official mathematical proof. It is the intuitive point of
view. For the official proof, see Theorem B.9.

This new distribution of f takes all measurements into account. As such, we call it
the posterior distribution. An example of calculating this posterior distribution can be
seen in Figure 2.1. The source code of this example (and of every other example) can
also be found online through Bijl (2016a).

Of course, if we had performed multiple measurements f̂1, f̂2, . . ., this expression
would have been bigger. We would have wound up (see Theorem B.10) with a poste-
rior distribution

f ∼
N (f |m,λ2

f)N (f | f̂1, σ̂2
f1

)N (f | f̂2, σ̂2
f2

) . . .∫ ∞
−∞N (f |m,λ2

f)N (f | f̂1, σ̂2
f1

)N (f | f̂2, σ̂2
f2

) . . . d f
. (2.9)

It is worthwhile to note that in practice the measurement noise variance is often the
same between measurements. So then σ̂ f1 = σ̂ f2 =

Finally, because we will see this idea of merging distributions more often, we intro-
duce a shorthand notation for it. We use the operator ⊕ and say that (2.9) is (per defini-
tion) equivalent to

f ∼N (f |m,λ2
f)⊕N (f | f̂1, σ̂2

f1
)⊕N (f | f̂2, σ̂2

f2
)⊕ (2.10)

For more details about this, see Appendix B.3.3 (merging distributions in general) or Ap-
pendix B.5.1 (merging Gaussian distributions).

2.1.4. MULTIPLE VARIABLES TO APPROXIMATE
Now suppose that we have multiple variables f1, f2 and f3 that we want to find. We can
put them all into a vector f , where the bold face indicates that f is a vector. In this case,

2.1. APPROXIMATING A VARIABLE

2

15

Figure 2.1: An example of merging distributions. The prior has distribution N
(
0,22)

and the measurement
has distribution N

(
2,1.52)

. To find the posterior (merged) distribution, we can multiply the probabilities and
subsequently normalize the result. This result is always more peaked than any of the original distributions.
Note that the source code behind all the plots in this thesis is online and can be found through Bijl (2016a).

we can treat f as a random vector f . Our prior distribution is now written as

f =

 f
1

f
2

f
3

∼N


 f1

f2

f3

∣∣∣∣
m1

m2

m3

 ,

λ
2
f1

0 0

0 λ2
f2

0

0 0 λ2
f3


=N

(
f |m,K

)
, (2.11)

where m is the prior mean and K is the prior covariance matrix. (Why we have cho-
sen the symbol K here will become clear in Section 2.2.) Note that here we’re using a
multivariate distribution, and as such we should also use the multivariate Gaussian dis-
tribution

N (f |µ,Σ) ≡ 1p|2πΣ| exp

(
−1

2

(
f −µ)T

Σ−1 (
f −µ))

. (2.12)

This is in fact a multi-dimensional generalization of (2.2).

We should also update the notation for our measurements. Suppose that we have
measured values f̂1, f̂2, We can write any measurement f̂i , with i our measurement
index, as

f ∼N
(

f | f̂i , Σ̂ fi

)
. (2.13)

2

16 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

Figure 2.2: An example of merging multi-dimensional distributions. The left figure shows the prior distribution
N (0,12) for three measurement points. The middle figure shows the measurement distribution N (f̂ ,0.72), for
varying f̂ . The right figure shows the merged (posterior) distribution. Error bars have the size of two times the
standard deviation, to indicate the 95% region.

Now we have as posterior distribution,

f ∼
N

(
f |m,K

)
N

(
f | f̂1, Σ̂ f1

)
N

(
f | f̂2, Σ̂ f2

)
. . .∫

F N
(

f |m,K
)
N

(
f | f̂1, Σ̂ f1

)
N

(
f | f̂2, Σ̂ f2

)
. . . d f

(2.14)

=N
(

f |m,K
)⊕N

(
f | f̂1, Σ̂ f1

)
⊕N

(
f | f̂2, Σ̂ f2

)
⊕

where the integral is taken over F , which is the space of all possible values of f . An
example is shown in Figure 2.2.

The great thing is that the resulting distribution will again be Gaussian. The posterior
distribution (see Theorem B.21) will satisfy

f ∼N
(

f |µ,Σ
)

, (2.15)

Σ=
(
K −1 + Σ̂−1

f1
+ Σ̂−1

f2
+ . . .

)−1
,

µ=Σ
(
K −1m + Σ̂−1

f1
f̂1 + Σ̂−1

f2
f̂2 + . . .

)
.

We write the expression for Σ here before the expression for µ, because we often use Σ
within the expression for µ. It is interesting to know here that (apart from a few special
cases discussed in Appendix B.4.5) covariance matrices K and Σ are always positive def-
inite. This means that, the more measurements are added, the smaller Σ will get. (At
least, its determinant, being the product of the eigenvalues, will become smaller.) And a
smaller variance means a more accurate estimate. Adding more data hence means you
will get estimates which are more accurate. This does not always mean your estimates
become closer to the true value of what you are estimating. It is always possible to get a
single instance of bad noise. But adding an additional measurement is (on average) ex-
pected to bring your estimate closer to the true value, which always makes it worthwhile.

2.1.5. MEASURING ONLY A SINGLE VARIABLE

In the previous section, we have always measured the full vector f . But what should we
do if we only measure a single variable f1? It turns out that we can then still use (2.15).

2.2. APPROXIMATING VARIABLES WE HAVE NOT MEASURED

2

17

Our measurement basically gives us a distribution f
1
∼N

(
f1| f̂1, σ̂2

f1

)
. The measure-

ment hasn’t told us anything about f
2

or f
3

though. And when we know absolutely noth-

ing about a Gaussianly distributed random variable – it can literally be anything – we also
say that this random variable has an infinitely large variance. (See Section B.4.5 for fur-
ther background on this.) It follows that we can also write our measured distribution
as

f ∼N

 f1

f2

f3

∣∣∣∣
 f̂1

∗
∗

 ,

σ̂2
f1

∗ ∗
∗ ∞ ∗
∗ ∗ ∞

 . (2.16)

So what do the stars ∗ here mean? Simply put, they are inconsequential values4. We
could have put numbers in place of these stars. But when we plug the above into (2.15),
then these numbers would have dropped out of the equations, because of the presence
of the infinities.

Next, we can apply the above distribution to (2.15). When we work out the mathe-
matics, we do have to apply Theorem A.11 to take into account the infinite variances,
but everything will work out in the usual way. So this is how we can take into account a
measurement of only part of the vector f .

2.2. APPROXIMATING VARIABLES WE HAVE NOT MEASURED
So far, we haven’t really talked about regression yet. After all, regression is about making
predictions of parameters we have never performed any measurements on. How that
works is something we will look into in this section, where we will actually examine the
approximation of a function f (x).

We will first review our prior assumptions (Section 2.2.1), before we use these new as-
sumptions to predict function values (Section 2.2.2). Then, after adjusting our notation
a bit (Section 2.2.3) we also implement measurement noise (Section 2.2.4).

2.2.1. MAKING PRIOR ASSUMPTIONS ON FUNCTION VALUES
Suppose that we have some function f (x) and we want to estimate or approximate the
value of this function at various input points x1, x2 and x3. (For instance, take x1 = 1,
x2 = 2 and x3 = 3.) So we want to know the function values f (x1), f (x2) and f (x3), which
we shorten, for ease of writing, to f1, f2 and f3. How do we do this?

Well, we again have three numbers that we want to know, so just like in the previous
section we assume that they are random variables. We write them as f

1
, f

2
and f

3
, and

we assume that they each have some prior mean m(x) and variance λ f (x)2. Note that
these may now also depend on the function input x.

The problem now is that, if we now know something about f
1

, we still cannot say

anything about f
2

or f
3

. Without further assumptions, these function values are com-

pletely unrelated, and we cannot apply any regression. Mathematically, this is because

4In literature people often try to avoid working with infinity. To accomplish this, they work with the inverse of
the covariance matrix, which is known as the precision matrix or the information matrix. An infinite covari-
ance hence means zero precision/information, a zero covariance means infinitely precise information and (as
is explained right after Theorem B.23) a negative covariance means negative information or disinformation.
To keep things simple, we will stick with the above notation and only use the covariance matrix.

2

18 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

the matrix K in (2.11) is a diagonal matrix. So we have to assume some kind of link be-
tween these function values.

We could for instance assume that the original function f (x) is smooth and doesn’t
vary too much with varying x. From a probabilistic point of view this means that, be-
cause x1 is close to x2, f

1
has a similar value as f

2
, but because x1 and x3 are further

apart, we can say less about f
3

. The question now is ‘How do we express this mathemat-

ically?’
We should keep in mind here that we have assumed that these function values f (x)

are random variables. And random variables can be correlated! In fact, we could assume
that f

1
and f

2
are strongly correlated, while f

1
and f

3
are less strongly correlated. To

do so, we define a correlation function c(x, x ′) which defines the (a priori) correlation
between the function values f (x) and f (x ′) for any input points x and x ′. For instance,
we could use a Squared Exponential correlation function (SE correlation function)

c(x, x ′) = exp

(
−1

2

(
x −x ′)2

λ2
x

)
. (2.17)

Here5 λx is a length scale for the input x. The correlation function for λx = 1 is shown
in Figure 2.3. It basically shows that the function values f (x) and f (x ′) of nearby input

points x and x ′ are strongly correlated, while the function values for input points that
are very far away from each other have a nearly zero correlation.

Figure 2.3: The correlation function (2.17) forλx = 1. For other values ofλx , just scale the function horizontally
by a factor λx .

In practice, we actually don’t use a correlation function but we use something very
similar. We use a covariance function6 k(x, x ′), which follows as

k(x, x ′) =λ f (x)λ f (x ′)c(x, x ′). (2.18)

If we use a constant standard deviationλ f (x) =λ f , then we wind up with the well-known

5Other literature generally uses the notation λ without subscript here. But we use the subscript so as not to
confuse it with the output scaling parameter λ f .

6In literature the covariance function is sometimes also called the kernel function. This is because the co-
variance function performs a very similar role to the kernel function in kernel methods like support vector
machines.

2.2. APPROXIMATING VARIABLES WE HAVE NOT MEASURED

2

19

Squared Exponential covariance function (SE covariance function)

k(x, x ′) =λ2
f exp

(
−1

2

(
x −x ′)2

λ2
x

)
. (2.19)

Note that the covariance of f (x) with itself, for any input point x, is now given by k(x, x) =
λ2

f , which is exactly what we had already assumed in Section 2.2.1.

Using our assumptions so far, we can set up our prior distribution. It is the (in this
case) three-dimensional Gaussian distribution

f = f (X) =

 f (x1)

f (x2)

f (x3)

∼N

 f1

f2

f3

∣∣∣∣
m(x1)

m(x2)
m(x3)

 ,

k(x1, x1) k(x1, x2) k(x1, x3)
k(x2, x1) k(x2, x2) k(x2, x3)
k(x3, x1) k(x3, x2) k(x3, x3)

 (2.20)

=N
(

f |m(X),k(X , X)
)

=N
(

f |m,K
)

.

It is important to note the difference with (2.11). Now the matrix K is not diagonal any-
more, but there are covariances in it. In other words, the function values are linked.
Knowing something about one will tell us more about the others, which is what regres-
sion is all about.

2.2.2. MAKING PREDICTIONS ABOUT OTHER FUNCTION VALUES

Next, suppose that we have measured (deterministically – without noise) that f
1
= f̂1.

What does this tell us about the distribution of f
2

and f
3

?

One way to determine this would be to take the prior distribution (2.20) and subse-
quently set up the conditional distribution of f

2
and f

3
, given that f

1
= f̂1. This follows

from Theorem B.15 as

f
2
|(f

1
= f̂1) ∼N

(
f2|m(x2)+k(x2, x1)k(x1, x1)−1 (

f̂1 −m(x1)
)

, (2.21)

k(x2, x2)−k(x2, x1)k(x1, x1)−1k(x1, x2)
)

.

and identically for f
3

. Although often we leave out the addition ‘|(f
1
= f̂1)’ and just

assume it is clear we are talking about the posterior distribution.
With the above expression we can find the posterior distribution of f

2
and f

3
. This

process of calculating the posterior distribution is what I call predicting, although the
common term in literature is conditioning. If we would plot the predictions, they would
look like Figure 2.4. Note that the error bars (the variances) have gotten smaller, espe-
cially for f

2
, while we only did a measurement of f

1
.

2.2.3. SPLITTING UP THE MEASUREMENT AND TRIAL POINTS
You may have noticed that the expressions of our distributions are already becoming
quite long. And in addition, it is hard to keep track of for which input points x we have
performed measurements and for which input points x we make predictions. So we
could definitely use a better notation system.

2

20 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

Figure 2.4: A first example of GP regression. The left figure shows the prior distribution N (0,12) for three
measurement points. The middle figure shows the measurement, where we measure the left point exactly (0
variance) but not the middle or right point (infinite variance). The right figure shows the posterior distribution.
Note that the measurement of the first point has affected the predictions for the other points.

What we generally do, is write all the measurement points – so input points x for
which we have performed measurements – as xm1 , xm2 , . . . , xmnm

, with nm the number
of measurements. We put all these points into the measurement input set7 Xm . We then
write f (Xm) = f

m
(the measured function values), m(Xm) = mm and k(Xm , Xm) = Kmm .

Similarly, all the points that we want to predict the function value f (x) of are denoted
by x∗1 , x∗2 , . . . , x∗n∗ , with n∗ the number of trial points. We call these trial points and
put them in the trial input set X∗. We then write f (X∗) = f ∗ (the trial function values),

the m(X∗) = m∗ and k(X∗, X∗) = K∗∗. In addition, we write k(X∗, Xm) = K∗m = K T
m∗ =

k(Xm , X∗)T .
The prior distribution of f

m
and f ∗ is now given by[

f
m

f ∗

]
∼N

([
fm

f∗

]∣∣∣∣[mm

m∗

]
,

[
Kmm Km∗
K∗m K∗∗

])
. (2.22)

According to the same Theorem B.15, the posterior distribution of f ∗, given that f
m

=
f̂m , now equals

f ∗ ∼N
(

f∗
∣∣∣m∗+K∗mK −1

mm

(
f̂m −mm

)
,K∗∗−K∗mK −1

mmKm∗
)

. (2.23)

The nice thing is that, with this expression, we can incorporate as many measurement
points and as many trial points as we want. (Within the limits of our computer.) Some
example results are shown in Figures 2.5.

2.2.4. IMPLEMENTING NOISY MEASUREMENTS
What happens when we do not measure f

m1
, . . . , f

mnm
precisely? What if there is mea-

surement noise ν∼N (ν|0, σ̂2
f) again, and we have

f̂
m1

= f
m1

+ν1, . . . , f̂
mnm

= f
mnm

+νnm
. (2.24)

7In literature, the subscript m is often omitted. So the measurement input set Xm is denoted as X . To prevent
confusion between the various other sets we are still about to see, we will always include the subscript m,
unless specifically indicated otherwise.

2.2. APPROXIMATING VARIABLES WE HAVE NOT MEASURED

2

21

Figure 2.5: A second example of GP regression, with λ f = λx = 1. For the left figure we have used nm = 2
measurement points and n∗ = 20 trial points. Error bars denote two times the standard deviation. For the
right figure we have used nm = 4 measurement points and n∗ = 400 trial points. To prevent chaos, we have
replaced the error bars by a colored area, where the inner (darker) area is one times the standard deviation and
the outer (lighter) area is two times the standard deviation. This is something that we will continue to do from
now on.

Or, in vector notation, f̂
m
= f

m
+ν, where ν is distributed according to

ν=

 ν1
...

νnm

∼N


 ν1

...
νnm

∣∣∣∣
0

...
0

 ,


σ̂2

fm1
· · · 0

...
. . .

...
0 · · · σ̂2

fmnm


=N

(
ν|0, Σ̂ fm

)
. (2.25)

What do we do then?
In this case there are different ways to tackle the problem. In most textbooks, people

generally look at the prior distribution of the noisy measurement vector f̂
m

= f
m
+ν.

Identically to (2.6), it equals

f̂
m
∼N

(
mm +0,Kmm + Σ̂ fm

)
. (2.26)

Now, again using Theorem B.15, we can find that the posterior distribution of f ∗, given

that f̂
m

is some deterministic value f̂m , equals

f ∗ ∼N
(
m∗+K∗m

(
Kmm + Σ̂ fm

)−1
(

f̂m −mm

)
,K∗∗−K∗m

(
Kmm + Σ̂ fm

)−1
Km∗

)
. (2.27)

For the full proof, see Theorem B.16. Do note that f̂m denotes our actual measurement.
So this is where we should put the numbers we read from our measurement equipment.

We will go for a different approach here though, which is (in my eyes) more intuitive
and more powerful. It is the approach we also used in Section 2.1.2.

The idea is that we have two distributions. First there is the prior distribution (2.22).
Additionally, our measurements have told us that

f
m
= f̂m −ν∼N

(
fm | f̂m , Σ̂ fm

)
. (2.28)

2

22 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

We want to merge these two distributions, but we can only merge random vectors of the
same size. Keeping in mind that our measurements have not told us anything (directly)
about the trial function values f∗, we can extend the above to

[
f

m
f ∗

]
∼N

([
fm

f∗

]∣∣∣∣[f̂m

∗
]

,

[
Σ̂ fm ∗
∗ ∞

])
. (2.29)

Here, the term ∞ can be seen as a matrix in which all eigenvalues are infinitely large. So
you may write it as ∞I as well, although we will just stick with the shorter notation ∞.
(See Section B.4.5 for a further background on this.)

If we subsequently merge the prior distribution (2.22) and the measured distribu-
tion (2.29) using (2.15), we wind up (see Theorem B.22) with the GP regression equation

[
f

m
f ∗

]
∼N

([
fm

f∗

]∣∣∣∣[µm

µ∗

]
,

[
Σmm Σm∗
Σ∗m Σ∗∗

])
, (2.30)

[
Σmm Σm∗
Σ∗m Σ∗∗

]
=

[
Kmm −Kmm

(
Kmm + Σ̂ fm

)−1
Kmm Km∗−Kmm

(
Kmm + Σ̂ fm

)−1
Km∗

K∗m −K∗m
(
Kmm + Σ̂ fm

)−1
Kmm K∗∗−K∗m

(
Kmm + Σ̂ fm

)−1
Km∗

]

=
[

Kmm
(
Kmm + Σ̂ fm

)−1
Σ̂ fm Σ̂ fm

(
Kmm + Σ̂ fm

)−1
Km∗

K∗m
(
Kmm + Σ̂ fm

)−1
Σ̂ fm K∗∗−K∗m

(
Kmm + Σ̂ fm

)−1
Km∗

]
,

[
µm

µ∗

]
=

mm +Kmm
(
Kmm + Σ̂ fm

)−1
(

f̂m −mm

)
m∗+K∗m

(
Kmm + Σ̂ fm

)−1
(

f̂m −mm

) 
=

 Σmm

(
K −1

mm mm + Σ̂−1
fm

f̂m

)
m∗+K∗m

(
Kmm + Σ̂ fm

)−1
(

f̂m −mm

) .

There are two ways of writing the above expression. Often the second is easier to apply,
while the first is easier to remember. The powerful thing is that we now not only find
the posterior distribution of the trial function values f ∗, but also that of the measured

function values f
m

, in case we need them.

It is interesting to note that, when Σ̂ fm → 0 and the measurement hence becomes

infinitely precise, then µm → f̂m , Σmm → 0 and the expression for f ∗ reduces to (2.23).

So what is the effect of adding measurement noise to our predictions? Basically, the
posterior uncertainties (variance) will be slightly bigger. To see how, compare the earlier
Figure 2.5 (right) with Figure 2.6.

2.3. DIFFERENT VIEWS ON GAUSSIAN PROCESSES

Now we know how Gaussian process regression works. But we haven’t really looked at
what a Gaussian process actually is. That is what we will look at now. We start with the
formal definition (Section 2.3.1), continue with a more intuitive view (Section 2.3.2) and
end with a view on what GP regression mathematically comes down to (Section 2.3.3).

2.3. DIFFERENT VIEWS ON GAUSSIAN PROCESSES

2

23

Figure 2.6: An adjusted version of Figure 2.5 (right) in which measurement noise with standard deviation σ̂ fm =
0.1 has been implemented.

2.3.1. THE FORMAL DEFINITION OF A GAUSSIAN PROCESS

It is time to look at the formal definition of a Gaussian process. A Gaussian process for-
mally is a collection of a (possibly infinite) number of random variables f

1
, f

2
, . . ., any

finite number of which has a joint Gaussian distribution. Let’s take a look at how exactly
this works.

Generally, a Gaussian process has an index variable associated with it. For us, this will
be the input x. It could also be the time t or a multi-dimensional input vector x . (We’ll
discuss the latter case soon in Section 2.4.1.) For now, we will write the index variable as
x though. Different values of the index variable x will result in different random variables
f (x).

You should note here that x can be (and often is) a continuous variable, and hence
can take infinitely many different values. As such, our Gaussian process consists of just
as many random variables f (x). However, there is no such thing as an infinitely large
joint Gaussian distribution, so we cannot work with this directly. But if we would take
a finite number of points x1, . . . , xn , merge these into a set X and set up the distribution
f = f (X), then we get a subset of all these random variables which does have a (finite)
joint Gaussian distribution.

A (finite) vector f ∼N (f |µ,Σ) with a Gaussian distribution is fully defined when we
know the mean vectorµ and the covariance matrixΣ. To fully define a Gaussian process,
for each possible set X that we may take, we need something similar. First of all, we need
a mean function m(x) and secondly a covariance function k(x, x ′). If we know these two
functions, our Gaussian process is fully defined.

At this point you’ve probably noticed that our prior distribution (2.20) satisfies this
criterion. It is worthwhile to notice that also the posterior distribution of (2.23) or (2.30)

2

24 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

satisfies this criterion, for any set of trial points X∗ we may take. In this case, the posterior
mean function mpost (x) and posterior covariance function kpost (x, x ′), expressed in the
prior mean function m(x) and prior covariance function k(x, x ′), equal

mpost (x∗) = m(x∗)+k(x∗, Xm)
(
k(Xm , Xm)+ Σ̂ fm

)−1
(

f̂m −mm

)
, (2.31)

kpost (x∗, x ′
∗) = k(x∗, x ′

∗)−k(x∗, Xm)
(
k(Xm , Xm)+ Σ̂ fm

)−1
k(Xm , x∗). (2.32)

2.3.2. THE INTUITIVE VIEW OF A GAUSSIAN PROCESS

There is also a more intuitive view of a Gaussian process. The way I see a Gaussian pro-
cess is as a distribution over functions. Let me explain what that means.

Suppose that we have a Gaussian process with input points from the interval [0,4].
And suppose that we take a hundred trial points evenly distributed over this interval,
like we also did in earlier plots. We know the joint distribution N (µ∗,Σ∗∗) of these trial
points, and as such we can take samples from it. A few examples of such samples is
shown in Figure 2.7.

Figure 2.7: An example of three sample functions taken from a Gaussian process. Conditions are the same as
in Figure 2.6. In theory, for 95% of the points, the samples should fall within the gray 95% region.

Each of the samples in Figure 2.7 now is a possible function f (x) that could have
(with the given measurement noise) generated the data that we have measured. As such,
this is the more intuitive view on what a Gaussian process is.

2.3.3. THE MATHEMATICAL VIEW OF GAUSSIAN PROCESS REGRESSION

We can also look at what Gaussian process regression mathematically comes down to. In
fact, let’s consider the prediction equation for the mean µ∗ for a single trial input point

2.4. MULTI-DIMENSIONAL INPUTS AND OUTPUTS

2

25

x∗. From (2.30) we know that

µ∗ = m(x∗)+K∗m
(
Kmm + Σ̂ fm

)−1
(

f̂m −mm

)
. (2.33)

Let’s define the vector α = (
Kmm + Σ̂ fm

)−1
(

f̂m −mm

)
. This vector does not depend on

x∗, so once all our measurements are known, we only have to compute it once. We can
now rewrite the above expression to

µ∗ = m(x∗)+
nm∑
i=1

αi k(xmi , x∗). (2.34)

So what we see is that the posterior mean function – which happens to be our most likely
function value – is a sum of nm covariance functions. Mathematically, we can also see
this as a sum of basis functions. And we use just as many basis functions as we have
measurements. Although later on, in Section 4.1.3, we will also look at cases where can
vary the number of basis functions.

The interesting thing is that, when you look at other function approximation meth-
ods like neural networks and support vector machines, and what they mathematically
come down to, then it is the same. Instead of covariance functions, support vector ma-
chines use kernels and neural networks use activation functions, but eventually all meth-
ods wind up with a sum of nonlinear basis functions. Although the philosophy behind
these methods may be very different, mathematically they are very similar.

2.4. MULTI-DIMENSIONAL INPUTS AND OUTPUTS
Previously we have looked at a single-input single-output function f (x). Now it is time
to expand on that. First we will look at approximating functions with multiple inputs
(Section 2.4.1). Then we also examine the case where we have multiple function outputs
(Section 2.4.2), find a method to simplify this case (Section 2.4.3) and look at what the
consequences of using multiple outputs are for the covariance functions (Section 2.4.4).

2.4.1. USING MULTI-DIMENSIONAL INPUT POINTS

So far we have looked at functions f (x) with a single input parameter x. Now let’s look at
functions f (x1, x2, . . . , xdx) with multiple input parameters x1, x2, . . . , xdx . Although often
we will write the multi-input function, using the vector notation, as f (x), with x the
input vector of size dx . Note that, because we are already using subscripts to distinguish
different input points x1, x2, . . . , xn , we use superscripts to distinguish different elements
within the same input point x .

The question now is, can we apply Gaussian process regression to this as well? The
answer is yes, and we can actually use the exact same equations. The only thing that is
different is the covariance function. (And possibly the mean function, but we will stick
with m(x) = 0 here.) The squared exponential covariance function is now given by

k(x , x ′) =λ2
f exp

(
−1

2

(
x −x ′)T

Λ−1
x

(
x −x ′)) . (2.35)

2

26 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

The parameter λ f is the same as before, but the matrix Λx is new. It is the matrix of
squared length scales for the input. In practice, unless we are dealing with rather ad-
vanced applications, we assume it to be a diagonal matrix

Λx =


λ2

x1
· · · 0

...
. . .

...
0 · · · λ2

xdx

 . (2.36)

The quantitiesλx1 , . . . ,λxdx
effectively determine how much the Gaussian process will/can

vary when the corresponding input parameters x1, . . . , xdx vary. We’ll look more into the
effects of these parameters in Section 3.1.

Using our new covariance function, we can again set up matrices Kmm , Km∗, K∗m

and K∗∗ and subsequently apply the regression equation (2.30) to predict the function
values f∗. And now we might get a result that looks like Figure 2.8.

Figure 2.8: Gaussian process regression with multiple inputs. The length scales used were λ f = 1, λx1 = 1,
λx2 = 0.5 and σ̂ fm = 0.02. The solid plane is the mean, while the partly transparent planes are the two times
standard deviation planes, together enclosing the 95% region.

2.4.2. USING MULTI-DIMENSIONAL OUTPUT POINTS

If it is so easy to use a multi-input function f (x), with multiple input parameters x1, . . . , xdx ,
is it also easy to use a multi-output function f (x), with multiple output parameters
f 1(x), . . . , f d f (x)? The answer here is ‘Mostly, yes. But there is more to it.’ Let’s take a
look at what exactly the issues are.

Previously, before we would apply our GP regression equations, we had to set up
the prior distribution. That is, we had to indicate how different function values f (x)

and f (x ′) were correlated, prior to doing any measurements. Now we need to do more.

2.4. MULTI-DIMENSIONAL INPUTS AND OUTPUTS

2

27

We also need to indicate how the different function outputs f 1(x), . . . , f d f (x ′) are corre-
lated. And the way in which we can do this, is by replacing our scalar covariance function
k(x , x ′) by a matrix covariance function

k(x , x ′) =


k11(x , x ′) · · · k1d f

(x , x ′)
...

. . .
...

kd f 1(x , x ′) · · · kd f d f
(x , x ′)

 . (2.37)

By using this, we can apply GP regression in the usual way. That is, we can do measure-
ments f̂m1 , . . . , f̂mnm

, except now we get measurement vectors instead of measurement
values. We can lump these together into a measured distribution f

m
like we did in (2.28).

We can then set up the covariance matrices Kmm , Km∗, K∗m and K∗∗, although now they
all consist of blocks of d f by d f sub-matrices. So Kmm will be a d f nm ×d f nm matrix.
And then we can once more apply the GP regression equation (2.30).

2.4.3. A SIMPLIFICATION WHEN USING MULTI-DIMENSIONAL OUTPUTS
Let’s think for a second about what k12(x , x ′) actually means though. It is the prior covari-
ance between the outputs f 1(x) and f 2(x ′); so between two different function outputs.
But often we don’t know anything in advance about how these two functions outputs re-
late to each other. There is no reason why, if f 1(x) happens to be positive for some point

x , that also f 2(x ′) should be positive (or negative for that matter). Because of that, we

generally have k12(x , x ′) = 0, and similarly for the other non-diagonal terms of k(x , x ′).
The covariance matrix hence becomes a diagonal matrix.

The interesting thing is that, when you now work out the GP regression equations,
you will find that there is no link whatsoever between the different outputs f 1(x), f 2(x),

A measurement of output f 1(x) will not have any effect at all on the prediction of f 2
∗. (An

exception to this occurs in Chapter 5 when we add input noise.) As a consequence, what
we could also do is apply the Gaussian process regression equation (2.30) fully separately
to each individual output f 1(x), f 2(x),

What is the advantage of this? Well, we used to have to invert Kmm , which was an
d f nm ×d f nm matrix. Now we have d f separate GP regression algorithms, each with a
matrix Kmm of size nm ×nm . Inverting an nm ×nm times matrix a number of d f times is
a lot more computationally efficient than inverting a single huge d f nm ×d f nm matrix.
In fact, later on in Chapter 4 we will look more at the runtime of GP regression, and then
we will see that it is about d 2

f times faster. So this simplification will save us some time,

especially for larger values of d f .

2.4.4. THE COVARIANCE FUNCTIONS WITHIN THE COVARIANCE MATRIX
Finally, let’s look at the remaining diagonal terms k11(x , x ′),k22(x , x ′), These covari-
ance functions can all be different. (We will learn more about choosing covariance func-
tions in Section 3.2.) For simplicity, in this thesis we will only use the squared exponential
covariance function (2.19) though.

But the covariance functions do have parameters (length scales), and these length
scales may be different for each covariance function. In fact, the output length scales

2

28 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

λ f1 , . . . ,λ fd f
will most certainly be different for different outputs f 1(x), . . . , f d f (x). The

squared input length scalesΛx1 , . . . ,Λxd f
(which determines how quickly the output varies

for varying inputs) is often the same for different outputs. Although in some special cases
it may be useful to choose a different input length scale Λx1 , . . . ,Λxd f

for each output

f 1(x), . . . , f d f (x), for instance when one output f 1(x) varies strongly with one input x1

but not so much with another input x2, while another output f 2(x) varies more strongly
with the other input x2 but not so much with x1. How exactly we choose these parame-
ters is something we will look at more closely in Section 3.1 though.

2.5. THE DERIVATIVE AND INTEGRAL OF A GAUSSIAN PROCESS
We have seen in Section 2.3.2 that a Gaussian process is basically a distribution over
functions. And we can take the derivative of functions. So based on this, the derivative
of a Gaussian process is again a distribution over functions. To be precise, it is again a
Gaussian process. And naturally the same holds for the inverse derivative: the integral.

In Section 2.5.1 we will actually prove this. We will then find the corresponding mean
and covariance functions in Section 2.5.2. In Section 2.5.3 we look at how we can actually
make measurements of the derivative of a function and incorporate those. Finally, we
examine integrals of Gaussian processes in Section 2.5.4.

2.5.1. THE DERIVATIVE OF A GAUSSIAN PROCESS

Consider a function f (x). The derivative of this function is formally defined as

d f (x)

d x
= lim

d x→0

f (x +d x)− f (x)

d x
. (2.38)

We can apply the same definition to a Gaussian process f (x). We now get

d f (x)

d x
= lim

d x→0

f (x +d x)− f (x)

d x
. (2.39)

To find this, we need to subtract f (x), which is a Gaussian distribution, from f (x +d x),
which is another Gaussian distribution. And as we have learned (see for instance Theo-
rem B.13), a linear combination of Gaussian parameters is again a Gaussian. This shows
that d f (x)/d x is a Gaussian distribution.

2.5.2. THE MEAN AND COVARIANCE OF THE DERIVATIVE

Let’s write the derivative of a Gaussian process as

d f (x)

d x
=N

(
md (x),kd (x , x ′)

)
. (2.40)

So md (x) is the derivative mean function and kd (x , x ′) is the derivative covariance func-
tion. Let’s find what they are equal to.

2.5. THE DERIVATIVE AND INTEGRAL OF A GAUSSIAN PROCESS

2

29

For the derivative mean function we have

md (x) =E
[

d f (x)

d x

]
=E

[
lim

d x→0

f (x +d x)− f (x)

d x

]
(2.41)

= lim
d x→0

E
[

f (x +d x)
]
−E

[
f (x)

]
d x

= lim
d x→0

m(x +d x)−m(x)

d x
= dm(x)

d x
.

In other words, to find the mean of the derivative of a Gaussian process, we can just
take the derivative of the mean. Although actually we could have also found this in a
much quicker way. If we realize that both the expectation and the derivative operators
are linear operators, and we can hence change the order in which they are applied, we
could have used

E

[
d f (x)

d x

]
= d

d x
E

[
f (x)

]
= dm(x)

d x
. (2.42)

Now this is definitely easier than (2.41).
Next, what is the covariance function? We can use the same trick here, resulting in

kd (x , x ′) =E
[(

d f (x)

d x
− dm(x)

d x

)(
d f (x ′)

d x ′ − dm(x ′)
d x ′

)]
(2.43)

= d 2

d x d x ′E
[(

f (x)−m(x)
)(

f (x ′)−m(x ′)
)]

= d 2k(x , x ′)
d x d x ′ .

So to find the covariance function of d f (x)/d x , we have to take the derivative of k(x , x ′)
with respect to both x and x ′. Do keep in mind that, when you have already incorporated
measurements into your GP, then you will need to take the derivatives of the posterior
mean and covariance functions. In other words, you will need to take the derivatives
of (2.31) and (2.32). When we do, we can find a figure like Figure 2.9.

2.5.3. IMPLEMENTING DERIVATIVE MEASUREMENTS
Consider d f (x)/d x and f (x ′) for certain points x and x ′. These are both Gaussian ran-
dom variables. So naturally, we can find their covariance. It will equal

V

[
d f (x)

d x
, f (x ′)

]
=E

[(
d f (x)

d x
− dm(x)

d x

)(
f (x ′)−m(x ′)

)]
(2.44)

= d

d x
E

[(
f (x)−m(x)

)(
f (x ′)−m(x ′)

)]
= dk(x , x ′)

d x
.

This expression is actually quite useful. Suppose that, next to measuring function values

f (xm) at input points xm , we also measure the derivatives d f
d x (xd) at input points xd .

(Here, the set Xm can be the same as Xd , but it can also be different.) With the above
expression, we can incorporate this derivative data.

2

30 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

Figure 2.9: The derivative of a Gaussian process is also a Gaussian process. The left figure equals Figure 2.6.
The right figure equals its derivative. It may be interesting to note that the variance of the derivative is generally
not the smallest at the measurement locations, but somewhere in-between measurements.

How does it work? Well, the easiest way is to expand the measurement mean vector
mm and covariance matrix Kmm to incorporate this derivative data. That is, we redefine
mm and Kmm (and Km∗ and K∗m) such thatmm

m∗

=
 m(Xm)

dm
d x (Xd)
m(X∗)

 , (2.45)

Kmm Km∗

K∗m K∗∗

=

 k(Xm , Xm) dk
d x ′ (Xm , Xd) k(Xm , X∗)

dk
d x (Xd , Xm) d 2k

d x d x ′ (Xd , Xd) dk
d x (Xd , X∗)

k(X∗, Xm) dk
d x ′ (X∗, Xd) k(X∗, X∗)

 . (2.46)

Note that, for the derivatives of the covariance function, we always take the derivative
with respect to the parameter that we will plug the derivative points into.

Next, we should also incorporate the derivative measurements into f̂m , and their
corresponding noise in Σ̂ fm . But then the rest of our GP regression works exactly the
same, resulting in a plot like Figure 2.10.

2.5.4. INTEGRALS OF GAUSSIAN PROCESSES
If the derivative of a Gaussian process is again a Gaussian process, can we then also inte-
grate a Gaussian process? Not very surprisingly, the answer is yes. And there have already
been some nice applications of this. (See for instance Wahlström (2015), Section 2.3.4.)

Let’s consider single-input Gaussian processes f (x) first. The first thing we could
try is integrating over a fixed interval [a,b]. In this case, the outcome is not a Gaussian
process though, but a single Gaussian random variable. To be precise, we would get∫ b

a
f (x)d x =N

(∫ b

a
m(x)d x,

∫ b

a

∫ b

a
k(x, x ′)d x ′ d x

)
, (2.47)

where the mean and variance do not depend on any parameter anymore. If we do want
to get a Gaussian process as outcome, we have to let our integration interval depend on

2.5. THE DERIVATIVE AND INTEGRAL OF A GAUSSIAN PROCESS

2

31

Figure 2.10: Gaussian process regression using derivative data. The length scales used were λ f = 1, λx = 1 and
σ̂ fm = 0.01 (negligible) for both value and derivative measurements. For some points only derivative data is
measured (stripes) and for other points only function values are measured (circles).

some parameter y . For instance, we can define I (y) as

I (y) =
∫ y

0
f (x)d x. (2.48)

In this case, I (y) is a Gaussian process with its mean function mI (y) and covariance
function kI (y, y ′) satisfying

mI (y) =
∫ y

0
m(x)d x, (2.49)

kI (y, y ′) =
∫ y

0

∫ y ′

0
k(x, x ′)d x ′ d x. (2.50)

So that is how single-input Gaussian processes can be integrated. Note that, instead of
having the integral bounds vary linearly with y , we could have also had them vary in a
more complicated way with y . Or we could even have integrated from y1 to y2, which

would have given us a Gaussian process with multiple inputs y = [
y1 y2

]T
.

For multi-input Gaussian processes f (x) things work similarly. Again we could choose
to integrate over a fixed multi-dimensional area, which would give us a single Gaussian
random variable. Or we could choose to integrate over a multi-dimensional area, whose
exact size and/or shape depends on one or more parameters y .

It is interesting to note that the input vectors x (of f (x)) and y (of I (y)) do not have
to be of the same size. In fact, it could very well be possible to let x have more elements
than y , or less. The crucial thing is the number of parameters which the space we are
integrating over depends on.

2

32 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

2.6. IDENTIFYING THE DYNAMICS OF A PITCH-PLUNGE SYSTEM
We will now apply Gaussian process regression to a simple test system: a single airfoil in
an airflow. We will look at the system in Section 2.6.1 and derive the equations of motion
in Section 2.6.2. Deriving the equations of motion requires some basic knowledge of
aerodynamics. If you do not have this, you could either read Jr. (2010) or skip this section
altogether and just use the equations of motion.

Afterwards, we will identify the dynamics of the system. We first do this only for sta-
tionary initial states (Section 2.6.3) but then extend this to identify the dynamics from
any state (Section 2.6.4). We then study the differences in accuracy of these approxima-
tions and how the regression algorithm deals with this.

2.6.1. THE PITCH-PLUNGE SYSTEM SET-UP

We will consider the pitch-plunge system shown in Figure 2.11. This system has been
modeled by O’Neil and Strganac (1996), O’Neil et al. (1996). The specific purpose of cre-
ating this model was to research nonlinear aeroelastic behavior of wings, which is exactly
what also takes place in our wind turbines. Subsequently, a basic analysis of the stability
characteristics and control possibilities has been performed in Ko et al. (1997), O’Neil
and Strganac (1998), Ko et al. (1998). More advanced applications of this model can be
found in Lind and Baldelli (2005), van Wingerden (2008).

Figure 2.11: An airfoil with a trailing-edge flap. The exact system set-up is explained in the main text.

Let’s take a look at how the pitch-plunge system works. The system consists of an air-
foil which is placed in an airflow with velocity U . The airfoil can plunge (move vertically,
representing the flapping of a turbine blade) as well as pitch (rotate, representing the
torsion of a turbine blade). The plunge is indicated by the height h, where downwards is
positive, and the pitch is described by the angle of attack with respect to the free flow α.

The dynamics of the spring depend on various parameters. First, the airfoil will gen-
erate a lift force L and a moment M . These both depend on the airflow, so on the flow
velocity U , the angle of attack α and the additional angle of attack caused by the verti-
cal motion ḣ of the blade. (The dot represents the time-derivative dh

d t .) In addition, the
airfoil also has a trailing edge flap, which is deflected by an angle β. We can control this
flap ourselves, and naturally β also affects the lift and the moment.

The blade is constrained by two springs. There is a vertical spring with spring con-
stant kh and a rotational spring with spring constant kα(α). This latter spring constant

2.6. IDENTIFYING THE DYNAMICS OF A PITCH-PLUNGE SYSTEM

2

33

depends on α according to

kα(α) = kα
(
1+kα1α

1 +kα2α
2 +kα3α

3 +kα4α
4) , (2.51)

which causes the system to be nonlinear. In addition, both springs also have damping,
expressed by the damping coefficients ch and cα. The value of these parameters (and all
other parameters) can be found in Table 2.1.

Table 2.1: Numerical values of the parameters of the pitch-plunge system.

Lengths Inertia Aerodynamics Springs (linear) Springs (nonlinear)

c =0.270m m=12.387 kg cLα =6.28 kh =2844.4 N/m kα1 =−22.1 rad−1

b=0.135m ICG =0.051 kgm2 cLβ =3.358 kα=2.82 Nm/rad kα2 =1315.5 rad−2

a=−0.6 Iα=0.065 kgm2 cmα =−0.628 ch =27.43 Ns/m kα3 =−8580 rad−3

xα=0.2466 ρ=1.225 kg/m3 cmβ
=−0.635 cα=0.180 Nms/rad kα4 =17289.7 rad−4

2.6.2. THE PITCH-PLUNGE SYSTEM EQUATIONS OF MOTION
Let’s derive the equations of motion of the pitch-plunge system. You will encounter sev-
eral parameters during this derivation. In our derivation we will use the same notation
and sign convention as Ko et al. (1997, 1998). This sign convention is somewhat confus-
ing though, so let’s take a careful look at it first.

Figure 2.12: An overview of important points of the airfoil. Note that the depicted order of the points is not
necessarily the true order in which these points occur. It has been set up to show the sign convention of a and
xα. To be precise, we will use a = −0.6 (see Table 2.1) which means that the rotation point is in reality quite
close to the leading edge. Also note that the plunge h is defined as the vertical position of the rotation point,
where downwards is defined as positive.

The main idea is that we have several different points on the airfoil, as shown in Fig-
ure 2.12. There is the quarter-chord position, the midpoint, the rotation point where the
springs are attached, and the center of gravity (CG) of the airfoil. The height h of the air-
foil (that is, its vertical position) is defined as the height at the rotation point, and we will
also consider the lift L and the moment M with respect to this rotation point.

Keep in mind here that we are considering a two-dimensional airfoil. There is no
‘depth’. When we do have to talk about the span of the airfoil, we assume we are working

2

34 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

with an airfoil of unit span. So all quantities, like the lift L, the mass m and so on, are
quantities per unit span.

For now, suppose that there are no springs. In this case, what would the equations
of motion be? Well, we can apply Newton’s second law to the airfoil, but we are only
allowed to do so with respect to the CG. If we denote the lift and moment with respect to
the CG as LCG and MCG , respectively, then we have[

m 0
0 ICG

][
ḧCG

α̈CG

]
=

[−LCG

MCG

]
=

[−L
M +Lxαb

]
, (2.52)

with m the mass (per unit span) of the airfoil and ICG the rotational inertia (per unit
span) with respect to the CG. However, we want to have the equations of motion with
respect to the rotation point. And although α = αCG , we do have h = hCG −αxαb. If we
implement this in the above equation and work out the results, we find that[

m mxαb
mxαb Iα

][
ḧ
α̈

]
=

[−L
M

]
, (2.53)

where we have defined Iα = ICG +m (xαb)2 as the moment of inertia with respect to the
rotation point.

Next, let’s add the springs. These springs cause forces and moments directly in the
rotation point, so we do not need to apply any transformations to them. If we add the
respective forces to our equations, we wind up with[

m mxαb
mxαb Iα

][
ḧ
α̈

]
+

[
ch 0
0 cα

][
ḣ
α̇

]
+

[
kh 0
0 kα(α)

][
h
α

]
=

[−L
M

]
. (2.54)

The main question that still remains is ‘How do we calculate the lift and the moment?’
When the airfoil is stationary, the lift is given directly by

L = 1

2
ρU 2ScLαα+ 1

2
ρU 2ScLββ, (2.55)

with ρ the air density, S the surface area of the wing, CLα the lift coefficient per angle
of attack and CLβ the lift coefficient per control input. You may note that no constant
term involving CL0 is present. This is because our airfoil is symmetric. That is, it has no
camber.

When there is motion, we get extra terms though. First of all, a plunge motion ḣ will
cause an extra angle of attack equal to ḣ/U . But next to that, a pitching motion α̇will also
result in a change in lift. This change in lift mainly depends on the downward velocity of
the three-quarter point of the airfoil, which equals α̇

(1
2 −α

)
b. Or at least, it depends on

the ratio between this velocity and the flow velocity U . (See for instance Fung (1955).) So
the extra lift that we get equals

1

2
ρU 2ScLα

ḣ

U
+ 1

2
ρU 2ScLα

(
1

2
−α

)
b
α̇

U
. (2.56)

We can also simplify S. Because we are considering an airfoil of unit span, the surface S
equals the chord length S = c = 2b. It follows that the lift equals

L = ρU 2bcLα

(
α+ ḣ

U
+

(
1

2
−α

)
b
α̇

U

)
+ρU 2bcLββ. (2.57)

2.6. IDENTIFYING THE DYNAMICS OF A PITCH-PLUNGE SYSTEM

2

35

For thin and symmetric airfoils, the aerodynamic moment with respect to the quarter-
chord position is generally zero. As a result, we can approximate cmα = (1

2 +a
)

cLα . This
relationship of course does not hold for the control input coefficient cmβ

, whose exact
value depends on the size and shape of the flap and has to be determined through mea-
surements. It now does follow that

M = ρU 2bcmα

(
α+ ḣ

U
+

(
1

2
−α

)
b
α̇

U

)
+ρU 2bcmβ

β. (2.58)

If we subsequently insert the relations for L and M that we have found into (2.54) and
work out the results, we wind up with the equations of motion[

m mxαb
mxαb Iα

][
ḧ
α̈

]
+

[
ch +ρUbcLα ρUb2cLα

(1
2 −a

)
−ρUb2cmα cα−ρUb3cmα

(1
2 −a

)][
ḣ
α̇

]
(2.59)

+
[

kh ρU 2bcLα
0 kα(α)−ρU 2b2cmα

][
h
α

]
=

[−ρU 2bcLβ
ρU 2b2cmβ

]
β.

These are equations of motion we can use in a simulation. Although, somewhat similarly
to Lind and Baldelli (2005), we will define the matrices

M =
[

m mxαb
mxαb Iα

]
, D =

[
0 ρbcLα
0 −ρb2cmα

]
, (2.60)

C =
[

ch 0
0 cα

]
, E =

[
ρbcLα ρb2cLα

(1
2 −a

)
−ρb2cmα −ρb3cmα

(1
2 −a

)] ,

K (x) =
[

kh 0
0 kα(α)

]
, F =

[−ρU 2bcLβ
ρU 2b2cmβ

]
.

With these matrices, and with the state vector x = [
h α

]T
, we can write

M ẍ + (C +U E) ẋ + (K (x)+U 2D)x =U 2Fβ. (2.61)

With these equations of motion we can set up a Simulink simulation of the system, al-
lowing us to simulate it for various initial conditions, various control laws as well as var-
ious disturbances in the wind velocity U . An example of a system response is shown in
Figure 2.13.

Note that, because of the term kα(α) within K (x), the system is nonlinear. Although
if we wanted to linearize it, we could simply replace kα(α) by the constant kα. So we can
choose to either use the nonlinear or the linear model of the pitch-plunge system.

2.6.3. A FIRST APPROXIMATION OF THE STATE TRANSITION FUNCTION
As a first challenge, we will approximate the discretized state transition function

xk+1 = f (xk , ẋk ,βk), (2.62)

for some time step ∆t = 0.1s. Note that this is a relatively large time step. In fact, it is
more than a quarter of the period of the system’s flutter behavior. (See Figure 2.13.)

2

36 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

Figure 2.13: The response of the pitch-plunge system to the initial conditions of α= 0.1rad and h = ḣ = α̇= 0.
The wind speed was relatively high (U = 15m/s). This high wind speed, in combination with the nonlinear
spring and the absence of control input, caused flutter behavior. That is, the system state converges to a high-
frequency oscillation, known as the limit cycle.

For simplicity, we will first only look at the influence of xk on xk+1. In other words,
we will vary xk , but set ẋk and βk in (2.62) to zero. So we put the system in nm = 30
different stationary initial positions xk , release it without applying any input and look
where it winds up 0.1 seconds later.

The resulting problem is actually a two-dimensional problem. The state transition
function f now has only two (non-zero) inputs and two relevant outputs. As such, it is a
relatively easy problem. The results of it are shown in Figure 2.14.

From Figure 2.14 we can see that GP regression can adequately predict the state tran-
sition function for this two-dimensional problem. Even with only thirty measurements,
the predictions are accurate. The GP regression algorithm also knows it is accurate, be-
cause the variance is relatively small.

It is also worthwhile to note that a positive value of αk generally causes the value of
hk+1 to decrease. This means that the airfoil goes up (because downwards is defined as
positive) which is what we would expect to happen.

By the way, you may be thinking, ‘Isn’t it very unrealistic to put the system in a dif-
ferent initial state every time? Shouldn’t we just run a full consecutive simulation of the
system and use that as training data?’ The short answer to this is, ‘Yes, we should, and it
would work, but we would not get pretty graphs.’

The reason here is that, during a full simulation, some states are more likely to be
reached than others. In fact, there are many states that we will never reach at all, while
other states may be visited multiple times. As a result, the algorithm will be very well
capable of making predictions for some states, but highly incapable for other states. If
we would then make a plot like Figure 2.15, which shows the predictions for all states,
it would make it seem like the algorithm is worthless. There are states which it cannot
make predictions for! As a result, the plot would look horrific, while in reality it only
means that some states do not get visited, and hence we do not even have to make pre-
dictions for those states.

2.7. LITERATURE – A SHORT HISTORY OF GP REGRESSION

2

37

Figure 2.14: The prediction, as made by Gaussian process regression, of the next state of the pitch-plunge sys-
tem, based on the current state. For each data point, the system was placed in a random position/orientation
xk , kept stationary (ẋk = 0) until it was released. After ∆t = 0.1s the next position xk+1 was recorded. This
was done nm = 30 times at a constant wind speed of U = 15m/s. The general shape of the function is almost
identical to what we would get if we would have done many more measurements (nm = 300; not shown here)
although naturally the variance would be smaller then.

2.6.4. MAKING A HIGHER-DIMENSIONAL APPROXIMATION
Let’s make the problem a bit more difficult. For every one of the nm tests, we will now put
the pitch-plunge system in a fully random initial state. So both xk and ẋk are randomly
chosen. In addition, we also provide a random (constant) input βk . The input points of
the GP regression algorithm are hence five-dimensional. Even though the equations we
need are exactly the same, this is computationally a quite more complex problem. When
we apply the regression algorithm, we get the results shown in Figure 2.15.

From Figure 2.15 we can see that the predictions are a lot less accurate now. Though
the GP regression algorithm detects the general shape of the function, it is very uncertain
in its details. This uncertainty is also indicated by the algorithm itself through the larger
uncertainty region.

Of course, when more experiments are performed, the certainty of the algorithm
will increase. In fact, it takes about nm = 150 experiments before the predictions of the
five-dimensional problem will be as accurate as the predictions of the two-dimensional
problem with nm = 30 measurements. When we do use nm = 150 measurements, the
two plots look nearly identical.

To summarize, the GP regression seems very well capable of predicting the next state
of a discrete-time system. In other words, GP regression can be used for nonlinear sys-
tem identification. This does of course require the state to be fully and exactly known,
so no partial state measurements or measurement noise is allowed. In Chapter 5 we will
look into what to do when the state is subject to measurement noise as well. That is,
when not just the output f

m
is noisy, but also the input xm .

2.7. LITERATURE – A SHORT HISTORY OF GP REGRESSION
Though few people realize it, Gaussian process regression has been applied for quite a
long time. Its first significant applications were for time series analysis. The main theory
here was developed by Kolmogorov (1941), Wiener (1949) in the 1940s. In the 1960s and

2

38 2. AN INTUITIVE INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

Figure 2.15: The prediction, as made by Gaussian process regression, of the next state of the pitch-plunge sys-
tem, based on the current state. Also plotted, in an alternate color, is the mean function from Figure 2.14. The
conditions are identical to Figure 2.14, except that now xk , ẋk and βk were all chosen at random while doing
measurements. To make the above predictions, ẋk and βk were still set to zero. Because of this difference, the
measurement points could not be plotted anymore.

70s it was subsequently applied in meteorology by Thompson (1956), Daley (1991) and
in geostatistics by Matheron (1973), Journel and Huijbregts (1978), although in the latter
field it was commonly known as kriging.

Gradually, near the end of the 1970s, it became more well-understood that Gaussian
process regression could be applied not only to time series analysis, but to regression
problems in general. For instance, O’Hagan and Kingman (1978) present the general
Gaussian process regression equations (2.30), though of course in a rather different form.
But it was only in the 1990s when Gaussian process regression was finally applied to ma-
chine learning, mainly introduced by Williams and Rasmussen (1996), Neal (1996). It
was at this time that the similarities with other machine learning techniques, like Sup-
port Vector Machines, Splines and Neural Networks, were investigated. Here it turned
out that the statistical nature of Gaussian process regression gave it certain advantages,
like a built-in regularization method.

The field converged with the publication of a single book by Rasmussen and Williams
(2006), focusing on Gaussian processes for machine learning. The notation used in this
book has become commonplace in the field, making it invaluable for the development of
the Gaussian process community. This notation is also the one we will use in this thesis,
albeit with a few extensions of our own.

Of course the field developed further after 2006, with various branches going into dif-
ferent directions. Several of these branches will be the subject of subsequent chapters.

3
DETAILS OF THE COVARIANCE

FUNCTION

Summary — The parameters of the covariance function are known as hyperparameters θ.
The true set of hyperparameters is generally unknown. Ideally we take into account all
possible hyperparameters by integrating over them, but this is not analytically possible.
Instead, we will choose a specific set of hyperparameters and simply assume they are the
true ones. We can do this based on expert knowledge, or tune the hyperparameters by
optimizing the a posteriori hyperparameter likelihood p(θ|Xm , f̂m). This tuning is often
done in a gradient ascent manner.

Next to choosing hyperparameters, we also need to choose the covariance function it-
self. There are several possible covariance functions, including the squared exponential
(smooth) covariance function, the piecewise smooth covariance function, the periodic co-
variance function, the linear covariance function and more. These functions can also be
combined in various ways. Choosing which covariance function to use goes identically to
tuning the hyperparameters. We either use expert knowledge, or optimize the likelihood.

Previously, we have always assumed that we measured the function values f = f (X) itself
and used those for our regression equations. If instead we measure linear relationships
M f = c of function values, we can still apply Gaussian process regression. We just need to
incorporate the matrix M into our regression equations. When we do, we find a general-
ization of the regular Gaussian process regression equations that offers a variety of extra
possibilities.

All these techniques can be applied to practical applications. Specifically, they can be ap-
plied to identify the dynamics of a pitch-plunge system, or to approximate the value func-
tion of this system. In the latter case, the value function can then be optimized to tune the
controller settings.

39

3

40 3. DETAILS OF THE COVARIANCE FUNCTION

In this chapter we look at three different tricks that we can use to make GP regression
more effective in certain situations. We start by looking at how we should choose pa-
rameters like λ f , λx and σ̂ fm ; that is, the hyperparameters of the covariance function
(Section 3.1). Then we look into using different covariance functions k(x , x ′) altogether
(Section 3.2). The third trick we examine is how to apply Gaussian process regression
when we only measure linear relations between function values (Section 3.3).

Afterwards we also apply the tricks we learned to a practical application, either iden-
tifying the system dynamics of the pitch-plunge system (Section 3.4) or approximating
its value function (Section 3.5). As usual, at the back you can find an overview of litera-
ture and contributions (Section 3.6).

3.1. THE BASICS OF TUNING HYPERPARAMETERS
In Gaussian process regression, there are several parameters that need to be ‘chosen’. For
instance, there are the length scales λx and λ f , as well as the noise scale σ̂ fm . In case we
choose a constant mean function m(x) = m̄, then this constant m̄ needs to be chosen as
well.

All these parameters are called hyperparameters. They have a significant effect on
the predictions that we make, as shown by Figure 3.1. The set of all hyperparameters is
denoted by the vector θ. We can choose them ourselves, based on our expert knowledge
of the function we are approximating, or we can tune them automatically. In this chapter
we will look at how the latter works.

We start by looking at how to find the likelihood of a set of hyperparameters (Sec-
tion 3.1.1). We then examine two methods to implement this, either by integrating over
the possible hyperparameters (Section 3.1.2) or by taking the most likely hyperparame-
ters (Section 3.1.3). Then we look at how we can implement the latter method in practice
(Section 3.1.4) and finally how we can vary the main assumptions behind the method
(Section 3.1.5).

Figure 3.1: Gaussian process regression for different hyperparameters. Data was generated using a GP with[
λx ,λ f , σ̂ fm

]
=

[
1,1, 1

5

]
. It was subsequently approximated using a GP with

[
λx ,λ f , σ̂ fm

]
equaling the same[

1,1, 1
5

]
(left),

[
1
2 ,1, 1

25

]
(middle) and [2,1,1] (right). While the first approximation seems sensible, the sec-

ond approximation explains everything through function variations and the third approximation explains
everything through noise. Both results are not very good. This is also shown by the log-likelihoods (intro-
duced in Section 3.1.3), which are −14.1, −72.2 and −26.1, respectively. Hyperparameter tuning (see Sec-
tion 3.1.4) will, even when starting from completely incorrect hyperparameters, result in hyperparameters of
[0.925,0.999,0.201] and a corresponding log-likelihood of −13.2.

3.1. THE BASICS OF TUNING HYPERPARAMETERS

3

41

3.1.1. PROBABILITIES AND LIKELIHOODS
The key realization we should first make, is that we do not know the set of hyperparam-
eters θ, and hence we should treat it as a random variable θ. Now we can look at the
probability that a certain set of hyperparameters θ is the correct one. We write this as
p(θ = θ) or short as p(θ).

We should keep in mind here that we also have data. To be precise, we know Xm and
f̂m . So actually, we should find the probability that θ = θ given the values of Xm and

f̂m . We write this as p(θ|Xm , f̂m). Bayes’ theorem (or alternatively the definition of the
conditional distribution) tells us that, for certain events A, B and C , we have

p(A|B ,C)p(B |C) = p(A,B |C) = p(B |A,C)p(A|C). (3.1)

Using this, we can now find that

p(θ| f̂m , Xm) = p(f̂m |θ, Xm)p(θ|Xm)

p(f̂m |Xm)
. (3.2)

This is an important relation. It has four quantities which we will examine one by one.
The first quantity p(θ| f̂m , Xm) is known as the posterior hyperparameter distribution.

It is what we want to know. Or at least, we want to know which hyperparameters θ have
a high probability.

The second term p(f̂m |θ, Xm) is called the observation likelihood, or short, just the
likelihood. It is the probability that, given certain hyperparameters θ, we made the ob-
servations/measurements that we did. We already knew, before making any measure-
ments, that f̂

m
was distributed according to (2.26). The probability that we obtained

our measurements f̂m is hence equal to

p(f̂m |θ, Xm) =N
(

f̂m |mm ,Kmm + Σ̂ fm

)
. (3.3)

Note that Kmm , Σ̂ fm and possibly even mm depend on the hyperparameters θ.
The third term p(θ|Xm) is the prior hyperparameter distribution, or short, the hyper-

prior. This probability actually does not depend on Xm . In fact, only knowing Xm does
not tell us anything about θ. It hence equals p(θ).

We can use the hyper-prior to indicate which hyperparameters we roughly expect to
get. In practice, we often don’t really know much in advance about the hyperparameters.
For simplicity, we hence assume that p(θ) is constant. Later on, in Section 3.1.5, we will
look at other hyper-priors.

Finally, the fourth quantity is the denominator p(f̂m |Xm). It is called the marginal
likelihood, but since it does not depend on θ, it is a constant too.

Putting all this together, we find that the probability p(θ| f̂m , Xm) is proportional to

p(θ| f̂m , Xm) ∝N
(

f̂m |mm ,Kmm + Σ̂ fm

)
. (3.4)

So how do we continue? There are two options now, which we will look at in the next two
subsections.

3

42 3. DETAILS OF THE COVARIANCE FUNCTION

3.1.2. INTEGRATING OVER HYPERPARAMETERS
Suppose that we know the true hyperparameters θ. In that case, we can use (2.30) to
predict f ∗. In fact, this distribution tells us, given the hyperparameters θ and the mea-

surements Xm , f̂m , the chance that f ∗ equals a given value f∗. This means that another

way to write (2.30) is as the probability

p(f∗|θ, f̂m , Xm) =N (f∗|µ∗,Σ∗∗). (3.5)

Technically, using this notation is incorrect, since we are working with probability den-
sity functions and not with probabilities, but we will ignore that detail to keep the nota-
tion simple.

Now suppose that there are two possible sets of hyperparameters θ1 and θ2 that both
explain our measurements pretty well. They are both correct with probability 1/2. In this
case, we can take both of them into account by adding up the probabilities. That is,

p(f∗| f̂m , Xm) = 1

2
p(f∗|θ1, f̂m , Xm)+ 1

2
p(f∗|θ2, f̂m , Xm). (3.6)

The extended version of this idea is known as the principle of marginalization. (See for
instance Theorem B.1.) We can find the posterior distribution of f ∗, taking into account

all possible hyperparameters, using

p(f∗| f̂m , Xm) =
∫
Θ

p(f∗,θ| f̂m , Xm)dθ (3.7)

=
∫
Θ

p(f∗|θ, f̂m , Xm)p(θ| f̂m , Xm)dθ.

We know both the probabilities in the final expression (at least up to a constant). They
are given by (3.5) and (3.4), respectively. So in theory we can solve this.

The main problem here is that the result will not be Gaussian. In fact, the way in
which these probabilities depend on the hyperparameters θ is very complicated. Solv-
ing the above integral analytically will be impossible, and the result surely will not be a
Gaussian process anymore.

One way to work around this would be to use numerical methods. That would be
beyond the scope of this explanation, but for further reading, you can start with the work
of Svensson et al. (2015) or Murray and Adams (2010). In most applications another
method is used instead, which we will explore next.

3.1.3. THE MAXIMUM LIKELIHOOD METHOD
Instead of taking into account all possible hyperparameters θ, the idea now is to find the
most likely hyperparameters and only use those.

There are two common ways to do this. The first is the Maximum Likelihood method
(ML method). The idea here is to find the hyperparametersθ that optimize the likelihood
p(f

m
|θ, Xm). That is, the hyperparameters that best explain the measurements.

A similar but slightly more ‘honest’ method is the Maximum A Posteriori method
(MAP method). Here, we want to maximize the posterior hyperparameter distribution
p(θ| f̂m , Xm) from (3.4). However, we often assume that θ has a uniform distribution and

3.1. THE BASICS OF TUNING HYPERPARAMETERS

3

43

hence that the hyper-prior p(θ) is constant. In this case p(θ| f̂m , Xm) is only a constant
multiple of p(f

m
|θ, Xm). So as long as p(θ) is constant, the ML method and the MAP

method do exactly the same. Hence, we will simply apply the MAP method with p(θ)
constant.

The key now is to find the maximum of the posterior hyperparameter distribution

p(θ| f̂m , Xm) ∝ 1√
|2π(Kmm + Σ̂ fm)|

exp

(
−1

2

(
f̂m −mm

)T (
Kmm + Σ̂ fm

)−1
(

f̂m −mm

))
.

(3.8)
The exponent makes maximizing this somewhat difficult. To solve this issue, we take the
logarithm of the above function. Because the logarithm is a strictly ascending function,
this again does not affect the position of the maximum. When we take the logarithm and
work out the result, we get the log-likelihood

log(p) =−nm

2
log(2π)− 1

2
log |Kmm + Σ̂ fm | (3.9)

− 1

2

(
f̂m −mm

)T (
Kmm + Σ̂ fm

)−1
(

f̂m −mm

)
+ log(c),

where c is the (not important) proportionality constant from (3.8). The first term in the
above expression is also a normalization constant. Since both these terms are constant,
we can ignore them in our optimization process. The third term is called the data fit. It
describes how well our measurements f̂m fit with our hyperparameters. If for instance
f̂m is very close to mm , then the magnitude of the data fit term will be very small. But,
because there is a minus sign in front of it, the data fit itself will be large, or at least not
strongly negative.

Another way to obtain a good data fit, is to give the matrix Kmm + Σ̂ fm huge values.
This comes down to assuming there is so much noise, that any data fits within our model.
Luckily, the second term in the log-likelihood expression prevents that problem. We call
this term the complexity penalty. When we use a large matrix Kmm + Σ̂ fm , this term will
become highly negative, reducing the log-likelihood.

The great thing about this complexity penalty is that, unlike other methods like neu-
ral networks, Gaussian process regression has a far smaller risk of overfitting1. It has
an automatic regularization2 built into it through its foundation in Bayesian probability
theory.

Although to be fair, it must be noted that overfitting is still possible when using the
maximum likelihood method. Suppose that only very few measurements are available.
In this case, we cannot really be sure yet which hyperparameters are the correct ones. In
other words, the uncertainty within θ is large. When we would integrate over all possible
hyperparameters, we would take this into account, resulting in a large uncertainty for
predictions f ∗, and rightfully so. However, the maximum likelihood method only takes

1Overfitting means that a regression algorithm is trained so much on a particular data set, that it not only
manages to explain the measured data, but also ‘explain’ the noise that occurred for that particular data set.
Naturally, when given a different data set, the noise will be different, so this is a bad thing.

2Regularization is a trick that introduces extra information (effectively, a prior distribution) to the system to
prevent overfitting.

3

44 3. DETAILS OF THE COVARIANCE FUNCTION

the hyperparameters θ that are the most likely, and then claims it is 100% certain that
these are the correct hyperparameters. This unjustly results in a relatively small variance
of our predictions. That is why, especially when few measurement data is available, the
maximum likelihood method may result in some overfitting, claiming it is more certain
of its predictions than it has a right to be.

3.1.4. OPTIMIZING THE LOG-LIKELIHOOD
The next question is: how do we find the maximum of the log-likelihood? There are
many ways to do so. One option is to just plug the log-likelihood into an automatic
optimization function of for instance Matlab. For a more efficient process, we could set
up our own gradient ascent method. Though to do that, we would need the derivative of
log(p) with respect to the hyperparameters.

First, let’s define the shorthand P = (
Kmm + Σ̂ fm

)
. We now have

log(p) =−nm

2
log(2π)− 1

2
log |P |− 1

2

(
f̂m −mm

)T
P−1

(
f̂m −mm

)
− log(c). (3.10)

For now, we will ignore hyperparameters effecting mm . So we only consider hyperpa-
rameters affecting P . Let’s consider the derivative with respect to some general hyper-
parameter θi . (We will insert specific hyperparameters afterwards.) Using Theorem A.2
as well as relation (A.9), we can find that

∂ log(p)

∂θi
=−1

2
tr

(
P−1 ∂P

∂θi

)
+ 1

2

(
f̂m −mm

)T
P−1 ∂P

∂θi
P−1

(
f̂m −mm

)
. (3.11)

Next, we will rewrite the above. We start by defining α = P−1
(

f̂m −mm

)
. Then we also

take the trace of the rightmost term. This allows us to cycle the order of multiplication
(see Theorem A.1) so we wind up with

∂ log(p)

∂θi
=−1

2
tr

(
P−1 ∂P

∂θi

)
+ 1

2
tr

(
αT ∂P

∂θi
α

)
(3.12)

= 1

2
tr

((
ααT −P−1) ∂P

∂θi

)
.

Now we just have to find ∂P/∂θi for various hyperparameters. Which hyperparameters
we have does depend on the covariance function that we are using. (The above holds for
any covariance function we might use.) For now, let’s assume we are using the squared
exponential covariance function (2.35). We will look at other covariance functions in
Section 3.2.

We will start with the derivative with respect to σ̂2
fm

, where we assume that the mea-

surement noise has the same strength σ̂2
fm1

= . . . = σ̂2
fmnm

= σ̂2
fm

for each measurement.

Note that we take the derivative with respect to σ̂2
fm

and not with respect to σ̂ fm . The rea-

son is that this will result in slightly easier expressions, though it is also perfectly possible
to take the derivative with respect to σ̂ fm . We now have

∂P

∂σ̂2
fm

= ∂
(
Kmm + Σ̂ fm

)
∂σ̂2

fm

= ∂Σ̂ fm

∂σ̂2
fm

= I . (3.13)

3.1. THE BASICS OF TUNING HYPERPARAMETERS

3

45

Note that we have used Σ̂ fm = σ̂2
fm

I . Inserting the above relation into (3.12) will now give

us ∂ log(p)/∂σ̂2
fm

.

Next, we take the derivative with respect to λ2
f . Here we have

∂P

∂λ2
f

= ∂Kmm

∂λ2
f

= ∂k(Xm , Xm)

∂λ2
f

= Kmm

λ2
f

. (3.14)

In the last part, we have used that k(x , x ′) actually linearly depends on λ2
f . As a result,

∂k(x , x ′)/∂λ2
f would equal k(x , x ′)/λ2

f .

The next derivative is the hardest one. We will take the derivative with respect to
λ2

xk
, which is the squared length scale in the direction of input xk . Note that we have

one such derivative for each of the dx input dimensions. We will find these derivatives
element-wise. So,

∂Pi j

∂λ2
xk

=
∂k(xmi , xm j)

∂λ2
xk

= ∂

∂λ2
xk

(
λ2

f exp

(
−1

2

(
xmi −xm j

)T
Λ−1

x

(
xmi −xm j

)))
. (3.15)

Using the chain rule and Theorem A.2, we can find that the above equals

∂Pi j

∂λ2
xk

= k(xmi , xm j)
∂

∂λ2
xk

(
−1

2

(
xmi −xm j

)T
Λ−1

x

(
xmi −xm j

))
(3.16)

= k(xmi , xm j)

(
1

2

(
xmi −xm j

)T
Λ−1

x
∂Λx

∂λ2
xk

Λ−1
x

(
xmi −xm j

))
.

It is important to consider what the derivative ∂Λx /∂λ2
xk

looks like. It is a matrix filled
with zeros, except for a single one, which is on row k and in column k. Keeping this in
mind, we can simplify the above to

∂Pi j

∂λ2
xk

= 1

2
k(xmi , xm j)

(
xk

mi
−xk

m j

λ2
xk

)2

. (3.17)

Note that the term xk
mi

is element k from the vector xmi .
Using all these derivatives, we can apply our favorite gradient ascent algorithm to

optimize the log-likelihood. This then gives us the most likely hyperparameters to rep-
resent our measurement data.

In literature, when we tune the hyperparameters to specifically find λx1 ,λx2 , . . ., it is
also called Automatic Relevance Determination (ARD). The idea here is that the tuned
parameters λx1 ,λx2 , . . . tell us something about the relevance of certain input parame-
ters. If λx1 is very small, then x1 has a very strong affect on the predicted output. A small
variation in x1 can already cause a significant change. However, if λx2 is very big, then
the value of x2 is pretty much irrelevant. As such, the values of λx indicate the relevance
of the corresponding input dimensions.

Finally, there is one more hyperparameter we can tune. Let’s suppose that the mean
function m(x) equals some constant m̄. What value of m̄ maximizes the log-likelihood?

3

46 3. DETAILS OF THE COVARIANCE FUNCTION

We will have to start from (3.10) again. It is important to realize that P does not
depend on m̄, but mm does. In fact, we have mm = m̄1, where 1 is a vector filled with
ones. So,

∂ log(p)

∂m̄
= ∂

∂m̄

(
−1

2

(
f̂m −mm

)T
P−1

(
f̂m −mm

))
= 1T P−1

(
f̂m −mm

)
. (3.18)

The special thing here is that we can analytically find the optimal m̄. This optimum
occurs when the above derivative equals zero. So by setting the above to zero, while
substituting mm for m̄1 and solving for m̄, we get

m̄ = 1T P−1 f̂m

1T P−11
. (3.19)

As a result, it is useful to always set m̄ to the above value, every time the other hyperpa-
rameters are adjusted or more measurement data is added. It is even possible to take this
new constant value into account in the expression for the log-likelihood, although that
would go into too much detail. If you are interested, you can read more about tuning m̄
in the thesis of Lizotte (2008), Section 3.1.

An example of the development of the GP prediction, as hyperparameters are tuned,
is shown in Figure 3.2.

Figure 3.2: The mean of the prediction while tuning the hyperparameters. We use the same data as Figure 3.1,

but start with hyperparameters
[
λx ,λ f , σ̂ fm

]
equal to the blatantly incorrect values

[
1
5 ,5,2

]
. We then tune

them using a gradient ascent algorithm. The first few steps are shown, although after ten steps the algorithm
has pretty much found the correct values. The algorithm converged to values of [0.925,0.999,0.201], with m̄ =
−0.57. The corresponding log-likelihood was −13.2.

3.1. THE BASICS OF TUNING HYPERPARAMETERS

3

47

3.1.5. USING DIFFERENT HYPER-PRIORS

So far we have assumed that the hyper-prior p(θ) is a constant. Or to be precise, we
have assumed that the prior probability density function fθ(θ) equals a constant. So the
hyperparameters can have every possible value with equal likelihood. But in reality that
does not seem very realistic.

The first reason is that most hyperparameters are length scales, and these length
scales are always positive. So we actually do not have to consider negative values at
all. In addition, when we use our constant hyper-prior, we basically say that the proba-
bility that 0 < θi ≤ 1, for some hyperparameter θi , is just as large as the probability that
1 < θi ≤ 2. This is also doubtful.

It would be more sensible if p(0.1 ≤ θi ≤ 1) would equal p(1 ≤ θi ≤ 10), and identi-
cally for other similar intervals. This comes down to assuming that log(θi) has a constant
distribution flog(θi)(log(θi)) = γ, or equivalently (see Theorem B.8) that θi has the PDF

fθi
(θi) = 1

θi
flog(θi)(log(θi)) = 1

θi
γ, (3.20)

with γ an infinitesimally small constant. So the PDF of θi is proportional to 1/θi . This
is for a single hyperparameter. Combining this for all hyperparameters will result in the
hyper-prior

p(θ) = γnθ
nθ∏

i=1

1

θi
, (3.21)

where nθ is the number of hyperparameters we need to choose.
To implement this hyper-prior, we should redo all the steps we did previously, calcu-

lating the log-likelihood log(p). Similarly to (3.10), we now get

log(p) =−nm

2
log(2π)− 1

2
log |P |− 1

2

(
f̂m −mm

)T
P−1

(
f̂m −mm

)
(3.22)

+nθ log(γ)−
nθ∑

i=1
log(θi)+ log(c).

So the main thing our new hyper-prior does is discount high values of θi , while making
low values of θi more likely. The derivative of the above is, identically to (3.12),

∂ log(p)

∂θi
= 1

2
tr

((
ααT −P−1) ∂P

∂θi

)
− 1

θi
. (3.23)

The only difference is the −1/θi term at the end. This term makes the derivative smaller,
which again makes lower values of θi more likely than higher values.

In general, the changes are not spectacular. The hyperparameters will turn out to
be somewhat smaller than earlier, but that’s pretty much it. This hyper-prior does show,
however, that there are different options when selecting the hyper-prior.

Next to this hyper-prior that we have examined, there are of course also more specific
hyper-priors you can use, if you really have prior knowledge about θ. That is too detailed
for this explanation though, so I will leave that for you to explore on your own.

3

48 3. DETAILS OF THE COVARIANCE FUNCTION

3.2. OTHER COVARIANCE FUNCTIONS AND TUNING METHODS

So far we have only examined the squared exponential covariance function (2.35). This
covariance function is useful for smooth functions in general. But what do we do when
the function we want to approximate is not smooth and for example has jumps? Or when
we know more about the structure of our function other than just that it is smooth? Then
we can also use different covariance functions, and that’s what we will look at in this
section.

We will start this section with some basic covariance functions (Section 3.2.1). Then
we continue by looking in-depth at the covariance function for linear functions (Sec-
tion 3.2.2). Once we know a sufficient number of these basic covariance functions, we
look at how we can make a trade-off between covariance functions (Section 3.2.3) and/or
combine covariance functions to make a better covariance function (Section 3.2.4).

3.2.1. DIFFERENT KINDS OF COVARIANCE FUNCTIONS

Suppose that we have a piecewise smooth function f (x). (See Figure 3.3 for examples.)
To be precise, there are certain regions D1,D2, . . . dividing the input space of x . As long
as the input x stays within the same region Di , the function f (x) is smooth, but when x
moves to a different region, a jump in the function value f (x) can occur. How would we
approximate such a function?

The key realization here is that, when two inputs x and x ′ are in the same region Di ,
then their values will be similar, especially if they are close together. But when x and x ′
are in different regions, then their values are not linked at all. Their covariance is zero.
We can hence use the piecewise smooth covariance function

kps(x , x ′) =
{
λ2

f exp
(
− 1

2

(
x −x ′)T

Λ−1
(
x −x ′)) if x ∈Di and x ′ ∈Di for some Di ,

0 otherwise.
(3.24)

Example functions that result from such a covariance function are shown in Figure 3.3.
The boundaries between the regions here can either be known in advance, or tuned us-
ing the techniques from Section 3.1. Although if you want to do the latter, you will have
to derive the hyperparameter derivatives yourself.

Next, let’s consider a very different problem. Suppose that we want to approximate
a smooth and periodic function f (x), with known period p. This knowledge that the
function is periodic is very useful. It can prevent us from having to do too many mea-
surements. So how can we take it into account?

The obvious but incorrect way to do so, would be to shift the input points xm of all
measurements f̂m to the interval [0, p] and then apply GP regression on this interval. The
reason why this is incorrect, is because we do not take into account that f (0) = f (p), nor
that the function values f (0.01) and f (p−0.01) are also quite strongly linked (though not
exactly equal).

The correct way is to set up a covariance function that not only links (correlates) f (x)
with its own nearby values, but also with nearby values of f (x + p), f (x + 2p), and so

3.2. OTHER COVARIANCE FUNCTIONS AND TUNING METHODS

3

49

Figure 3.3: A Gaussian process with a piecewise smooth covariance function. Input points satisfying x < −1
are not correlated with points satisfying −1 ≤ x < 1, which again are not correlated with points satisfying 1 ≤ x.
On the left is the prior distribution, with three sample functions taken from it. These samples tell us which
kind of functions the covariance function can approximate. On the right some measurement data has been
added, and again three sample functions are shown. These samples all correspond to some degree with the
given data.

forth. A covariance function that does this is

kper(x, x ′) =λ2
f exp

−2sin
(
π x−x′

p

)2

λ2
x

 . (3.25)

Of course the parameter p can also be tuned, like the other hyperparameters, although
we should be careful not to find 2p, 3p or 4p or so, instead of p itself. An example in
which this covariance function is applied is shown in Figure 3.4.

There are many more covariance functions available in literature. Discussing all of
them in detail is a whole subject of its own, which is not directly relevant to us now.
For further information, you can consult the book of Rasmussen and Williams (2006)
(Chapter 4). Although there is one covariance function that I still want to look at.

3.2.2. THE COVARIANCE FUNCTION FOR LINEAR FUNCTIONS

Let’s suppose that we want to approximate a linear function f (x) = w T x (or equiva-
lently f (x) = xT w). The weight vector w is unknown, and hence we will treat it as a
random variable w with prior distribution w ∼N (0,Kw). What kind of covariance func-
tion should we use now?

THE LINEAR MEAN AND COVARIANCE FUNCTION

In this special case, we can calculate the prior mean and covariance function. We have

mlin(x) =E[
f (x)

]=E[
w T x

]=E[
w T]

x = 0T x = 0, (3.26)

klin(x , x ′) =E[(
f (x)−E[

f (x)
])(

f (x ′)−E[
f (x ′)

])]=E[
xT w w T x ′]= xT Kw x ′. (3.27)

These are the mean and covariance function for approximating linear functions. We
often call this covariance function the linear covariance function. This does not mean

3

50 3. DETAILS OF THE COVARIANCE FUNCTION

Figure 3.4: A Gaussian process with a smooth periodic covariance function. The period is set to p = 4. On the
left is the prior distribution, with three samples. On the right is the posterior distribution after a few measure-
ments have been performed. It is interesting to see that the rule ‘the further away you are from a measurement
point, the bigger the uncertainty becomes’ now does not hold.

that the covariance function itself is linear (it is certainly not) but that it is the covariance
function used for approximating linear functions.

If we would now have a measurement set Xm with corresponding noisy measure-
ments f̂m , as well as a trial set X∗, then the posterior distribution of f ∗ would become,

according to (2.30),

f ∗ ∼N
(
µ∗,Σ∗∗

)
, (3.28)

Σ∗∗ = K∗∗−K∗m
(
Kmm + Σ̂ fm

)−1
Km∗ = X T

∗ Kw X∗−X T
∗ Kw Xm

(
X T

mKw Xm + Σ̂ fm

)−1
X T

mKw X∗,

µ∗ = K∗m
(
Kmm + Σ̂ fm

)−1
f̂m = X T

∗ Kw Xm
(
X T

mKw Xm + Σ̂ fm

)−1
f̂m .

An example of such an approximation is shown in Figure 3.5 (left).

PREDICTING THE WEIGHTS w
It may also be interesting to know what the posterior distribution of the weights w is.
This requires more mathematics, but according to Theorem B.27 the result will be

w ∼N
(
µw ,Σw

)=N

((
XmΣ̂

−1
fm

X T
m +K −1

w

)−1
XmΣ̂

−1
fm

f̂m ,
(

XmΣ̂
−1
fm

X T
m +K −1

w

)−1
)

. (3.29)

Knowing this, we can also find the posterior distribution of f ∗ by using f ∗ = X T∗ w . It

follows (applying Theorem B.3) that

f ∗ ∼N
(
µ∗,Σ∗∗

)
, (3.30)

Σ∗∗ = X T
∗ Σw X∗ = X T

∗
(

XmΣ̂
−1
fm

X T
m +K −1

w

)−1
X∗,

µ∗ = X T
∗ µw = X T

∗
(

XmΣ̂
−1
fm

X T
m +K −1

w

)−1
XmΣ̂

−1
fm

f̂m .

These expressions are actually the same expressions as when we would have used a
weighted least-squares algorithm, with Σ̂−1

fm
as the weight matrix (where more accurate

3.2. OTHER COVARIANCE FUNCTIONS AND TUNING METHODS

3

51

Figure 3.5: A Gaussian process with a linear covariance function. Three sample functions have been plotted
from the posterior GP as well. To generate measurements, we used w = 0.8, σ̂ fm = 1 and no offset b. To
approximate this, we used Kw = 1. For the right figure, we added a possible offset to the algorithm as well
(even though there isn’t one) with kb = 4. The posterior distribution of w was w ∼ N

(−0.84,0.122)
(left) and

w ∼ N
(−0.81,0.122)

(right) while the posterior distribution of b was b ∼ N
(
0.68,0.322)

(right). With more
measurements, the means of these distributions will become closer to the true value, while the variances will
decrease.

measurements result in higher weights) and K −1
w as regularization term (where regular-

ization comes down to taking into account prior knowledge). So by using GP regression
with the linear covariance function, we are actually applying the least-squares method,
except that we now intuitively understand what the weight matrix and the regularization
matrix stand for.

At this point you may be comparing (3.30) with (3.28). They look like very different
expressions, but mathematically they are equivalent. It is possible to rewrite one set
into the other using the matrix inversion lemma (Theorem A.7). When there are more
measurements than weights (in practice pretty much always) it is computationally more
efficient to use (3.30) though, because the resulting matrix that needs to be inverted will
be smaller.

ADDING AN OFFSET TO THE FUNCTION

There is one minor limitation to our method. The linear function f (x) = w T x is a func-
tion that always passes through the origin. To get any possible linear function, we can
add an offset or bias b ∼N (mb ,k2

b), resulting in the function f (x) = w T x +b. Assuming
that this offset is independent from the weights, we can now find that

mlin(x) =E[
w T x +b

]= mb , (3.31)

klin(x , x ′) =E[(
f (x)−E[

f (x)
])(

f (x ′)−E[
f (x ′)

])]
(3.32)

=E[(
w T x +b −mb

)(
w T x ′+b −mb

)]
=E[

xT w w T x ′+ (b −mb)2]
= xT Kw x ′+k2

b .

3

52 3. DETAILS OF THE COVARIANCE FUNCTION

Although in practice it is often easier to consider the offset b as an extra weight. We
then replace the weight vector w by [w T b]T and every single input vector x by [xT 1]T .
Similarly, k2

b will be appended to the diagonal of Kw . When we apply this, we also get
an estimate for the offset of the function we are approximating. For an example, see
Figure 3.5 (right).

FUNCTIONS THAT ARE LINEAR IN FEATURES

Another way to extend this scheme, is by applying a so-called feature function φ(x).
This is a known function that turns the dx -dimensional input vector x into a new dφ-
dimensional feature vector φ(x). The question now is ‘How can we approximate a func-
tion f (x) = w Tφ(x)+b that is linear in the features?’

This actually goes in exactly the same way. The mean and covariance function that
we now wind up with equal

mlin(x) = mb , (3.33)

klin(x , x ′) =φT (x)Kwφ(x ′)+k2
b . (3.34)

It does not matter here whether the feature function φ is linear or nonlinear. It only
matters that f (x) is linear in the features.

If we want to apply this in our regression equations, we cannot use Xm anymore
though. Instead, just like we have replaced x by φ(x) in the covariance function, we
should also replace Xm by Φm ≡φ(Xm) and X∗ by Φ∗ ≡φ(X∗). If we do, then all equa-
tions still work as normal and we can apply GP regression with feature functions. An
example of this at work is shown in Figure 3.6.

3.2.3. TRADING OFF COVARIANCE FUNCTIONS
By now we know of various different covariance functions. Which one should we pick for
our data? We can choose that manually. For instance, if we know our data is periodic, we
can take a periodic covariance function. But it can also be calculated which covariance
function is most likely to represent the data.

To do this, we should see our choice of covariance function as just another (discrete)
hyperparameter. So identically to (3.2), we now have

p(k,θ| f̂m , Xm) = p(f̂m |k,θ, Xm)p(k,θ|Xm)

p(f̂m |Xm)
, (3.35)

where k denotes the covariance function that we will use. The likelihood p(f̂m |k,θ, Xm)
is known and the marginal likelihood p(f̂m |Xm) is a constant with respect to k. The prior
p(k,θ|Xm) can still be split up further though. We can write this as

p(k,θ|Xm) = p(k,θ) = p(θ|k)p(k), (3.36)

where p(k) is the prior distribution of covariance functions. It is where we can indicate in
advance which covariance function is more likely. Given this covariance function, p(θ|k)
is the prior distribution of the hyperparameters specific to that covariance function.

3.2. OTHER COVARIANCE FUNCTIONS AND TUNING METHODS

3

53

Figure 3.6: Feature GP regression applied to a sinusoid with a known period p = 1 but with an unknown am-

plitude, phase and mean. Measurement data was taken from f (x) = 1+2sin
(
2π

(
x − 1

4

))
with noise of stan-

dard deviation σ̂ fm = 1. As feature functions, we used φ1(x) = sin(2πx), φ2(x) = cos(2πx) and φ3(x) = 1. By
adding up linear combinations of these feature functions, any sinusoid with the same period can be obtained.
(To see how this works, take a look at Theorem A.40.) After the regression, the weight posteriors were w1 ∼
N

(
0.61,0.452)

(for our function, ideally
p

2), w2 ∼ N
(−1.81,0.442)

(ideally −p2) and w3 ∼ N
(
0.79,0.322)

(ideally 1). This corresponds to an amplitude of A = 1.91 (ideally 2) and a phase of −0.40π (ideally − 1
2π).

3

54 3. DETAILS OF THE COVARIANCE FUNCTION

Figure 3.7: Prior distribution and samples of a Gaussian processes resulting from two added covariance func-
tions. The left figure is a periodic covariance function (λx =λ f = 1, p = 4) added to a linear covariance function

(Σw = 1
42). The right figure is a quickly varying periodic covariance function (λx = λ f = 1

2 , p = 1) added to a

slowly varying SE covariance function (λx = 5,λ f = 2).

How do we proceed? Ideally, when making predictions, we take into account all pos-
sible covariance functions, just like in (3.7) we took into account all possible hyperpa-
rameters. So if we sum over all possible covariance functions k, we get

p(f ∗| f̂m , Xm) =∑
k

∫
Θ

p(f ∗|k,θ, f̂m , Xm)p(k,θ| f̂m , Xm)dθ. (3.37)

However, just like (3.7), this integral cannot be solved analytically. So we either have to
resort to numerical methods again, or instead go for the maximum likelihood approach.
That is, we find the combination of k and θ that maximizes p(k,θ| f̂m , Xm) and only use
those. In practice, because of the difficulty of setting up the numerical methods in a
computationally efficient way, this last approach is the preferred method. Although, just
like we noted at the end of Section 3.1.3, the maximum likelihood method has a small
risk of overfitting.

3.2.4. COMBINING COVARIANCE FUNCTIONS
Suppose that we have a function f (x) = f1(x)+ f2(x), where f1(x) is a linear function and
f2(x) is a periodic function. We know which covariance functions to use for both f1(x)
and f2(x). So which covariance function should we take for f (x)?

The answer here is that we can also add up the covariance functions. To be precise, if
f1(x) is a GP with mean m1(x) and covariance function k1(x , x ′) and similarly for f2(x),
and if the two GPs are independent, then f (x) is a GP with mean and covariance function

m(x) = m1(x)+m2(x), (3.38)

k(x , x ′) = k1(x , x ′)+k2(x , x ′). (3.39)

A few applications of this method are shown in Figure 3.7, where you can see the result-
ing GPs.

3.2. OTHER COVARIANCE FUNCTIONS AND TUNING METHODS

3

55

Figure 3.8: Prior distribution and samples of a Gaussian processes resulting from two multiplied covariance
functions. The left figure is a periodic covariance function (λx =λ f = 1, p = 4) multiplied by a linear covariance

function (Σw = 1
42). This results in a periodic function with linearly varying amplitude. The right figure is a

quickly varying periodic covariance function (λx =λ f = 1
2 , p = 1) multiplied by a slowly varying SE covariance

function (λx = 5,λ f = 2). This results in a periodic function where the exact variations during a period slowly
change.

Can we apply the same trick for a function f (x) = f1(x) f2(x)? Sadly, the answer here is
no. The product of two Gaussian processes is generally not a Gaussian process. We can,
however, approximate it as a Gaussian process. That is, pretend the outcome is a Gaus-
sian process that just happens to have the same mean and covariance for each point.
(This idea is called moment matching. For more details on it, see Section 5.1.2.) When
we do, all the while assuming the Gaussian processes f

1
(x) and f

2
(x) are independent,

we find that the mean equals

m(x) =E
[

f (x)
]
=E

[
f

1
(x) f

2
(x)

]
=E

[
f

1
(x)

]
E

[
f

2
(x)

]
= m1(x)m2(x). (3.40)

The covariance can be found with the same method, albeit with more bookkeeping. If
we quickly walk through the derivation, occasionally skipping a step or two, we find that

k(x , x ′) =E
[(

f
1

(x) f
2

(x)−m1(x)m2(x)
)(

f
1

(x ′) f
2

(x ′)−m1(x ′)m2(x ′)
)]

(3.41)

=E
[

f
1

(x) f
1

(x ′)
]
E

[
f

2
(x) f

2
(x ′)

]
−m1(x)m1(x ′)m2(x)m2(x ′)

= (
k1(x , x ′)+m1(x)m1(x ′)

)(
k2(x , x ′)+m2(x)m2(x ′)

)−m1(x)m1(x ′)m2(x)m2(x ′)
= k1(x , x ′)k2(x , x ′)+k1(x , x ′)m2(x)m2(x ′)+k2(x , x ′)m1(x)m1(x ′).

Often, when m1(x) = m2(x) = 0, we can hence just use k(x , x ′) = k1(x , x ′)k2(x , x ′). An
example of an application of this, for different combinations of covariance functions, is
shown in Figure 3.8.

The nice thing is that, by combining various ‘basic’ covariance functions like the lin-
ear covariance function, the periodic covariance function and such, we can create all
sorts of more complicated covariance functions. So if we know that the function f (x) we
are approximating has some kind of structure, we can take it into account.

3

56 3. DETAILS OF THE COVARIANCE FUNCTION

The next question is: can we also automatically detect when our function f (x) is a
sum or product of these basic covariance functions? Interestingly enough this is possi-
ble, but it is not very easy. The key is to efficiently try combinations of basic covariance
functions and then see if the new combined covariance function happens to be more
likely than its predecessor. The exact search strategy is a bit too complicated to discuss
here, but you can read more about it in the work of Duvenaud et al. (2013).

3.3. APPLYING GP REGRESSION TO LINEAR RELATIONS
So far we have assumed that, through our measurements, we directly measure certain
function values f (xm). But what if, instead, we would measure linear relations between
function values? For instance, what if we measure that 2

3 f (xm1)+ 1
3 f (xm2) equals some

value c? That is the question we will answer in this section.
We start by looking at how we can take into account measurements of linear relations

of function values (Section 3.3.1) and then look at how we can make predictions using
these measurements (Section 3.3.2). We also check how we can still apply hyperparame-
ter tuning (Section 3.3.3) and finally look at a possible practical use of the new technique
(Section 3.3.4).

3.3.1. MEASURING LINEAR RELATIONS OF FUNCTION VALUES
Suppose that we have a set of measurement points Xm . The corresponding function
values are denoted by fm = f (Xm), as usual, and have f

m
∼ N (mm ,Kmm) as prior dis-

tribution.
Next, suppose that measurements have told us that M f

m
= ĉ for some nc ×nm ma-

trix M . Here, the measurement ĉ can also be distorted by measurement noise, turning
it into a random variable ĉ ∼ N

(
µ̂c , Σ̂c

)
. The question now is ‘What is the posterior

distribution of f
m

?’

The idea behind solving this problem is explained by Theorem B.24, while the actual
solution is given by Theorem B.25. The result is

f
m
∼N

(
µm ,Σm

)
, (3.42)

Σm = Kmm −Kmm M T (
MKmm M T + Σ̂c

)−1
MKmm ,

µm = mm +Kmm M T (
MKmm M T + Σ̂c

)−1 (
µ̂c −Mmm

)
.

This expansion of GP regression we are now examining is called constrained Gaussian
process regression. The reason is that we do not measure fm fully, but our measurements
only constrain it to be in a certain subspace of the full nm-dimensional vector space. In
fact, every row of M is called a constraint. As such, we have nc constraints.

3.3.2. APPLYING CONSTRAINED GAUSSIAN PROCESS REGRESSION
The next question we should ask ourselves is ‘How can we make predictions?’ Mathe-
matically, this comes down to joining f

m
together with the trial function values f ∗ into

a joint vector f . When we do this, we should also replace M by
[
M 0

]
. The actual

mathematics are explained in Theorem B.26, but the outcome will be the constrained GP

3.3. APPLYING GP REGRESSION TO LINEAR RELATIONS

3

57

regression equation[
f

m
f ∗

]
∼N

([
fm

f∗

]∣∣∣∣[µm

µ∗

]
,

[
Σmm Σm∗
Σ∗m Σ∗∗

])
, (3.43)[

Σmm Σm∗
Σ∗m Σ∗∗

]
=

[
Kmm Km∗
K∗m K∗∗

]
−

[
Kmm

K∗m

]
M T (

MKmm M T + Σ̂c
)−1

M
[
Kmm Km∗

]
,[

µm

µ∗

]
=

[
mm

m∗

]
+

[
Kmm

K∗m

]
M T (

MKmm M T + Σ̂c
)−1 (

µ̂c −Mmm
)

.

It is interesting to note that, when M = I and ĉ = f̂
m

, then the above reduces (after a

little bit of rewriting) back to the default GP regression equation (2.30). So this is actually
a generalization of GP regression.

It is worthwhile to think about the runtime of this algorithm. We will look more into
the runtime of algorithms in Section 4.1, but for now it is enough to know that the bottle-
neck is the size of the matrix (MKmm M T +Σ̂c) we invert. Because M is an nc ×nm matrix,
the resulting matrix has size nc ×nc . Since often nc < nm , this is actually beneficial. The
runtime does not significantly depend on how many measurement points are in Xm , but
on how many constraints we have in M . The more constraints there are, the more data
we add to our Gaussian process, but also the slower our regression algorithm becomes.
Although if we do get nc > nm , then it is also possible to rewrite the regression equations
through the matrix inversion lemma (Theorem A.7) to turn nm into the bottleneck.

3.3.3. HYPERPARAMETER TUNING FOR CONSTRAINED GP REGRESSION
In this constrained GP regression problem, is it still possible to tune hyperparameter?
The answer here is yes, although we need to adjust our equations a bit.

The key here is to realize that our measurements have told us that M f
m

= ĉ , so we

need to determine the likelihood that this happened. To do so, we define the adjusted
distribution

f ′
m
= M f

m
∼N

(
Mm(Xm), Mk(Xm , Xm)M T)

. (3.44)

When tuning the hyperparameters, we need to use the likelihood that f ′
m

equals ĉ ∼
N

(
µ̂c , Σ̂c

)
. Identically to (3.9), we then wind up with

log(p) =−nm

2
log(2π)− 1

2
log |MKmm M T + Σ̂c | (3.45)

− 1

2

(
µ̂c −Mmm

)T (
MKmm M T + Σ̂c

)−1 (
µ̂c −Mmm

)+ log(c).

If we now redefine P = MKmm M T + Σ̂c and α = P−1
(
µ̂c −Mmm

)
, then the tuning of all

the hyperparameters can be done nearly identically to what we did in Section 3.1.4. That
is, we still have (3.12), which told us that

∂ log(p)

∂θi
= 1

2
tr

((
ααT −P−1) ∂P

∂θi

)
. (3.46)

We can use this to tune the hyperparameters of any covariance function. We will again
focus on the SE covariance function though. The derivative of P with respect to σ̂2

c , which

3

58 3. DETAILS OF THE COVARIANCE FUNCTION

is the noise variance of a single element of ĉ , now still equals (see (3.13))

∂P

∂σ̂c
= I . (3.47)

The derivative of P with respect to λ2
f is slightly different from (3.14). It now equals

∂P

∂λ2
f

= MKmm M T

λ2
f

. (3.48)

To find the derivative with respect to λ2
xk

, we need to take two steps. First we should find

the derivative ∂Kmm/∂λ2
xk

. We do this element-wise. Identically to (3.17), we get

∂k(xmi , xm j)

∂λ2
xk

= 1

2
k(xmi , xm j)

(
xk

mi
−xk

m j

λ2
xk

)2

. (3.49)

It now directly follows that
∂P

∂λ2
xk

= M
∂Kmm

λ2
xk

M T . (3.50)

Finally, similarly to (3.19), we get

m̄ = 1T M T P−1µ̂c

1T M T P−1M1
. (3.51)

This allows us to still tune the hyperparameters when using constrained GP regression.

3.3.4. A PRACTICAL USE OF CONSTRAINED GP REGRESSION
There are many practical uses for constrained GP regression. We will outline one of them
here.

Consider we have a system subject to

ẋ(t) = f (x(t),u(t)), (3.52)

with x(t) the state and u(t) the input. To control this system, we can use a parameterized
control law u(t) = C (x(t),θc), where θc is a set of controller parameters that we need to
choose. The question now is: which set of controller parameters is optimal?

To answer that question, we first need a quality criterion. We assume that the instan-
taneous reward of the system, for being in a state x and applying an input u, is given
by the reward function r (x ,u). We now want to maximize the sum of the rewards. In
particular, we want to maximize the value

V =
∫ ∞

0 γt r (x(t),u(t))d t∫ ∞
0 γt d t

. (3.53)

The parameter γ makes sure rewards in the future are weighed differently than rewards
right now. In many reinforcement learning applications (see for instance Sutton and

3.3. APPLYING GP REGRESSION TO LINEAR RELATIONS

3

59

Barto (1998), Bertsekas and Tsitsiklis (1996)) we have 0 < γ < 1, and γ is then called the
discount factor. For other applications, having γ> 1 could also be useful, although then
it is often wise to cut the denominator from (3.53). (More on this can be found in Ap-
pendix C.2.4.) We now assume that γ< 1 and have the denominator in the above expres-
sion present for normalization purposes. It makes sure that the scale of V does not vary
when we change γ. As a result, V can now be seen as a ‘weighted mean reward’ over the
infinitely long time period.

Let’s take a closer look at (3.53). What does V depend on? Naturally, it depends on
the initial state x0, but it also depends on the control law that we use. Or to be precise,
on the controller parameters θc . This means that the value function V (x0,θc) satisfies

V (x0,θc) =− log(γ)
∫ ∞

0
γt r (x(t),C (x(t),θc)d t . (3.54)

Note that we have also solved the integral in the denominator, causing the log(γ) factor.
The next question is ‘How do we find or approximate this value function?’

If we do not know the system, we will have to do experiments. One thing that we can
do is to put the system in a certain initial state x0, apply controller parameters θc and
let the simulation run until t →∞, or at least until either γt or x(t) becomes negligibly
small. This gives us a measurement of V (x0,θc). If we do enough of such experiments,
we can approximate the value function.

In reality running such long simulations is undesirable, especially when γ is close to
1 or even larger than 1. Instead, we could also run a shorter simulation, up to time T ,
and then note that

V (x0,θc) =− log(γ)
∫ T

0
γt r (x(t),u(t))d t − log(γ)

∫ ∞

T
γt r (x(t),u(t))d t (3.55)

=− log(γ)
∫ T

0
γt r (x(t),u(t))d t − log(γ)γT

∫ ∞

0
γt r (x(t +T),u(t +T))d t

=− log(γ)
∫ T

0
γt r (x(t),u(t))d t +γT V (x(T),θ).

Note that γT is not the transpose of the scalar γ, but actually denotes γ to the power of T .
The above now gives us a recursive relation for the value function, expressing one value
into another value. But what can we do with it?

During our experiment, we could of course keep track of the value of the integral.
In fact, it is more convenient, for reasons we will see later, to instead keep track of the
weighted mean reward r̄ during the time interval, defined as

r̄ ≡
∫ T

0 γt r (x(t),u(t))d t∫ T
0 γt d t

= − log(γ)

1−γT

∫ T

0
γt r (x(t),u(t))d t . (3.56)

Using this quantity, we now have

V (x0,θc) = (1−γT)r̄ +γT V (x(T),θc). (3.57)

You may have realized that this expression is very similar to the Bellman equation ap-
plied in reinforcement learning. We will use it when applying GP regression.

3

60 3. DETAILS OF THE COVARIANCE FUNCTION

The idea is that we do nm measurements. During the first measurement we start in

an initial state x i
1, apply controller parameters θc1 and end in a final state x f

1 . During the
experiment time T1, we have obtained a weighted mean reward r̄1, and as a result

V (x i
1,θc1) = (1−γT1)r̄ +γT1V (x f

1 ,θc1). (3.58)

For each subsequent measurement we get a similar relationship. The result is that we
get a set of equations

1 −γT1 0 0 · · ·
0 0 1 −γT2 · · ·
...

...
...

...
. . .




V (x i
1,θ1)

V (x f
1 ,θ1)

V (x i
2,θ2)

V (x f
2 ,θ2)
...

=

(1−γT1)r̄1

(1−γT2)r̄2
...

 . (3.59)

This is something that we can put into our GP framework. In fact, we can write the above
as

M f
m
= ĉ , (3.60)

with M and ĉ defined accordingly. At the same time, the first measurement input xm1

consists of x i
1 and θc1 , the second measurement input xm2 consists of x f

1 and θc1 , the
third measurement input xm3 consists of x i

2 and θc2 , and so on.
With this set of measurements, and with the constrained GP regression equation (3.43),

we can subsequently make predictions of the value function. Later on in Section 3.5 we
will see an application of this, proving that the method actually works.

3.4. LINEARIZED MODELING OF THE PITCH-PLUNGE SYSTEM
It is time to apply the things we have learned in this chapter. In this first application
section we will revisit our experiments from Section 2.6, identifying a pitch-plunge sys-
tem. We start by linearizing this system (Section 3.4.1) and subsequently we apply the
linear covariance function to identify this system (Section 3.4.2). Finally we look at what
happens when we apply the same methods to the nonlinear system (Section 3.4.3).

3.4.1. THE LINEARIZED DISCRETE EQUATIONS OF MOTION
Let’s revisit the equations of motion of the pitch-plunge system derived in Section 2.6.2.
If these equations were linear, we could approximate them using a linear covariance
function. But are they?

To figure out the details behind this, we rewrite (2.61) to state-space form. This gives
us [

ẋ
ẍ

]
=

[
0 I

−M−1
(
K (x)+U 2D

) −M−1 (C +U E)

][
x
ẋ

]
+

[
0

M−1U 2F

]
β. (3.61)

We can write this as ˙̃x = Ã(x̃)x̃ + B̃β. In the special case that our nonlinear spring kα(α)
is a linear spring, then Ã(x̃) equals a constant Ã and our system will indeed be linear. In

3.4. LINEARIZED MODELING OF THE PITCH-PLUNGE SYSTEM

3

61

this case we can also easily turn it into a discrete-time system through

x̃k+1 = e Ã∆t x̃k +
∫ ∆t

0
e Ã(∆t−s)B̃β(s)d s. (3.62)

If we additionally assume that β(t) equals some constant βk during the duration of the
(small) time step ∆t , this can be reduced to

x̃k+1 = e Ã∆t x̃k +
(
e Ã∆t − I

)
Ã−1B̃βk = Ad x̃k +Bdβk . (3.63)

Here we have defined the discrete-time matrices Ad and Bd as shown above. In the limit

of ∆t → 0 we could even reduce
(
e Ã∆t − I

)
to Ã∆t , causing Bd to equal B̃∆t , but usually

our time step is not that small.
Still, the above tells us something very interesting. The expression for xk+1 equals the

top two rows of this four-dimensional matrix equation, which means that xk+1 linearly
depends on xk , ẋk and βk . At least, as long as all matrices remain constant. So if we
consider the linear system (keeping kα constant) with a constant wind speed U , then
the discretized state transition function (2.62) is a linear function! And that is something
we can approximate using a linear covariance function.

3.4.2. APPLYING THE LINEAR COVARIANCE FUNCTION
The idea is that we will approximate Ad and Bd from (3.63) with an identical experi-
ment as was done in Section 2.6.4. That is, we randomly choose xk , ẋk and βk from a
prespecified interval. Together, these parameters constitute the input for our regression
algorithm. We then run a simulation for ∆t = 0.1s, measure the new values of xk+1 and
ẋk+1, and use these as measured outputs for our regression algorithm.

The function we are approximating now has dx = 5 inputs and dy = 4 outputs. This
means we need to apply the GP regression algorithm dy separate times, once for each
output. For each of these times, we need to set up the covariance function and properly
choose the scaling parameters.

To do so, we first define length scales. Here we choose λh = 0.005m, λα = 0.06rad,
λḣ = 0.05m/s, λα̇ = 1rad/s and λβ = 0.5rad. Next, we will apply GP regression to predict
hk+1. We know that hk+1 can be written as

hk+1 = wh/hhk +wh/ααk +wh/ḣ ḣk +wh/α̇α̇k +wh/ββk , (3.64)

with the w-parameters being the weights within w . Based on this, we could say that,
a priori, the standard deviation of wh/h equals λh/λh , the standard deviation of wh/α

equals λh/λα, and so on. As a result, we have as prior weight matrix, when predicting h,

K h
w = w̄2diag

(
λ2

h

λ2
h

,
λ2

h

λ2
α

,
λ2

h

λ2
ḣ

,
λ2

h

λ2
α̇

,
λ2

h

λ2
β

)
, (3.65)

where diag(a,b,c, . . .) denotes the diagonal matrix with a,b,c, . . . along its diagonal. Also,
w̄ is a scaling constant we can choose, depending on how much variation we expect.
I often use w̄ = 2. If we now also appropriately pick a noise matrix Σ̂h

fm
, then we can

3

62 3. DETAILS OF THE COVARIANCE FUNCTION

Figure 3.9: The prediction of the next state of the linearized pitch-plunge system, based on the current state. A
linear covariance function was used. For the training data, all initial state and input parameters (h, α, ḣ, α̇ and
β) were set to random values. For the tests resulting in the above plots, ḣ, α̇ and β were set to zero. The time
step used is ∆t = 0.1s and the number of measurements used is nm = 30. The flat plane now is the prediction,
where the 95% interval appears not to be shown because it is simply too small. The curved plane is the mean
prediction of the nonlinear pitch-plunge system of Figure 2.14, present only as comparison. From the plots we
can see that the linear system is indeed a linearized version of the nonlinear system, where the linearization
was done around the origin. This confirms what we already knew.

apply (3.29) to estimate the top row of Ad and Bd . Doing the same for the other output
parameters will also give us the other rows of Ad and Bd .

In it essence, this whole method comes down to applying least-squares regression.
And when there is little measurement noise, this is of course a highly efficient and ac-
curate algorithm. If we only use a few measurements, our predictions of Ad and Bd are
already almost exactly equal to the analytical values of Ad and Bd . The resulting plots
are shown in Figure 3.9.

3.4.3. SWITCHING TO THE NONLINEAR SYSTEM
We now know how to approximate a linear system. It gets more interesting when we
apply the same methods to the nonlinear system. The algorithm now still tries to ap-
proximate the system as a linear system, which of course is not really possible anymore.
The resulting outcome is shown in Figure 3.10.

When looking at Figure 3.10, we can get an idea. What if we approximate the differ-
ence between the measurements and the shown linear model by a Gaussian process with
a squared exponential covariance function? Will that give a more accurate estimate?

This approach is a bit circuitous though. A more simple way to do nearly the exact
same thing would be to use a combined covariance function: we add up the squared
exponential covariance function to the linear covariance function we are already using.
Then we apply GP regression using this covariance function. The outcome is now shown
in Figure 3.11.

If you have a good memory, you may notice that this is almost exactly the same plot
as Figure 2.15, where we only used the SE covariance function. So adding the linear
covariance function here did not do much.

The reason for this is that the SE covariance function is already very well capable of
approximating the function. In fact, the curved function that we are trying to approxi-

3.4. LINEARIZED MODELING OF THE PITCH-PLUNGE SYSTEM

3

63

Figure 3.10: The prediction of the next state of the nonlinear pitch-plunge system, based on the current state.
The set-up is exactly the same as that of Figure 3.9, except that now the nonlinear model is used. In this case
the linear model resulting from the GP regression can be seen as an ‘average plane’ of the nonlinear model. In
fact, because we use a linear covariance function, the GP regression algorithm ‘believes’ that the function it is
approximating must be linear. As such, it explains any nonlinear discrepancy as noise, resulting in an overly
certain estimate.

Figure 3.11: The prediction of the next state of the nonlinear pitch-plunge system, based on the current state.
The set-up is exactly the same as that of Figure 3.10, except that now a linear plus squared exponential covari-
ance function is used. The fact that this figure is nearly identical to Figure 2.15 shows that, for this particular
problem, adding the linear covariance function is not really necessary.

3

64 3. DETAILS OF THE COVARIANCE FUNCTION

mate looks like it could even have been generated by an SE covariance function. As such,
adding the linear covariance function here is pointless. If we would have a function that
is highly linear, with a few small deviations, then using a linear plus SE covariance func-
tion would be useful. But for our problem the SE covariance function suffices.

3.5. APPROXIMATING A QUADRATIC VALUE FUNCTION
The previous section identified the dynamics of the pitch-plunge system of Section 2.6.
In this section we will look into adding a controller and tuning it by optimizing a quadratic
value function.

We start by putting the pitch-plunge system into an LQG set-up (Section 3.5.1). Be-
fore adding a controller to this problem, we first approximate the value function of this
problem, both without noise (Section 3.5.2) and with noise (Section 3.5.3). Afterwards,
we add a controller and tune it by optimizing the value function (Section 3.5.4). Finally
we look at a few extensions we could possibly still add to the scheme (Section 3.5.5).

3.5.1. THE LQG PROBLEM SET-UP
Let’s consider the pitch-plunge system of Section 2.6. We want to add a controller to
this system. To know which controllers work well and which ones do not, we need a
criterion to optimize: a value function. The method that we will use is the one described
in Section 3.3.4.

To be able to check our results, we want to be able to analytically calculate the out-
come that we are supposed to get. As such we will start with a familiar set-up: we will use
LQG control. The ‘L’ in LQG control stands for ‘Linear’. That is, we will use the linearized
system, as well as a control law that is linear in the state x̃ . So,

β(t) =C (x̃(t),θc) =−F̃ x̃ =−Fhh(t)−Fαα(t)−Fḣ ḣ(t)−Fα̇α̇(t). (3.66)

In this expression, θc is the set of controller parameters that we want to tune. It hence
consists of Fh , Fα, Fḣ and Fα̇. Together, these parameters make up the feedback matrix
F̃ . Also note that we write the full state as x̃(t), so as not to confuse it with the state x(t)
from (2.61) that only contains h and α. By using the above control law, we can reduce
the state-space form (3.61) of the system to

˙̃x(t) = (
Ã− B̃ F̃

)
x̃(t). (3.67)

Another important part within the LQG control paradigm is the quadratic cost func-
tion, or inversely the quadratic value function. To obtain this, we will apply the reward
function

r (x̃(t),β(t)) =−x̃T (t)Q x̃(t)−βT (t)Rβ(t) (3.68)

=−x̃T (t)(Q + F̃ T RF̃)x̃(t)

=−x̃T (t)Q̃ x̃(t),

where the matrix Q and the (in our case) scalar R are weights specifying what kind of
behavior we want to penalize. Since we want to minimize the motion of the airfoil, irre-
spective of its position, we will penalize ḣ(t) and α̇(t) without penalizing h(t) and α(t).
Naturally, inputs are also penalized. In addition, we will use a value of γ= 1

2 .

3.5. APPROXIMATING A QUADRATIC VALUE FUNCTION

3

65

Given these settings, what would the value function V (x̃(t),θc) defined in (3.54) look
like, with respect to x̃(t) and θc ?

3.5.2. APPROXIMATING THE VALUE FUNCTION FOR A SINGLE CONTROLLER
The nice part is that, for the LQG system, the value function (or equivalently the cost) can
be calculated analytically. Though the value will not have a Gaussian distribution, we can
find the mean using the theory from Appendix C.2 and the variance with Appendix C.4.
When there is no noise, the value V is still deterministic and then (see Theorem C.9) it
equals

V (x̃0,θc) =− log(γ)x̃T
0 X̄ x̃0. (3.69)

The term X̄ is defined (see Appendix A.4 for the notation definitions) as the solution to
the Lyapunov equation(

Ã+ 1

2
log(γ)I − B̃ F̃

)T

X̄ + X̄

(
Ã+ 1

2
log(γ)I − B̃ F̃

)
+ (

Q + F̃ T RF̃
)= 0. (3.70)

For now assume that the controller settings θc , or equivalently the feedback matrix F̃ , is
fixed. If we do not know the system matrices Ã and B̃ , we can approximate the resulting
value function V (x̃0) using a Gaussian process. In that case the value V becomes linear
in the elements of X̄ . To be precise, we can use Theorem A.5 to write it as

V (x̃0) =− log(γ)vec
(
X̄

)T
vec

(
x̃0x̃T

0

)
, (3.71)

where vec
(
X̄

)
is the vectorization (for the definition, see (A.10)) of the matrix X̄ . We can

even take into account the knowledge that X̄ is symmetric, by lumping identical terms
together.

We now define w = − log(γ)vec
(
X̄

)
. After all, the vector w can be seen as a vector

of weights that we do not know but want to find. We assume that w ∼N (0,Kw), where
we choose the prior weight covariance Kw ourselves. The vectorφ(x̃0) = vec

(
x̃0x̃T

0

)
now

contains our features, as discussed at the end of Section 3.2.2. We can merge all these
feature vectors into a feature matrix Φm . In this case Theorem B.28 tells us that the pos-
terior distribution of w equals

w ∼N
(
µw ,Σw

)
, (3.72)

Σw = (
Φm M T Σ̂−1

c MΦT
m +K −1

w

)−1
,

µw =ΣwΦm M T Σ̂−1
c ĉm .

Through this we can approximate vec
(
X̄

)
and hence the value function V (x0). The re-

sult, for manually chosen values Kw and Σ̂c , is shown in Figure 3.12.
From Figure 3.12 we can see that, for our simple system, it is apparently better to

have a high h0 and low α0 than have both a high h0 and high α0. This seems to make
sense. When h0 > 0, the airfoil is displaced downwards. This causes the spring kh to
push the airfoil back up. Similarly, when α0 > 0 the airfoil has a positive angle of attack,
which means that the wind will push it upwards. Having both h0 > 0 and α > 0 at the
same time will cause a large upward force, resulting in a fast motion of the airfoil. Since
fast motions are penalized, this will result in a negative value.

3

66 3. DETAILS OF THE COVARIANCE FUNCTION

Figure 3.12: The value function of the linearized pitch-plunge system when no control is present. The plot
was made for varying h0 and α0, while ḣ0 and α̇0 were set to zero. To generate the data for this plot, nm =
50 simulations of T = 1s each were run. During these simulations, the initial parameters h0, α0, ḣ0 and α̇0
were set to random values. This initial state was recorded, as well as the final state and the weighted mean
reward (3.56). This data was then used to approximate X̄ . Because no noise was present, the approximation
was highly accurate. It coincides with the true value function, barring minor numerical differences.

3.5.3. ADDING NOISE TO THE PROBLEM
The problem we just solved was a simple one: no noise at all was present. It is time to
change that. We will assume that the incoming wind flow varies its direction, resulting
in a change in the angle of attack α that the system encounters.

Officially we should incorporate wind spectrums here. That is, we should use noise
with approximately the same frequency distribution as regular wind has. However, to
keep things simple (and linear) we define the extra angle of attack α+, caused by the
rotation of the wind, as Gaussian white noise with intensity σ2

α. This turns our system
equation (3.67) into

˙̃x = Ã

x̃ +


0
1
0
0

α+

− B̃ F̃ x̃ = (
Ã− B̃ F̃

)
x̃ + Ã


0
1
0
0

α+ = (
Ã− B̃ F̃

)
x̃ +w , (3.73)

where we have defined w as Gaussian white noise with intensity

W = Ã


0
1
0
0

σ2
α

[
0 1 0 0

]
ÃT . (3.74)

Note that we use W here, because we already use V for the value function. Also note
that such a quickly shifting wind field would be impossible in practice. It serves us well
enough as a basic approximation of a turbulent wind field though.

3.5. APPROXIMATING A QUADRATIC VALUE FUNCTION

3

67

Figure 3.13: Approximation of the value function of the linear pitch-plunge system subject to process noise.
Both the exact expected valueE

[
V

]
and the GP approximation of it are shown. A number of nm = 50 experi-

ments was run, starting from a random initial state and lasting T = 1s. The left figure tuned the output noise
matrix Σ̂c = σ̂2

c I . In addition, the right figure also tuned the initial weight covariance matrix Kw which, given
the low number of measurements, was not an improvement. If a higher number of measurements was used
(say, more than 200) then tuning Kw would have been possible.

For the current problem with noise, the value V has become a random variable. Us-
ing Theorem C.9 we can find that its mean equals

E
[
V (x̃0,θc)

]=− log(γ)tr

((
x̃0x̃T

0 − W

log(γ)

)
X̄

)
= tr

((
W − log(γ)x̃0x̃T

0

)
X̄

)
. (3.75)

The value hence consists of two parts: one due to the initial state x̃0 and one due to the
noise w . So effectively we have added a constant term tr

(
W X̄

)
to the expected value

E
[
V

]
. How can we take this into account in our regression algorithm?

The key here is to introduce a bias b = tr
(
W X̄

)
. Just like we discussed in Section 3.2.2,

this means we add a 1 to vec
(
x̃0x̃T

0

)
, while we add the unknown bias b to the unknown

vector w = vec
(
X̄

)
. Although in reality the bias b is not Gaussian – given our reward

function the value can only be negative – we can treat it as a Gaussian random variable.
In this case, despite using an inaccurate prior distribution for b, our regression algorithm
should work, although we might get a slightly smaller value of b then we would get with
the correct prior distribution for b.

It is important to realize here that the weighted mean reward r̄ will be affected by
noise at each experiment run. As a result, the measured vector ĉ will be noisy as well.
This means that we need to choose the noise matrix Σ̂c = σ̂2

c I . We can try tuning it by
optimizing the log-likelihood (3.9) with respect to σ̂2

c . When we do, we get σ̂c = 0.85,
resulting in the plot shown in Figure 3.13 (left).

From the plot, we see that the approximation is still reasonably good, despite all the
noise. There is still quite some uncertainty, but this is to be expected, since we only used
nm = 50 measurements. Nevertheless, the found bias b is pretty close to what it should
be, the error being roughly 10%. Of course everything will become more accurate when
we use more measurements, showing that with Gaussian process regression we can take
the effects of process noise w on the value function V into account.

Next, let’s try to take this idea of hyperparameter tuning one step further. We have
used it to tune σ̂c . We can also use it to tune Kw . Instead of tuning one parameter, we

3

68 3. DETAILS OF THE COVARIANCE FUNCTION

would now be tuning more than ten parameters. Given that we have only fifty measure-
ments, this is unlikely to be successful.

And indeed, Figure 3.13 (right) shows that the results are not very good. Many of the
squared scale parameters in Kw decreased to very small values. Having a tiny Kw for
the linear covariance function (or an overly large Λx for the SE covariance function) is a
sign that the GP regression algorithm cannot find a structure in the data yet. As a result,
the input Xm is pretty much ignored and all the output deviations are explained as noise.
The result is a prediction that looks like a flat plane. So if you are tuning hyperparameters
and get a flat plane, probably your data does not have enough information about its
structure just yet.

Another interesting question we can ask ourselves is whether the tuned value of σ̂c

does make sense. That is, whether it corresponds with the actual noise (variance) that is
present in our experiments.

To figure that out, we consider the vector ĉ before it is measured. In that case we
write it as the random variable c . We know from (3.59) that element i of the vector c
equals

c i =
(
1−γT)

r̄ i =− log(γ)
∫ T

0
γt (−x̃T (

Q + F̃ T RF̃
)

x̃
)

d t . (3.76)

The integral (apart from the minus sign) equals the finite-time discounted cost J
T

, de-
fined by (C.49). Its mean E[J

T
] can be found through Theorem C.8 and its variance

V[J
T

] through Theorem C.23. Taking into account the factor log(γ) results in the mean

and variance of c i . Hence, if we know the initial state x̃0, we can calculateE
[
c i (x̃0)

]
and

V
[
c i (x̃0)

]
.

The problem here is that both the mean and the variance depend on the initial state
x̃0. We could let σ̂2

c vary over the input space (a feature known as heteroscedasticity) or
just assume it equals some average value. We will go for the latter option, and average
over all initial states x̃1

0, x̃2
0, . . . , x̃nm

0 we encountered while setting up our measurement
set Xm . When we do this, for the data that generated Figure 3.13, we find the mean cost
variance as

V
[

J
T

]
= 1

nm

nm∑
i=1
V

[
J

T

(
x̃ i

0

)]
= 0.11, (3.77)

which results in a value of σ̂c = p
0.11 = 0.34. This is not exactly the value of σ̂c found

by the hyperparameter tuning, but it is the same order of magnitude. And indeed, using
σ̂c = 0.34 would have resulted in a plot very similar to Figure 3.13 (left). This shows that
using expert knowledge about the scale of system parameters is often a very effective
way of choosing hyperparameters too.

3.5.4. VARYING THE CONTROLLER SETTINGS

So far we have not incorporated the controller settings θc . We will do so now.
The main issue to tackle is how we should adjust our covariance function. We know

that the matrix X̄ (θc) will vary withθc . Naturally, so will its elements w (θc) = vec
(
X̄ (θc)

)
,

and they will probably do so in a smooth way. As a result, we will use a squared expo-
nential covariance function when approximating w (θc). That is, we assume in advance

3.5. APPROXIMATING A QUADRATIC VALUE FUNCTION

3

69

that

E
[(

w (θc)−E[
w (θc)

])(
w (θ′c)−E[

w (θ′c)
])T

]
= Kw exp

(
−1

2

(
θc −θ′c

)T
Λ−1
θ

(
θc −θ′c

))
.

(3.78)
Note that, for a single controller setting θc = θ′c , the prior covariance of w (θc) equals Kw ,
just like it did previously. As θc and θ′c drift further apart, the covariance reduces to zero,
meaning that we assume there is almost no link between the value functions of two very
differently controlled systems.

Keep in mind that the above is the covariance function of vec
(
X̄

)
. And since V lin-

early depends on vec
(
X̄

)
, we get as covariance function of our value function V (x̃0,θc)

k(x̃0,θc , x̃ ′
0,θ′c) = vec

(
x̃0x̃T

0

)T
Kw exp

(
−1

2

(
θc −θ′c

)T
Λ−1
θc

(
θc −θ′c

))
vec

(
x̃ ′

0x̃ ′T
0

)
. (3.79)

With this covariance function, we can make predictions of V (x̃0,θc) as a function of both
the initial state x̃0 and the controller settings θc .

We should note here that in our previous experiment the value function V (x̃0) only
had four input parameters. The function V (x̃0,θc) we will approximate now has more.
This means that we also need more measurements before we get accurate predictions.
To keep the number of measurements somewhat limited, we set the noise W to zero, and
still we will increase nm to 500.

Because we are dealing with an LQG system, we can already calculate the optimal
controller gains analytically. If we do, using Theorem C.15, we find the optimal feed-
back matrix F̃ = [−33.4 0.87 −6.2 −0.29

]
. We should keep in mind here that these

controller gains work well together, but separately they are not always effective. For in-
stance, if we only set Cḣ =−6.2 or if we only set Cα̇ =−0.29, keeping the other gains zero,
we actually wind up with an unstable system.

To make sure we only get stabilizing controllers during our experiments, we will tune
only Ch and Cα, keeping both Cḣ and Cα̇ at zero. Not very surprisingly, this causes the
optimums of Ch and Cα to change. What is more surprising is that the optimal values of
Ch and Cα now actually depend on the distribution of the initial state x̃0 and on the noise
W , while the optimal feedback matrix F̃ did not depend on this in any way. Assuming
that the initial state is distributed according to x̃0 ∼N (0,Σ0) for an appropriately chosen
Σ0, and keeping W at zero, we find the optimums Ch =−10.6 and Cα = 1.20.

Of course we want to see if this also comes out of the GP regression algorithm. To
check this, we want to plot the value function V as a function of Ch and Cα. We can only
plot this if we choose a value for the initial state x̃0. If we would set it to zero, we would
(in the absence of noise) also get a zero value V everywhere. So instead, we again use a
distribution x̃0 ∼ N (0,Σ0) and integrate over this. For our prediction of the mean of V ,
this turns out to be equivalent to replacing vec(x̃0x̃0) by vec(Σ0). When we do, we wind
up with the results shown in Figure 3.14.

The first thing we can notice is that the tuned hyperparameters (the right plot) do not
give us the prettiest graph. This does not mean that this prediction is incorrect. In fact, it
is more correct than the plot with the manually chosen hyperparameters (left). The plot
with the tuned hyperparameters basically says, ‘I think the graph of the value function is
somewhat curved, but I do not have enough data yet to be fully certain, because there is

3

70 3. DETAILS OF THE COVARIANCE FUNCTION

Figure 3.14: Approximation of the value function of the linear pitch-plunge system subject to process noise.
Both the exact expected valueE

[
V

]
and the GP approximation of it are shown. A number of nm = 500 experi-

ments was run, starting from a random initial state, using a random controller setting and lasting T = 1s. The
left figure used a chosen value of σ̂c = 10−4, while the right figure tuned σ̂c to 0.20. The plot was subsequently
made by averaging over x̃0 ∼N (0,Σ0) and letting Ch and Cα vary. Both Cḣ and Cα̇ have been kept at zero.

too much noise.’ In the meantime the plot with the manually chosen hyperparameters
more or less claims, ‘The graph is definitely curved. I’m 100% certain about this. What
noise are you talking about?’ It is overly certain of its estimates, even though a somewhat
conservative prediction would be more appropriate here. Especially when Ch = 0, its
estimates are off by several times the uncertainty bounds, which should not be the case
for a proper prediction. So while its estimates may be more accurate, its integrity – how
honest it is about the uncertainties of its estimates – is severely lacking.

A second thing we notice is that the value function mostly depends on Cα and less
on Ch . As long as Cα = 1.2, the value of Ch is mostly irrelevant. The predicted optimum
by the GP (taken at the maximum of the mean of the prediction) equals Ch =−10.5 and
Cα = 1.19 for the left plot, while it is Ch =−19.6 and Cα = 1.22 for the right plot. Though
the latter is further away from the optimal controller gains, these controller gains would
still result in a value that is close to optimal, meaning that the provided controller gains
are still of good quality.

From our experiments we can hence conclude that it is possible to tune a controller
based on estimates of the value function. But another possibly more important conclu-
sion is that the whole process of choosing a covariance function and tuning the hyper-
parameters is very complicated. Sometimes hyperparameter tuning works well. Some-
times it gives the wrong hyperparameters because there is not enough data. And some-
times it gives the right hyperparameters but an ugly plot, while the wrong hyperparam-
eters give a more pretty plot. As always, having an intuitive understand of what every
single parameter means really helps while applying Gaussian process regression.

3.5.5. FURTHER EXTENSIONS: UNSTABLE AND NONLINEAR SYSTEMS

After our successful estimations so far, we would like to extend the problem further.
There are multiple ways to do so. We can include all controller parameters, switch from
the linearized to the nonlinear system or even take into account a varying wind speed.
All these methods require a significant overhaul of our set-up though.

3.5. APPROXIMATING A QUADRATIC VALUE FUNCTION

3

71

INCLUDING UNSTABLE SYSTEMS

Suppose that we also include controller settings θc that may cause the system to go un-
stable. In this case, our value function V (x̃0,θ) will not be smoothly varying anymore.
The reason is that, as we get close to instability, V will go towards −∞. But as we wind
up with an unstable system, the value V resulting from our equations suddenly becomes
positive, starting at +∞ and reducing to a smaller positive value for more unstable sys-
tems.

To see why this happens, consider the simple system ẋ = ax+bu, with reward r (x,u) =
−qx2 − r u2, where a = b = q = r = 1. The Lyapunov equation of the system subject to
u = − f x now becomes 2(a −b f)X̄ + q + f 2r = 0. Imagine what happens with the solu-

tion X̄ =− q+ f 2r
2(a−b f) , and hence the value V = X̄ x2, as (a −b f) goes from stable (negative)

to unstable (positive). It goes from being negative, to −∞, to ∞ and subsequently being
positive.

Though it is nice that we can see from the value V when the system is unstable, and
how unstable it is, it does mean that V is not smoothly varying with respect to the con-
troller settings θc anymore. As such, we need to either adjust the covariance function we
use, or adjust the function we are approximating.

One idea would be to approximate the quantity − 1
V instead of V itself. This quantity

is always positive for stable systems, and the larger it is, the better the value. In addi-
tion, the transition from stable to unstable systems becomes smooth. However, contrary
to (3.57), we now do not get a relation that is linear in this new value-like quantity, which
brings us some extra challenges. I will leave it as a subject for future research.

SWITCHING TO THE NONLINEAR SYSTEM

A completely different extension would be to switch from the linearized pitch-plunge
system to the nonlinear variant. In theory we could do this transition without any extra
adjustments, except for one fundamental problem.

In the set-up of our covariance function, we have assumed that the value V varies
quadratically with the initial state x̃0. Though this holds for linear systems, it naturally
does not have to be the case for nonlinear systems. In particular, the flutter behavior
present in the pitch-plunge system is known as a phenomenon that does occur from
certain initial states but not from others. As such, the way in which the value V depends
on the initial state x̃0 is certainly not quadratic. To be precise, if we are near the edge of
a ‘flutter region’ in the state space, the value function V is unlikely to even be smoothly
varying.

As such, coming up with a suitable covariance function for this problem is a com-
pletely new problem. I would recommend starting with the squared exponential covari-
ance function, as was done by Bijl et al. (2014) for a different problem. Although try-
ing other covariance functions like the Matérn covariance function (see Cornford et al.
(2002), Rasmussen and Williams (2006) for more information on this covariance func-
tion) could also be worthwhile.

INCLUDING THE WIND SPEED

So far we have kept the wind speed constant at U = 10m/s. In reality this wind speed
will vary too. And though the wind speed is known, we cannot control it. We can of

3

72 3. DETAILS OF THE COVARIANCE FUNCTION

course take it into account in our approximations. To do so, we include it as an additional
parameter V (x̃0,θ,U) for our value function.

It is important to keep in mind here that the dynamics of the system change for
higher wind speeds. In particular, for wind speeds larger than U = 11.6m/s, the linear
system will be unstable. The nonlinear system, though not diverging, will either flutter
or find a new equilibrium point. Finding ways to take this into account in the covariance
function will be crucial.

In general, the above schemes require a new covariance function and a larger input
space for the approximation of V . As a result, a lot more measurements will be needed
before accurate predictions can be made. Taking into account large amounts of mea-
surements will result in a whole new problem of its own though: the computational time
required by GP regression will increase to the point where it is no longer practically fea-
sible. Getting around that problem will be the subject of the next chapter.

3.6. OVERVIEW OF LITERATURE
We discussed three different subjects in this chapter: hyperparameter tuning, covari-
ance function selection and constrained GP regression. We will look at the state of the
literature of these three topics separately.

3.6.1. LITERATURE ON HYPERPARAMETER TUNING

Estimation of hyperparameters has been an issue in many fields for quite a while now.
For instance in spatial statistics, where the habit generally was to optimize the likelihood
to estimate things like length scales and noise strength (see Mardia and Marshall (1984),
Kaufman and Shaby (2013)). Or within neural networks, where regularization parame-
ters needed to be used to prevent overfitting (see MacKay (1999), Bergstra et al. (2011)).
Or for support vector machines, where the parameters of the kernel needed to be cho-
sen (see Chapelle et al. (2002), Hsu et al. (2003)). Different optimization methods have
been used, ranging from manual search, grid search Larochelle et al. (2007) and random
search Bergstra and Bengio (2012) up to gradient ascent methods Blum and Riedmiller
(2013) and Bayesian methods Snoek et al. (2012).

To tune hyperparameters for Gaussian processes, the same methods are generally
used. In fact, because the general framework for tuning hyperparameters also works
well for GP regression, relatively little work has been done specifically related to GP hy-
perparameter tuning. Early work was done by Seeger (2000), Sundararajan and Keerthi
(2000), although the most influential work here is the book of Rasmussen and Williams
(2006) (Chapter 5), which summarized the methods quite well. Its main focus lies on
gradient ascent methods to tune hyperparameters, which is also the method we apply in
this thesis. In fact, most of the theory discussed in Section 3.1 comes from Rasmussen
and Williams (2006).

3.6.2. LITERATURE ON COVARIANCE FUNCTIONS

A lot of work has been done on covariance functions. An early overview of possible co-
variance functions was given by Abrahamsen (1997). It already mentioned, among oth-
ers, the (squared) exponential and various Bessel covariance functions.

3.6. OVERVIEW OF LITERATURE

3

73

There were various contributions by others as well. It was argued by Stein (1999) that
the squared exponential covariance function resulted in a degree of smoothness that
in practice never really occurs. He instead argued for the Matérn covariance function,
which was then successfully applied by Cornford et al. (2002). At the same time the pe-
riodic covariance function was studied by MacKay (1998), Schölkopf and Smola (2002)
and the neural network covariance function by Neal (1996), while Gibbs (1997) looked
into anisotropic covariance functions, in which the length scale can vary over the input
space.

A proper overview of all this work was eventually given in the book by Rasmussen and
Williams (2006) (Chapter 4). Next to looking at various examples of covariance functions,
this book also discusses general properties that covariance functions can or must have,
making it quite a lot more in-depth than the basic introduction to covariance functions
given in Section 3.2.

After Rasmussen and Williams (2006), the main contributions did not so much con-
cern new covariance functions, but instead were about how to find the right covariance
function, or combine different covariance functions together to get even better covari-
ance functions. Interesting work here was done by Bach (2009), Hinton and Salakhutdi-
nov (2008), Duvenaud et al. (2013).

3.6.3. LITERATURE ON CONSTRAINED GP REGRESSION
On constrained GP regression, there is very few literature whatsoever. It is a technique I
devised myself and first published about in Bijl et al. (2014). I did find a technique very
similar to what was discussed in Section 3.3, developed by Engel et al. (2003, 2005). Also
slightly related is the work by Salzmann and Urtasun (2010) who constrain the different
outputs of a multi-output function f (x) for the same input point. So the idea of con-
strained GP regression is not entirely new. But the way in which it has been generalized
like in Section 3.3 is quite novel.

A related and promising approach was explored quite recently by Jidling et al. (2017).
Here, the idea was to add linear constraints on not just the function f (x) we are approxi-
mating, but also on the derivatives. For instance, we can require that ∂ f /∂x1 −∂ f /∂x2 =
0. This constraint is then incorporated into the covariance function, such that the GP
only considers functions satisfying this constraint in the first place, even before any mea-
surement is incorporated.

4
SPARSE AND ONLINE GAUSSIAN

PROCESS REGRESSION

Summary — When the number of measurements nm becomes big, Gaussian process re-
gression runs into computational problems. The reason is the required runtime, which is
cubic in the number of measurements.

To solve this, we can separate the regression algorithm into two parts. First we predict
the distribution of the so-called inducing function values f

u
corresponding to inducing

input points Xu . Then we use this distribution to make the actual predictions of the trial
function values f ∗. Alternatively, we can use measurements one by one or in groups to

find the distribution of f
u

. This results in the FITC and the PITC algorithm, respectively,

whose runtime is linear in the number of measurements.

When measurements come in one by one, both these algorithms can be applied in an on-
line fashion, where we incorporate measurements one by one into the distribution of f

u
.

The runtimes of these online algorithms are the same as those of the offline algorithms,
but because we do not have to remember all measurements anymore, the memory require-
ments are lower.

The positions of the inducing input points can be chosen based on expert knowledge, or
tuned automatically. Automatic tuning can be done either by optimizing the log-likelihood
of the measurements (evidence maximization) or the posterior variance of the trial points.
In addition, when extra accuracy is required, additional inducing input points can also be
added online.

The derived algorithms have been proven to work by applying them to various example
problems. On lower-dimensional problems, all algorithms have a comparable accuracy,
given the same number of measurements. On higher-dimensional problems the assump-
tions behind the FITC and PITC algorithms do cause a reduced accuracy, but this may be
worthwhile given the significantly reduced runtime of these algorithms.

75

4

76 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

This chapter is all about applying Gaussian process regression to big and expanding data
sets. Regular Gaussian process regression as we have learned it so far is not capable of
dealing with this, for various reasons, but there are ways to work around this.

We will start to look at methods to reduce the computational requirements of Gaus-
sian process regression (Section 4.1). Next, we consider ways of adding new measure-
ments in an online way, without having to redo all our calculations (Section 4.2). Fun-
damental to both these methods are the inducing input points and we will also examine
ways to choose/tune them (Section 4.3). We then apply the methods we derived (Sec-
tion 4.4) and in the end take a look at the available literature on this subject (Section 4.5).

4.1. SPARSE GAUSSIAN PROCESS REGRESSION
When using Gaussian process regression on big data sets, the computational require-
ments start to become important. Especially when the number of measurements nm be-
comes larger than a thousand, you will notice that the algorithm starts to become very
slow. In addition, your computer may also run out of allocated memory.

Sparse Gaussian process regression is all about reducing these computational require-
ments, both on runtime and on memory. The idea is to take advantage of the structure
in our matrices, or to actually create a structure in our matrices, such that our equations
can be calculated more efficiently.

We first look into what exactly we mean with computational requirements and how
we can compare them (Section 4.1.1). Then we analyze the computational requirements
of the regular GP regression algorithm (Section 4.1.2). We separate this algorithm into
two steps: training and prediction. We then first reduce the runtime of the prediction
step by introducing inducing input points (Section 4.1.3), and then we reduce the re-
quirements of the training step by using measurements individually (Section 4.1.4). Fi-
nally we generalize this new method, allowing us to use measurements in groups (Sec-
tion 4.1.5).

4.1.1. A NOTATION FOR DISCUSSING COMPUTATIONAL REQUIREMENTS
Let’s consider the Gaussian process regression equation (2.30). If we only want to predict
the posterior distribution of the trial function values f ∗, and not that of the measure-

ment function values f
m

, then it becomes

f ∗ ∼N
(
µ∗,Σ∗∗

)
(4.1)

Σ∗∗ = K∗∗−K∗m
(
Kmm + Σ̂ fm

)−1
Km∗,

µ∗ = m∗+K∗m
(
Kmm + Σ̂ fm

)−1
(

f̂m −mm

)
.

Note that we use m and K to indicate the properties of prior distributions, while we use
µ and Σ for posterior distributions.

A question we could ask ourselves is ‘How long does it take to evaluate the above
equation? And how much memory is required for this?’ However, these questions are
rather vague. Their answers will of course depend on the number of measurement points
nm and the number of trial points n∗, but also on the speed of our computer, the way in
which it implements matrix algebra, and so on.

4.1. SPARSE GAUSSIAN PROCESS REGRESSION

4

77

Let’s make this more specific. For calculations we only look at the number of basic
calculations that we need to do, while for memory we only look at the number of pa-
rameters we need to store. For instance, setting up the nm ×nm matrix Kmm costs n2

m
runtime and n2

m memory.
At this point you may be thinking, ‘Kmm is symmetric! Isn’t the memory required

equal to 1
2 nm (nm +1) = 1

2 nm + 1
2 n2

m then?’ Technically you are correct here. However,
when comparing computational requirements, any multiplying constants (like 1

2) are
not very important, because we can solve them by taking a little bit faster computer, pos-
sibly with a few extra cores. Also, any lower-order terms like nm are not important when
there are higher-order terms like n2

m around. After all, when nm becomes big enough,
any term c1nm will be negligible compared to c2n2

m , even when c1 is larger than c2.
Keeping this in mind, we can now say that the memory requirement for setting up the

matrix Kmm is of the order n2
m . We write this using the big O notation as O

(
n2

m

)
. Similarly,

the runtime requirement of calculating Kmm is O
(
n2

m

)
. The memory requirement and

runtime requirement together are the most important computational requirements we
need to take into account when calculating with matrices.

4.1.2. ANALYZING THE COMPUTATIONAL REQUIREMENTS
Let’s consider (4.1) once more. What is the runtime to calculate this? And how much
memory is required? To analyze this, we can apply the following rules.

• Storing an m ×n matrix requires O (mn) memory.

• Storing a diagonal n ×n matrix requires O (n) memory.

• Adding/subtracting two m ×n matrices takes O (mn) time.

• Multiplying an l ×m matrix by an m ×n matrix takes O (lmn) time.

• Multiplying an m ×n matrix by a vector of size n takes O (mn) time.

• Multiplying an m ×n matrix by a diagonal n ×n matrix takes O (mn) time.

• Inverting an n ×n matrix takes O
(
n3

)
time1.

• Inverting a diagonal n ×n matrix takes O (n) time.

Using these results, we can see that inverting Kmm + Σ̂ fm takes O
(
n3

m

)
time, while left-

multiplying this by K∗m takes O
(
n∗n2

m

)
time. Calculatingµ∗ hence takes O

(
n∗n2

m +n3
m

)
time, while calculating Σ∗ takes O

(
n2∗+n∗n2

m +n3
m

)
time.

In practice it often happens that we first obtain our measurement data Xm and f̂m ,
but only later on receive the trial input points X∗ for which we want to predict the corre-
sponding function values f∗. In this case, when we just obtained Xm and f̂m , we can
already prepare ourselves for making predictions. This is called the training step (or
sometimes the preparation step) of the algorithm. For regular GP regression this comes

down to calculating
(
Kmm + Σ̂ fm

)−1
. When we then obtain the trial input points X∗, we

can more easily do the prediction step: calculating µ∗ and Σ∗.

1This is the runtime using Gauss-Jordan elimination. There are other algorithms available, like optimized ver-
sions of the Coppersmith-Winograd algorithm, that can invert an n ×n matrix or multiply two n ×n matrices
in O

(
n2.373)

runtime. For more information on this, see the work by Davie and Stothers (2013), Gall (2014).
To keep the discussion intuitive and easy to read, we will ignore these possible computational gains.

4

78 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

We can analyze the runtime of both the training and the prediction steps of the regu-
lar GP regression algorithm, as well as the memory that is required altogether. When we
do, we get the results shown in Table 4.1. Here we also find the computational require-
ments of the other algorithms we will look at later on, both in Section 4.1 (offline) and
Section 4.2 (online).

Table 4.1: Computational requirements of the various algorithms, sorted by number of simplifying assump-
tions. (O is not written out explicitly.) The runtime is the total runtime of adding the first nm measurement
points. nu is the number of inducing input points and n∗ the number of trial points, where we assume that
nu < n∗ < nm . For the PITC algorithm we assume that the subsets Xmi do not grow larger than nu data points.

Section Training runtime Prediction runtime Memory

Algorithm Offline Online Offline Online Offline Online Offline Online

Regular GP regression 4.1.2 4.2.1 n3
m n3

m n2
m n∗ n2

m n∗ n2
m n2

m

Sparse GP regression 4.1.3 4.2.2 n3
m n3

m nu n2∗ nu n2∗ n2
m n2

m

PITC regression 4.1.5 4.2.4 nm n2
u nm n2

u nu n2∗ nu n2∗ nm nu n2
u

FITC regression 4.1.4 4.2.3 nm n2
u nm n2

u nu n2∗ nu n2∗ nm nu n2
u

4.1.3. FASTER PREDICTION: USING INDUCING INPUT POINTS
We will first suppose that we have ample time for training, but really need to make fast
predictions. Calculating µ∗ currently takes O (nmn∗) time, because we need to add up
nm basis functions for every trial point. Calculating Σ∗ even takes O

(
n2

mn∗
)

time. When
nm is big, this is unacceptable.

We can solve this problem by choosing a number nu of inducing input points2. We
write these as xu1 , . . . , xunu

and together they form the inducing input set Xu . During our
training time, we then predict the posterior distribution of the inducing function values
f

u
. Afterwards, we throw away all our measurement data and only use this posterior

distribution of f
u

to predict the trial function values f ∗.

Mathematically this method comes down to assuming that f
m

and f ∗ are condition-

ally independent, given the value of f
u

. That is,

p(fm , f∗| fu) = p(fm | fu)p(f∗| fu). (4.2)

This assumption is known as the inducing input assumption. It implies that the covari-
ance Km∗ between the measurement function values and the trial function values has to
equal KmuK −1

uu Ku∗ (see Theorem B.29). And from the assumption we can derive our new
regression equations (see Theorem B.30). However, there is also a more intuitive view on
this (see Theorem B.31) which we will look at now.

Earlier we saw that the GP regression equation (2.30) can be found by merging the
prior distribution (2.22) with the measured distribution (2.29). We will now do some-
thing similar. We take our prior distribution[

f
m

f
u

]
∼N

([
fm

fu

]∣∣∣∣[mm

mu

]
,

[
Kmm Kmu

Kum Kuu

])
, (4.3)

2This terminology was introduced by Candela and Rasmussen (2005) and we will stick with it.

4.1. SPARSE GAUSSIAN PROCESS REGRESSION

4

79

and we merge this together with our measured distribution

[
f

m
f

u

]
∼N

([
fm

fu

]∣∣∣∣[f̂m

∗
]

,

[
Σ̂ fm ∗
∗ ∞

])
. (4.4)

When we do, we wind up with an equation identical to the GP regression equation (2.30),
being the sparse GP training equation

[
f

m
f

u

]
∼N

([
fm

fu

]∣∣∣∣[µm

µu

]
,

[
Σmm Σmu

Σum Σuu

])
, (4.5)

[
Σmm Σmu

Σum Σuu

]
=

[
Kmm

(
Kmm + Σ̂ fm

)−1
Σ̂ fm Σ̂ fm

(
Kmm + Σ̂ fm

)−1
Kmu

Kum
(
Kmm + Σ̂ fm

)−1
Σ̂ fm Kuu −Kum

(
Kmm + Σ̂ fm

)−1
Kmu

]
,

[
µm

µu

]
=

 Σmm

(
K −1

mm mm + Σ̂−1
fm

f̂m

)
mu +Kum

(
Kmm + Σ̂ fm

)−1
(

f̂m −mm

) .

Through this we can find the posterior distribution of the inducing function values f
u

during our training step. We would then of course only calculateµu and Σuu and not the
other terms.

Next, we switch to the prediction step where we know X∗. Instead of using the mea-
surement data, we now use the prior distribution of f

u
and f ∗. This equals

[
f

u
f ∗

]
∼N

([
fu

f∗

]∣∣∣∣[mu

m∗

]
,

[
Kuu Ku∗
K∗u K∗∗

])
. (4.6)

We then merge this prior distribution together with the inducing function value distri-
bution that we just found. That is,

[
f

u
f ∗

]
∼N

([
fu

f∗

]∣∣∣∣[µu

∗
]

,

[
Σuu ∗
∗ ∞

])
. (4.7)

This does not directly give us our final result for f ∗ though. The reason is that our prior

knowledge of f
u

, being f
u
∼N (mu ,Kuu), has been used in both of the above distribu-

tions. If we would merge both distributions together, we would use our prior knowledge
twice, which is not allowed. To make sure that we do not, we need to unmerge this prior
distribution [

f
u

f ∗

]
∼N

([
fu

f∗

]∣∣∣∣[mu

∗
]

,

[
Kuu ∗
∗ ∞

])
. (4.8)

This idea of unmerging distributions is the inverse of merging distributions together.
(See Theorem B.23 for how it works with Gaussian distributions.) When we apply this

4

80 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

(see Theorem B.31) we wind up with the sparse GP prediction equation

[
f

u
f ∗

]
∼N

([
µu

µ∗

]
,

[
Σuu Σu∗
Σ∗u Σ∗∗

])
, (4.9)[

Σuu Σu∗
Σ∗u Σ∗∗

]
=

[
Σuu ΣuuK −1

uu Ku∗
K∗uK −1

uuΣuu K∗∗−K∗uK −1
uu (Kuu −Σuu)K −1

uu Ku∗

]
,[

µu

µ∗

]
=

[
µu

m∗+K∗uK −1
uu

(
µu −mu

)] .

With this equation, and assuming we have calculated K −1
uu in advance, we can calculate

the posterior distribution of f ∗ in O
(
nun2∗

)
time. The whole process is visualized in

Figure 4.1. Since nu is generally much smaller than n∗, which in turn is smaller than nm ,
this is a significant improvement.

Figure 4.1: The comparison between regular and sparse GP regression. We used nm = 10 measurements of
f (x) = sin

(
2π x

4

)
with noise strength σ̂ fm = 0.1. The left plot shows regular GP regression: we use our mea-

surements to directly predict n∗ = 100 trial function values f ∗. The middle and right plot shows the two steps

of sparse GP regression. In the training phase we use the measurements to predict nu = 4 inducing function
values f

u
. In the prediction phase we then ignore our measurements and only use the inducing function val-

ues f
u

to predict the trial function values f ∗. If you look carefully, you can notice a slight accuracy decrease

compared to regular GP regression for trial points that are far away from any inducing input points.

We will call the algorithm that we have just set up the sparse GP regression algorithm.
This name is ambiguous, because ‘sparse GP regression’ is generally used to refer to any
algorithm that tries to use structure in matrices to reduce the computational complexity
of GP regression. So technically this name also incorporates the next few algorithms we
will consider. However, as was also shown by Candela and Rasmussen (2005), nearly
all sparse GP regression methods use inducing input points, and while other algorithms
still use additional assumptions, and as a result have their own specific names, the above
regression algorithm contains only the fundamental idea of sparse GP regression.

The question remains how to choose the inducing input points. We will look deeper
into this in Section 4.3. For now we only note that if we would set Xu equal to Xm , then
the sparse GP regression algorithm reduces to the regular GP regression algorithm. So
effectively, we can see this algorithm as a generalization of the regular GP regression
algorithm.

4.1. SPARSE GAUSSIAN PROCESS REGRESSION

4

81

4.1.4. FASTER TRAINING: USING MEASUREMENTS INDIVIDUALLY
With the sparse GP regression algorithm we have made the prediction step faster, but not
the training step. For large nm this still takes a significant amount of time. The reason is
that, when predicting f

u
, we combine all nm measurements. This results in an O

(
n3

m

)
runtime.

Instead, we could also use each measurement individually. So we first use measure-
ment

(
xm1 , f̂m1

)
to predict the distribution of f

u
. We write this as N

(
µ1

u ,Σ1
uu

)
, and its

value can be found through (4.5). Then we use
(
xm2 , f̂m2

)
to find N

(
µ2

u ,Σ2
uu

)
, and so on.

This gives us nm separate distributions for f
u

.

Next, we merge all these nm distributions together. There is one caveat here. Each
of these distributions of f

u
contains the information from the prior distribution f

u
∼

N (mu ,Kuu), but we are still only allowed to use this information once. To prevent us
from using it nm times, we need to unmerge the prior distribution nm − 1 times. As a
result, we get

N
(
µu ,Σuu

)=N (mu ,Kuu)⊕ (
N

(
µ1

u ,Σ1
uu

)ªN (mu ,Kuu)
)⊕ . . . (4.10)

⊕ (
N

(
µ

nm
u ,Σnm

uu
)ªN (mu ,Kuu)

)
=N

(
µ1

u ,Σ1
uu

)⊕ . . .⊕N
(
µ

nm
u ,Σnm

uu
)ªN (mu ,Kuu)︸ ︷︷ ︸

(nm −1) times

.

This is a very intuitive expression, but actually calculating it takes some work. We can
use this idea to derive a more simple and powerful expression though. If we define

Λmm = diag
(
Kmm −KmuK −1

uu Kum
)

, (4.11)

∆uu = Kuu +Kum
(
Λmm + Σ̂ fm

)−1
Kmu , (4.12)

then the resulting training equation (see Theorems B.32 through B.34) becomes[
fm

fu

]
∼N

([
µm

µu

]
,

[
Σmm Σmu

Σum Σuu

])
, (4.13)

Σmm =
(
Λ−1

mm+ Σ̂−1
fm

)−1+Σ̂ fm

(
Λmm+ Σ̂ fm

)−1
Kmu∆

−1
uuKum

(
Λmm+ Σ̂ fm

)−1
Σ̂ fm ,

Σmu = Σ̂ fm

(
Λmm + Σ̂ fm

)−1
Kmu∆

−1
uuKuu ,

Σum = Kuu∆
−1
uuKum

(
Λmm + Σ̂ fm

)−1
Σ̂ fm ,

Σuu = Kuu∆
−1
uuKuu ,[

µm

µu

]
=

mm +ΣmmΣ̂
−1
fm

(
f̂m −mm

)
mu +ΣumΣ̂

−1
fm

(
f̂m −mm

)  .

Through this equation, the training step only takes O
(
nmn2

u

)
time. And after we have

found the distribution of f
u

in this way, we can still use the sparse GP prediction equa-

tion (4.9) to efficiently make predictions in O
(
nun2∗

)
time. This is a significant runtime

reduction, especially for large nm . In addition, we do not have to calculate and store
Kmm anymore, but only the diagonal matrix Λmm and the nm ×nu matrix Kmu . As a

4

82 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

result, the memory required to run the regression algorithm is reduced from O
(
n2

m

)
to

O (nmnu). The entire process is visualized in Figure 4.2.

Figure 4.2: A visualization of the steps in the FITC regression algorithm. We use the same data as in Figure 4.1.
We first use each measurement individually (the first ten plots) to predict the distribution of the inducing
function values f

u
. We subsequently merge all these individual distributions together into one single posterior

distribution of f
u

(bottom middle) which completes the training step. Then, just as in Figure 4.1, we use this

distribution of the inducing function values f
u

to predict the trial function values f ∗ (bottom right). The

difference with the results from Figure 4.1 are small enough to be invisible.

What assumption are we making behind the scenes here though? Mathematically, we
assume that, given the inducing function values f

u
, each measurement function value

f
m1

, . . . , f
mnm

is fully independent. That is,

p(fm1 , fm2 , . . . , fmnm
| fu) = p(fm1 | fu)p(fm2 | fu) . . . p(fmnm

| fu). (4.14)

4.1. SPARSE GAUSSIAN PROCESS REGRESSION

4

83

This is assumption is called the Fully Independent Training Conditional assumption (FITC
assumption) and the resulting algorithm is therefore known as the FITC algorithm. Be-
cause of this (4.13) is also known as the FITC training equation.

Previously, the inducing input assumption enforced Km∗ to equal KmuK −1
uu Ku∗. Sim-

ilarly, the FITC assumption enforces Kmi m j (for i 6= j) to equal Kmi uK −1
uu Kum j , or equiva-

lently it enforces Kmm to equal

Kmm ← diag
(
Kmm −KmuK −1

uu Kum
)+KmuK −1

uu Kum (4.15)

=Λmm +KmuK −1
uu Kum .

We could of course also use this value of Kmm in the regular regression equations we
used to, instead of using (4.13). However, using (4.13) is computationally much more
efficient, saving us a lot of time.

4.1.5. MORE FLEXIBILITY: USING MEASUREMENTS IN SUBGROUPS
We can extend the idea we just explored even further. Instead of using each measure-
ment (xmi , f̂mi) individually, we can also use them in small subgroups of the full mea-
surement set Xm .

Let’s define Xm1 to contain the first nm1 measurement input points, Xm2 to contain
the next nm2 measurement input points, and so on. Similarly, f̂m1 contains the first nm1

elements of f̂m , f̂m2 the next nm2 elements, and so on. After having set up these sub-
groups, we predict the distribution of f

u
based on the first subgroup of measurements,

do the same for the second subgroup of measurements, and so on. Finally, we merge all
the results together and unmerge the prior distribution of f

u
the right amount of times

to get the posterior distribution of f
u

.

The resulting expression is actually exactly the same as the FITC training equation (4.13)
(see Theorem B.35) except for one small difference. We should redefine the matrix Λmm

of (4.11) to
Λmm = blkdiag

(
Kmm −KmuK −1

uu Kum
)

. (4.16)

Earlier the diag function sets all non-diagonal terms to zero, turning the given matrix
into a diagonal matrix. Similarly, the blkdiag function here turns the given matrix into a
block-diagonal matrix, setting all other elements to zero. This block-diagonal matrix is
set up such that the first diagonal block is nm1 ×nm1 , the second block is nm2 ×nm2 , and
so on. So every block corresponds to a subgroup of measurements.

After having calculated the distribution of f
u

in this way, we can of course still use

the Sparse GP prediction equation (4.9) to predict f ∗. The resulting algorithm is called

the Partially Independent Training Conditional algorithm (PITC algorithm). Its process
is visualized in Figure 4.3.

The assumption behind the PITC algorithm is known as the PITC assumption. It as-
sumes that the measurement function values fm1 , fm2 , . . . of each subgroup are condi-
tionally independent given f

u
. That is,

p(fm1 , fm2 , . . . | fu) = p(fm1 | fu)p(fm2 | fu) (4.17)

It is very interesting to realize here that if we only take ‘subgroups’ of size 1, and hence
have nm1 = nm2 = . . . = 1, then the PITC algorithm reduces back to the FITC algorithm.

4

84 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

Figure 4.3: A visualization of the steps in the PITC regression algorithm. The set-up is the same is in Figure 4.2,
except now we use measurements in small subgroups.

However, if we use one enormous ‘subgroup’ containing all nm measurement points,
then the PITC algorithm becomes the sparse GP algorithm. This makes the PITC algo-
rithm a generalization of the two algorithms, where we can blend between them based
on which subgroups of measurements we use.

What subgroups should we use though? It is important to realize here that, if you
put measurement points xm together in a subgroup that do not have any covariance
amongst each other, then you do not gain any additional accuracy in your predictions.
You might as well have kept them in separate subgroups. So in practice it is best to make
subgroups of measurement points that are as strongly correlated amongst each other as
possible. This gives you the smallest accuracy loss with respect to the sparse GP regres-
sion algorithm.

Finally, let’s look at the runtime of the training phase of the PITC algorithm. Natu-
rally, this depends on the size of the subgroups. Assuming that none of the subgroups
is larger than nu measurement points, the training runtime is the same as that of the
FITC algorithm, being O

(
nmn2

u

)
. Of course, if we only use one subgroup containing all

measurements, we have the same runtime as the sparse GP algorithm, which is O
(
n3

m

)
.

4.1.6. AN INCORRECT ALTERNATIVE VIEW ON SPARSE GP REGRESSION

In GP regression we are predicting the distribution of f ∗ = f (x∗). The mean prediction

is given by µ∗. When we use sparse GP regression, then µ∗ always takes the form of

µ∗ = m∗+K∗uK −1
uu

(
µu −mu

)
. (4.18)

4.1. SPARSE GAUSSIAN PROCESS REGRESSION

4

85

Let’s define the weights w = K −1
uu

(
µu −mu

)
and the feature vectors φi (x) = k(xui , x). We

can now also write our posterior prediction as

µ∗ = m(x∗)+
nu∑
i=1

wiφi (x∗) = m(x∗)+w Tφ(x∗), (4.19)

where we have φ(x∗) = k(Xu , x∗). This means that µ∗ effectively is a function that is
linear in given feature functions! Can we then also use the theory from Section 3.2.2 to
find w and subsequently approximate µ∗?

The answer is ‘Yes we can, but then we are solving a rather different problem.’ Before
we look into why, let’s just try this solution method and see what we wind up with.

We can find the posterior distribution of the weights through (3.29). In this expres-
sion we do have to replace Xm by the feature matrix Φm , which in turn equals φ(Xm) =
k(Xu , Xm) = Kum . As such, we have

w ∼N
(
µw ,Σw

)
, (4.20)

Σw =
(
KumΣ̂

−1
fm

Kmu +K −1
w

)−1
,

µw =Σw KumΣ̂
−1
fm

(
f̂m −mm

)
.

As prior weight covariance matrix Kw , we can best pick

Kw =E[
w w T]= K −1

uuE

[(
µ

u
−mu

)(
µ

u
−mu

)T
]

K −1
uu = K −1

uu . (4.21)

Note that, before we obtain any measurements, the posterior mean µ
u

of the inducing

function values is not yet specified, and hence is a random variable too. Using this, the
posterior distribution of f ∗ can now be found through

f ∗ ∼N
(
µ∗,Σ∗∗

)
, (4.22)

Σ∗∗ = K∗uΣw Ku∗,

µ∗ = K∗uµw .

These equations have a runtime of O
(
nmn2

u

)
, which makes them just as efficient as FITC

regression and more efficient than sparse GP regression without the FITC assumption.
When we apply them, we get the prediction shown in Figure 4.4.

In this figure we notice that the prediction we wind up with is mostly correct. How-
ever, the uncertainty is a lot smaller than what it used to be. This is actually a downside,
and to see why, we need to examine what assumptions we have silently made.

As we have seen in Section 2.3.2, a Gaussian process is a distribution over functions.
The covariance function specifies which functions are more likely and which are less
likely. When we use the squared exponential covariance function, we say that smoothly
varying functions are more likely and strongly fluctuating functions are less likely, but in
theory all functions are still possible.

However, when setting up Figure 4.4, we have actually used the linear covariance
function. This means that we have assumed that only functions f (x) that are linear in

4

86 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

Figure 4.4: Using feature functions to approximate the function. Kw has been picked large enough for K−1
w to

be negligible. The result is a similar prediction as before, but with a much smaller covariance.

the features φ(x) are possible. We have assumed that other functions cannot take place
at all. As such, we have severely restricted the possible functions that we can get.

Because there are now less possible functions we need to take into account, we have
significantly simplified the problem. This explains both the reduced runtime and the
higher certainty about our outcomes. However, if this assumption is not correct – if our
true function f (x) cannot be written as a weighted sum of feature functions φ(x) – then
we will never find the true function. In our previous set-up this was not a problem: the
algorithm would just add uncertainty to compensate for this, taking into account other
potential functions. This new algorithm does not.

This is also confirmed by comparing the new algorithm we have just set up with
the FITC algorithm. These algorithms have the exact same expressions, except for two
changes: Kuu has turned into K −1

w and Λmm has disappeared (turned into zero). The
first difference was predicted by (4.21), but the second one is surprising. Λmm is repre-
sentative of the part of the distribution of f

m
that cannot be explained using knowledge

about f
u

. (See the intuitive view on Λmm just prior to Theorem B.32.) So by assuming

thatΛmm = 0, we basically assume (on top of the FITC assumption) that f
m

can be fully

predicted if f
u

is given. Naturally, this assumption is generally false.

The conclusion is that this new set-up makes too many simplifying assumptions and
as such provides predictions with a higher certainty than it has a right to. We would
better steer clear of it.

4.2. ONLINE GAUSSIAN PROCESS REGRESSION

4

87

4.2. ONLINE GAUSSIAN PROCESS REGRESSION
By now we know how to efficiently train a GP regression algorithm with nm measure-
ments. Now let’s suppose that we already have done this training, but all of a sudden
get another measurement. We denote this extra measurement by (x+, f̂+) and the corre-
sponding noise variance by σ̂2

f+ . We could of course add x+ to Xm , f̂+ to f̂m and σ̂2
f+ to

Σ̂ fm and then redo all our calculations, but surely there must be some way to take into
account our earlier training? How exactly can we do that?

That is what we will figure out in this chapter, starting with regular GP regression
(Section 4.2.1), continuing with sparse GP regression (Section 4.2.2) and then extending
these ideas to FITC (Section 4.2.3) and PITC (Section 4.2.4). Finally we still make a brief
note on the numerical stability of these methods (Section 4.2.5).

4.2.1. REGULAR ONLINE GAUSSIAN PROCESS REGRESSION

In regular GP regression, the ‘training phase’ consists of calculating
(
Kmm + Σ̂ fm

)−1
. This

is a large matrix inverse, so being able to recycle it could be useful.
Using the GP regression equation (2.30) (or equivalently (4.1)), we can find that

f ∗ ∼N
(
µ+
∗ ,Σ+

∗∗
)

(4.23)

Σ+
∗∗ = K∗∗−

[
K∗m K∗+

]([
Kmm Km+
K+m K++

]
+

[
Σ̂ fm 0

0 σ̂2
f+

])−1 [
Km∗
K+∗

]
,

µ+
∗ = m∗+

[
K∗m K∗+

]([
Kmm Km+
K+m K++

]
+

[
Σ̂ fm 0

0 σ̂2
f+

])−1 ([
f̂m

f̂+

]
−

[
mm

m+

])
.

We use the superscript + to indicate that this is the posterior distribution of f ∗ taking

into account the new measurement (x+, f̂+).
The problem with the above expression is that calculating the matrix inverse will take

O
(
n3

m

)
. This means that every single added measurement will take O

(
n3

m

)
to incorpo-

rate, which is unacceptable.

Luckily, we can do better. In the above expression, we already know
(
Kmm + Σ̂ fm

)−1

from our previous calculations, and we can use that knowledge when calculating the new
matrix inverse. To keep our notation short, let’s write K̂mm ≡ Kmm + Σ̂ fm and similarly
K̂++ ≡ K+++ σ̂2

f+ . Theorem A.6 now tells us that we have

[
K̂mm Km+
K+m K̂++

]−1

=
[

K̂ −1
mm + K̂ −1

mmKm+∆−1++K+mK̂ −1
mm −K̂ −1

mmKm+∆−1++
−∆−1++K+mK̂ −1

mm ∆−1++

]
(4.24)

=
[

K̂mm 0
0 0

]
+

[−K̂ −1
mmKm+

1

]
∆−1
++

[−K+mK̂ −1
mm 1

]
,

where we have defined ∆++ = K̂++−K+mK̂ −1
mmKm+. Note that, because ∆++ is a scalar, it

is very easy to invert it.
Let’s analyze the runtime of this update law. The hardest part is calculating∆++. This

still takes O
(
n2

m

)
time. Inverting∆++ subsequently takes O (1) time, while expanding the

4

88 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

matrix K̂mm to the above matrix takes O (nm) time. Altogether, the update law hence
takes O

(
n2

m

)
time for every single added measurement. Adding nm measurements will

therefore take O
(
n3

m

)
, as is also noted in Table 4.1.

4.2.2. SPARSE ONLINE GAUSSIAN PROCESS REGRESSION

Can we set up a similar online version of the sparse GP algorithm of Section 4.1.3? The
key in this algorithm is to properly keep track of the distribution of the inducing func-
tion values f

u
. That is, we only need to update Σuu and µu from (4.5). This is done,

identically to (4.23), according to

f
u
∼N

(
µ+

u ,Σ+
uu

)
, (4.25)

Σ+
uu = Kuu − [

Kum Ku+
]([

Kmm Km+
K+m K++

]
+

[
Σ̂ fm 0

0 σ̂2
f+

])−1 [
Kmu

K+u

]
,

µ+
u = mu + [

Kum Ku+
]([

Kmm Km+
K+m K++

]
+

[
Σ̂ fm 0

0 σ̂2
f+

])−1 ([
f̂m

f̂+

]
−

[
mm

m+

])
.

We can still rewrite these update laws, to express them in the previous distribution of f
u

.

For this, we should use the old relations

Σuu = Kuu −KumK̂ −1
mmKmu , (4.26)

µu = mu +KumK̂ −1
mm

(
f̂m −mm

)
, (4.27)

as well as the matrix inverse (4.24). This would then give us

Σ+
uu =Σuu − [

Kum Ku+
][−K̂ −1

mmKm+
1

]
∆−1
++

[−K+mK̂ −1
mm 1

][
Kmu

K+u

]
(4.28)

=Σuu − (
Ku+−KumK̂ −1

mmKm+
)
∆−1
++

(
K+u −K+mK̂ −1

mmKmu
)

,

µ+
u =µu + [

Kum Ku+
][−K̂ −1

mmKm+
1

]
∆−1
++

[−K+mK̂ −1
mm 1

]([
f̂m

f̂+

]
−

[
mm

m+

])
(4.29)

=µu + (
Ku+−KumK̂ −1

mmKm+
)
∆−1
++

((
f̂+−m+

)−K+mK̂ −1
mm

(
f̂m −mm

))
.

Here we see that, to update the distribution of f
u

, we still need to calculate∆++. In other

words, the online sparse GP regression algorithm is just as slow as the regular online GP
regression algorithm. Luckily, the online FITC algorithm offers better results.

4.2.3. ONLINE FITC REGRESSION

Earlier (Section 4.1.4) we discussed the intuitive interpretation of the FITC algorithm. It
comes down to using each measurement (xmi , f̂mi) individually to predict the posterior
distribution of f

u
and then merging all these distributions together in the proper way.

This means that, to update the distribution of f
u

within the FITC algorithm, we can first

4.2. ONLINE GAUSSIAN PROCESS REGRESSION

4

89

predict the distribution of f
u

using only the new measurement. We write this as

f
u
∼N

(
µ′

u ,Σ′
uu

)
, (4.30)

Σ′
uu = Kuu −Ku+K̂ −1

++K+u ,

µ′
u = mu +Ku+K̂ −1

++
(

f̂+−m+
)

.

We then merge this together with the previous posterior distribution of f
u

and unmerge

the prior distribution of f
u

to prevent ourselves from using it twice. This gives us the

update law

N
(
µ+

u ,Σ+
uu

)=N
(
µ′

u ,Σ′
uu

)⊕N
(
µu ,Σuu

)ªN (mu ,Kuu) . (4.31)

Calculating µ+
u and Σ+

uu in this way would work, but it is not the most efficient way to
calculate them. To be precise, one update would cost O

(
n3

u

)
time. We can do better, and

we will do so through a somewhat different solution method.
Suppose that we already know x+, but we have not obtained the measurement f̂+ yet.

What can we then say about the distribution of f +? In this case, according to (4.9), it is

given by [
f +
f

u

]
∼N

([
µ+
µu

]
,

[
Σ++ Σ+u

Σu+ Σuu

])
, (4.32)[

Σ++ Σ+u

Σu+ Σuu

]
=

[
K++−K+uK −1

uu (Kuu −Σuu)K −1
uu Ku+ K+uK −1

uuΣuu

ΣuuK −1
uu Ku+ Σuu

]
,[

µ+
µu

]
=

[
m++K+uK −1

uu

(
µu −mu

)
µu

]
.

The key insight is that this is the prior distribution of f + and f
u

, and our measurement

f̂+ is a measurement of f +. And we already know how to incorporate measurements into

distributions. We just use the default GP regression equation (2.30). The result (which is
also confirmed by Theorem B.36) will be[

f +
f

u

]
∼N

([
µ++
µ+

u

]
,

[
Σ+++ Σ++u
Σ+

u+ Σ+
uu

])
, (4.33)

[
Σ+++ Σ++u
Σ+

u+ Σ+
uu

]
=

Σ++
(
Σ+++ σ̂2

f+

)−1
σ̂2

f+ σ̂2
f+

(
Σ+++ σ̂2

f+

)−1
Σ+u

Σu+
(
Σ+++ σ̂2

f+

)−1
σ̂2

f+ Σuu −Σu+
(
Σ+++ σ̂2

f+

)−1
Σ+u

 ,

[
µ++
µ+

u

]
=

 (
Σ+++

)−1
(
Σ−1++µ++ σ̂−2

f+ f̂+
)

µu +Σu+
(
Σ+++ σ̂2

f+

)−1 (
f̂+−µ+

)
 .

Note the distinction between the old parameters before we obtained our new measure-
ment (without superscript +) and the new parameters, updated using our new measure-
ment (with superscript +).

4

90 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

The most important part of the above distribution is of course the new distribution
N

(
µ+

u ,Σ+
uu

)
of the inducing function values f

u
. We can use the above update law to

incorporate single measurements, one by one. We can even do so right from the start,
where we start with the prior distribution N (mu ,Kuu). And at every point in time, if we
want to make predictions f ∗, we can just plug the values of µu and Σuu into (4.9).

So how long does it take to update the distribution N
(
µu ,Σuu

)
? Assuming that we

already know K −1
uu (which does not change), we can calculate Σ++ in O

(
n2

u

)
time, and

similarly update Σ+++ in O
(
n2

u

)
time. A single update hence takes O

(
n2

u

)
time, while in-

corporating a set of nm measurements would take O
(
nmn2

u

)
time. Given that nu is gen-

erally a lot smaller than nm , this is a significant improvement compared to using regular
online or sparse online GP regression.

There is still another advantage to this algorithm, and it concerns the memory re-
quirements. In the online FITC algorithm, we do not need to keep track of all measure-
ments. In fact, as soon as we have incorporated a measurement into the distribution of
f

u
, we do not need it anymore. We can safely discard it. In the offline FITC algorithm we

still needed to set up Kmu , but the only thing that we need to remember now is the dis-
tribution of f

u
, irrespective of how many measurements we get. As such, the memory

required for the online FITC algorithm reduces from O (nmnu) to O
(
n2

u

)
.

Finally, we can look at the learning progress of the algorithm. One way of doing this is
by examining the posterior varianceΣui ui of each individual inducing function value f

ui

compared to the prior variance Kui ui . That is, we examine the ratio between variances
Σui ui /Kui ui or alternatively the ratio between standard deviations

√
Σui ui /Kui ui . We call

the latter ratio the learning index of the inducing function value. When we keep track of
the learning indices during the learning process, we find Figure 4.5.

4.2.4. ONLINE PITC REGRESSION

We can set up an online PITC algorithm in the same way. How this online algorithm
works depends on what we want to do with it.

The most common way to set up an online PITC algorithm is to add a small subgroup
of measurements (X+, f+), all together in one update. In this case, the updating process
is identical to the updating process of the online FITC algorithm. We first set up the prior
distribution of f + and f

u
, given the data that we have. Identically to (4.32), it equals

[
f +
f

u

]
∼N

([
µ+
µu

]
,

[
Σ++ Σ+u

Σu+ Σuu

])
, (4.34)[

Σ++ Σ+u

Σu+ Σuu

]
=

[
K++−K+uK −1

uu (Kuu −Σuu)K −1
uu Ku+ K+uK −1

uuΣuu

ΣuuK −1
uu Ku+ Σuu

]
,[

µ+
µu

]
=

[
m++K+uK −1

uu

(
µu −mu

)
µu

]
.

Then we incorporate the measurement f̂+ with corresponding measurement noise ma-
trix Σ̂ f+ for this new subgroup of input points. This turns the update law, identically

4.2. ONLINE GAUSSIAN PROCESS REGRESSION

4

91

Figure 4.5: The learning indices
√
Σui ui /Kui ui during the execution of the online FITC algorithm, for each of

the inducing function values. The data used is the same as the data from Figure 4.1, and measurement points
were used in ascending order, based on the input xm . A learning index of 1 means ‘no data’ while an index of 0
means ‘infinite certainty’. You can see that, when a measurement is performed near an inducing input point,
the learning index will jump downward.

to (4.33), into [
f +
f

u

]
∼N

([
µ++
µ+

u

]
,

[
Σ+++ Σ++u
Σ+

u+ Σ+
uu

])
, (4.35)

[
Σ+++ Σ++u
Σ+

u+ Σ+
uu

]
=

[
Σ++

(
Σ+++ Σ̂ f+

)−1
Σ̂ f+ Σ̂ f+

(
Σ+++ Σ̂ f+

)−1
Σ+u

Σu+
(
Σ+++ Σ̂ f+

)−1
Σ̂ f+ Σuu −Σu+

(
Σ+++ Σ̂ f+

)−1
Σ+u

]
,

[
µ++
µ+

u

]
=

 (
Σ+++

)−1
(
Σ−1++µ++ Σ̂−1

f+ f̂+
)

µu +Σu+
(
Σ+++ Σ̂ f+

)−1
(

f̂+−µ+
) .

This is the usual update law for the PITC algorithm.

However, instead of adding a completely new subgroup, we could also add a single
measurement (x+, f̂+) to an already existing subgroup Xmi of measurement points. (Or
do so with multiple new measurements at the same time; the process is identical.) Be-
cause this new point x+ is linked to the points within Xmi , we cannot just ignore the

measurements done on f
mi

. To be precise, these measurements f̂mi affect the prior dis-

tribution of f + in ways which we could not derive from the distribution of f
u

. As such,

we need to adjust (4.34).

We will only discuss the outcome of this process. (For some of the mathematics, see
Theorem B.37.) But before we can do that, we first have to make a slight change in the

4

92 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

way we write our expressions. We will use the notation

Λab ≡ Kab −KauK −1
uu Kub , (4.36)

for any sensible subscripts a and b. In this case, the expression for Σ++ from (4.34) can
also be written asΛ+++K+uK −1

uuΣuuK −1
uu Ku+. Keeping this in mind, we will now define

Λ̃++ ≡Λ++−Λ+mi

(
Λmi mi + Σ̂mi mi

)−1
Λmi+, (4.37)

K̃u+ ≡ Ku+−Kumi

(
Λmi mi + Σ̂mi mi

)−1
Λmi+, (4.38)

K̃+u ≡ K+u −Λ+mi

(
Λmi mi + Σ̂mi mi

)−1
Kmi u , (4.39)

m̃+ ≡ m++Λ+mi

(
Λmi mi + Σ̂mi mi

)−1
(

f̂mi −mmi

)
. (4.40)

Given these new definitions, we can set up the new prior distribution of f + together with

f
u

. It follows as [
f +
f

u

]
∼N

([
µ+
µu

]
,

[
Σ++ Σ+u

Σu+ Σuu

])
, (4.41)[

Σ++ Σ+u

Σu+ Σuu

]
=

[
Λ̃+++ K̃+uK −1

uuΣuuK −1
uu K̃u+ K̃+uK −1

uuΣuu

ΣuuK −1
uu K̃u+ Σuu

]
,[

µ+
µu

]
=

[
m̃++ K̃+uK −1

uu

(
µu −mu

)
µu

]
.

After calculating this distribution, we can incorporate the measurement performed on
f + in the usual way through (4.33). This then allows us to update the distribution of f

u
,

which was our main goal.
With the two PITC updating methods that we just examined, we can hence both add

new subgroups to the PITC algorithm and make existing subgroups larger. Both update
methods can be valuable in the right situations. In fact, when using the latter update
method, we should be careful not to let the subgroups grow to big, which would slow
our algorithm down. But if a subgroup does happen to become too large, we can of
course use the first update method to set up a new subgroup and continue from there.

4.2.5. NUMERICAL STABILITY OF THE ONLINE METHODS
The online methods we have developed make Gaussian process regression much more
powerful. It is always possible to efficiently incorporate new data into the regression
method.

There is only one significant downside to the online methods. Every time we update
Σuu , incorporating a new measurement, small numerical errors seep into Σuu . Though
in theory this matrix always remains positive definite, numerical problems may occur
after a large number of measurements, which may cause it to be singular. This could
potentially make future predictions invalid.

I personally know of two reasonable ways to solve this issue. The first one is to simply
apply the offline FITC equation (4.13) after all. Doing this just once is numerically more
robust than applying nm updates to Σuu .

4.3. CHOOSING THE INDUCING INPUT POINTS

4

93

Of course applying offline FITC regression is not always possible. Another way to
prevent Σuu from becoming singular is to regularly add a small amount ε to the diago-
nal of Σuu . This effectively adds extra ‘noise’ in the distribution of f

u
, but if ε is small

enough, this should not significantly affect the predictions made by the algorithm, while
it does prevent numerical problems.

Other than these two methods, there might be different ways of keeping track of the
distribution of f

u
that are numerically more stable. For instance, instead of keeping

track of Σuu we could also set up online updates of the quantity Kuu −Σuu (or some
other transformation of Σuu) and use that to make predictions. Another example of this
is discussed in Section 4.3.4. I will leave the whole analysis of the numerical stability of
these methods as a subject for future research though.

4.3. CHOOSING THE INDUCING INPUT POINTS
So far we have assumed that the inducing input set Xu was known. Just like any hyper-
parameter, we can either choose it based on knowledge of the function we are approxi-
mating, or tune it automatically. And both can be done offline or online. Let’s take a look
at how that works.

We will start with the offline case. First we look at how to manually choose inducing
input points (Section 4.3.1) and then we examine how we can automatically tune them
(Section 4.3.2). We follow up with the online case (Section 4.3.3). At the end we also look
at an alternative way of keeping track of the distribution of the inducing function values
(Section 4.3.4).

4.3.1. MANUALLY CHOOSING THE INDUCING INPUT POINTS OFFLINE
Suppose that we have a set of measurement input points Xm with corresponding mea-
surements f̂m , as well as a set of trial input points X∗ for which we want to predict
the trial function values f ∗. What would be good locations to place the inducing input
points?

The first thing we should realize here is that in the training step inducing input points
‘absorb’ information. That is, we use the measurements to predict the inducing function
values f

u
. If our measurements do not give any information about a specific induc-

ing function value f
ui

, then the corresponding inducing input point xui is useless and

might as well be removed. As such, we should put our inducing input points where our
measurements provide data.

In the prediction step things are reversed: now the inducing input points ‘provide’
information to make predictions. If we make a prediction f ∗ for a trial point x∗ far away

from any inducing input point, then the prediction will likely be very inaccurate. As such,
we should put our inducing input points where we want to make predictions.

Finally we should note that having two inducing input points on exactly the same
place is pointless. (Or worse: detrimental because it makes Kuu singular.) Using only
one of the two points will give exactly the same results as both points together. As such,
there should be a reasonable spread between inducing input points.

Based on this, we can come up with a basic rule for choosing inducing input points.
Make sure to pick inducing input points that are sufficiently spread out in areas where

4

94 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

you have both measurement data and where you want to make predictions. The term
‘sufficiently spread out’ here can be read as ‘having roughly a distanceλx between them,’
though this depends on the trade-off between the desired accuracy you want to get and
the computational complexity you can deal with.

There is also a slightly different way to look at this problem. In the ultimate situa-
tion, after we have incorporated infinitely many measurements, we will have Σuu = 0.
This means that we know the inducing function values f

u
deterministically. Still, this is

the only data that we have of making predictions f ∗. So when choosing inducing input

points, we could also ask ourselves, ‘Which function values do we want to know with
infinite precision, such that we can estimate the entire function?’

4.3.2. AUTOMATICALLY TUNING THE INDUCING INPUT POINTS OFFLINE
Next to choosing inducing points manually, we can also automatically tune them. How
to do so depends on the exact assumptions that we make and on what data we have.

First, let’s consider the FITC algorithm from Section 4.1.4. In this algorithm, our as-
sumptions cause Kmm to change. To be precise, it becomes

Kmm ← diag
(
Kmm −KmuK −1

uu Kum
)+KmuK −1

uu Kum =Λmm +KmuK −1
uu Kum , (4.42)

withΛmm still defined according to (4.11). This means that Kmm now depends on Kuu .
An idea here is to use the theory from Section 3.1 and treat Xu as just another hyper-

parameter3. That is, we maximize the likelihood p(f̂m |Xm , Xu) with respect to Xu . This
likelihood equals

p(f̂m |Xm , Xu) =N
(

f̂m |mm ,Kmm + Σ̂ fm

)
. (4.43)

Intuitively, this method comes down to picking the inducing input points Xu that can
best explain the measured data. The method is hence also known as evidence maxi-
mization.

In practice, optimizing the above likelihood often causes numerical problems, so in-
stead we maximize the log-likelihood. Identically to (3.9), this equals

− nm

2
log(2π)− 1

2
log

∣∣Kmm + Σ̂ fm

∣∣− 1

2

(
f̂m −mm

)T (
Kmm + Σ̂ fm

)−1
(

f̂m −mm

)
. (4.44)

To obtain some extra computational efficiency, we can also apply

∣∣Λmm + Σ̂ fm +KmuK −1
uu Kum

∣∣=
∣∣∣Kuu +Kum

(
Λmm + Σ̂ fm

)−1
Kmu

∣∣∣ ∣∣Λmm + Σ̂ fm

∣∣
|Kuu |

, (4.45)(
Λmm + Σ̂ fm +KmuK −1

uu Kum
)−1 = (

Λmm + Σ̂ fm

)−1 − (
Λmm + Σ̂ fm

)−1
Kmu (4.46)(

Kuu +Kum
(
Λmm + Σ̂ fm

)−1
Kmu

)−1
Kum

(
Λmm + Σ̂ fm

)−1
.

The first follows from Theorem A.9 and the second from Theorem A.7. When we now
maximize (4.44) with respect to Kuu , we get the results shown in Figure 4.6 (left).

3This approach was first introduced by Snelson and Ghahramani (2006a), although it seems they were not
aware of the assumption they were silently making and how it affected the covariance matrix Kmm , resulting
in a more complicated derivation.

4.3. CHOOSING THE INDUCING INPUT POINTS

4

95

Figure 4.6: Predictions after tuning of the inducing input points. For the left figure, we did not use any
data of the trial input set X∗ but directly maximized (4.43). For the middle figure, we used a given trial set

X∗ =
[
−2,− 3

2 ,−1,− 1
2 ,0, 1

2 ,1, 3
2 ,2

]
and minimized the determinant of (4.49). For the right figure, we used a

distribution x∗ ∼N (0,1) and minimized (4.53).

Next, let’s consider the sparse GP regression algorithm from Section 4.1.3. In this
algorithm, our assumptions only cause Km∗ to change into KmuK −1

uu Ku∗, but Kmm is un-
affected. Because of this, Kmm does not depend on Kuu , and the above method hence
does not work. We need something else.

A first idea is to pick our inducing input points such that the inducing function values
f

u
absorb a lot of data and hence have a small variance. The variances of the inducing

input points f
u1

, . . . , f
unu

are the diagonal elements of

Σuu = Kuu −Kum
(
Kmm + Σ̂ fm

)−1
Kmu . (4.47)

As such, we can minimize the product of the diagonal elements of the above matrix.
However, this idea will not work. If we would do this, we find an optimum with all induc-
ing input points xu1 , . . . , xunu

being equal to the point xu minimizing

k(xu , xu)−k(xu , Xm)
(
Kmm + Σ̂ fm

)−1
k(Xm , xu). (4.48)

This does not correspond well to our idea of ‘spreading’ the inducing input points.
A solution arises when we already have a trial input set X∗ given. In this case, we

want to maximize the amount of information contained in the posterior distribution of
f ∗. (Using knowledge of the trial set like this is known as transduction learning.) This

‘amount of information’ depends on the covariance matrix

Σ∗∗ = K∗∗−K∗uK −1
uu Kum

(
Kmm + Σ̂ fm

)−1
KmuK −1

uu Ku∗. (4.49)

To be precise, we want to minimize the determinant |Σ∗∗|, although in practice it is nu-
merically more stable to optimize the logarithm log |Σ∗∗| of this determinant. (This is in
turn equivalent to optimizing the entropy of f ∗. For a brief introduction into entropy,

see Section 6.4.3.) When we do, we can get results as those shown in Figure 4.6 (middle).
When no trial input set X∗ is given, we need to do something else. In this case we can

assume that x∗ ∼N
(
µx∗ ,Σx∗

)
for some properly chosenµx∗ and Σx∗ , and subsequently

minimize the expected posterior variance

E [Σ∗∗] =
∫

X
Σ∗∗N

(
x∗|µx∗ ,Σx∗

)
d x∗. (4.50)

4

96 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

Depending on the covariance function k(x , x ′) that we use, the above integral may or
may not be analytically solvable. When we use the squared exponential covariance func-
tion (2.35), the integral can be solved analytically. In this case, let’s define the shorthand

P ≡ K −1
uu Kum

(
Kmm + Σ̂ fm

)−1
KmuK −1

uu . (4.51)

Using this definition, we can expand the integral (4.50) into

E [Σ∗∗] =
∫

X
(K∗∗−K∗uPKu∗)N

(
x∗|µx∗ ,Σx∗

)
d x∗ (4.52)

=
∫

X
k(x∗, x∗)N

(
x∗|µx∗ ,Σx∗

)
d x∗

−
∫

X

nu∑
i=1

nu∑
j=1

k(x∗, xui)Pi j k(xu j , x∗)N
(
x∗|µx∗ ,Σx∗

)
d x∗.

The first integral has k(x∗, x∗) = λ2
f as its solution. To solve the second integral, we will

need Theorem A.19. Through it, we can derive the final result

E [Σ∗∗] =λ2
f −λ4

f

√
|Λx |

|Λx +2Σx∗ |
nu∑
i=1

nu∑
j=1

Pi j exp

(
−1

2

(
xui −xu j

)T
(2Λx)−1

(
xui −xu j

))

exp

(
−1

2

(xui +xu j

2
−µ∗

)T (
1

2
Λx +Σx∗

)−1 (xui +xu j

2
−µ∗

))
. (4.53)

This quantity can then be minimized with respect to the inducing input points xu1 , . . . , xun .
Doing so would result in Figure 4.6 (right).

The two extra tuning methods we have just derived work for the sparse GP regression
algorithm. They can also be applied to the FITC algorithm. In this case, we do need to
adjust Kmm according to (4.42), but then everything works the same. However, we can
obtain a computationally more efficient version of the algorithm if, instead of (4.49), we
use the rewritten version

Σ∗∗ = K∗∗−K∗u

(
K −1

uu −
(
Kuu +Kum

(
Λmm + Σ̂ fm

)−1
Kmu

)−1
)

Ku∗, (4.54)

where we should also redefine P as

P = K −1
uu −

(
Kuu +Kum

(
Λmm + Σ̂ fm

)−1
Kmu

)−1
. (4.55)

For large data sets, these expressions are much more efficient to calculate, although the
method itself essentially remains the same.

So out of the three tuning methods shown in Figure 4.6, which should we use? After
all, they all seem to work. The answer mainly depends on whether you know the trial
function values X∗ and whether you want to take that knowledge into account when
choosing the inducing input points. If you know X∗ exactly, use the second method. If
you do not know X∗ at all, use the first. And if you only have a rough idea of X∗, use the
third method.

4.3. CHOOSING THE INDUCING INPUT POINTS

4

97

The hardest part of each of these methods is the optimization problem. This is dif-
ficult because there are lots of local minima. After all, the order of the inducing input
points is irrelevant, so even if we have found the optimal inducing input points Xu , then
interchanging two inducing input points will result in another optimum. As such, after
tuning the inducing input points, it is always worthwhile to do a quick manual check
of the results to see if they are sensible, or if we have converged to some senseless local
optimum.

4.3.3. ADJUSTING THE INDUCING INPUT POINTS ONLINE
Next, we examine the online case. Suppose that we are continuously obtaining new mea-
surements and updating the distribution of the inducing function values f

u
. Can we

then also adjust the inducing input points Xu themselves?
One option here is to keep track of all measurements Xm as we go, and use them all

together to tune the inducing input points. This results in the offline tuning methods
that we just discussed though.

Alternatively, we could try to use only the last measurement (xmi , f̂mi) we have ob-
tained to tune the inducing input points. However, using a single measurement to tune
a multitude of parameters is very unlikely to give good results.

That is why I prefer to use a very simple update rule. ‘If the new measurement point
xmi is not close to any already existing inducing input point xu j , then we will add xmi as
new inducing input point.’ Here, ‘close’ can mean that we have(

xmi −xu j

)T
Λ−1

x

(
xmi −xu j

)
< c, (4.56)

where c is some manually chosen threshold. I personally prefer to start with c = 1 and
decrease c slowly as the algorithm progresses, though this does depend on the exact
application.

The given update rule does pose the question ‘How can we add an inducing input
point?’ Or more general, ‘How can we add a new set of inducing input points Xv to the
current set Xu?’ The answer is surprisingly easy. Given all the data that we have, the new
inducing function value vector will, identically to (4.9), become[

f
u

f
v

]
∼N

([
µu

µv

]
,

[
Σuu Σuv

Σvu Σv v

])
(4.57)[

Σuu Σuv

Σvu Σv v

]
=

[
Σuu ΣuuK −1

uu Kuv

KvuK −1
uuΣuu Kv v −KvuK −1

uu (Kuu −Σuu)K −1
uu Kuv

]
,[

µu

µv

]
=

[
µu

mv +KvuK −1
uu

(
µu −mu

)] .

We can then directly continue processing new measurements using this new inducing
function value vector.

If we use this new distribution of the inducing function values to make predictions,
then initially nothing changes. We still get exactly the same predictions. (Although the
process itself will be a bit slower.) However, we can use this extended set of inducing

4

98 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

input points when incorporating new data. This basically causes more data to be in-
corporated, causing later predictions to be more accurate than they earlier would have
been.

Next to adding inducing input points, it is also possible to remove inducing input
points. To do so, simply remove the point from Xu and the corresponding element from
f

u
. Naturally, when doing so, there will be some data loss but, depending on the appli-

cation, this may be acceptable.
Since we now know how to add and remove inducing input points, we can take things

one step further. It is also possible to shift inducing input points by a small (or a large)
distance. To do so, just add the new versions of the inducing input points and then im-
mediately remove the old versions. (First removing the old points and then adding the
new ones will not be wise, since it will result in more data loss.) To see this process at
work, take a look at Figure 4.7.

Figure 4.7: The sparse GP regression predictions before and after changing the inducing input set. The left
figure equals Figure 4.1 (right). To get the right figure, we added three inducing input points and removed one,
although you could also say that we ‘shifted’ the inducing input point from 1.5 to 1. Note that adding inducing
input points does not directly improve the accuracy, while removing inducing input points does reduce the
accuracy. However, when new measurements will be incorporated in the future (not done here) these new
inducing input points will improve the accuracy of future predictions.

When using these techniques in an online way, the most commonly used technique
is to add inducing input points as we go, increasing the accuracy where we get most
measurement data. However, it is also possible to slightly adjust the set of inducing in-
put points upon receiving each new measurements. When shifting an inducing input
point by only a tiny distance, hardly any data is lost, but over time this may significantly
improve the distribution of the inducing input points. How to effectively shift around
the inducing input points during such an online learning algorithm to improve the pre-
diction accuracy is still an open question though.

4.3.4. A DIFFERENT MERGING ORDER
In the sparse GP algorithm, we have a training step to predict the distribution of f

u
and a

prediction step to find f ∗. Crucial in this set-up is that we unmerge the prior distribution

N (mu ,Kuu) to prevent using it twice. This is currently done in the prediction step. But

4.4. APPLICATIONS OF SPARSE ONLINE GP REGRESSION

4

99

you may be wondering, ‘Is it also possible to do this in the training step instead?’
The answer is ‘Yes, but it is not very convenient.’ I will explain why. If we do this,

then after the training step we do not wind up with N
(
µu ,Σuu

)
, but instead get the

distribution

N
(
γ,Γ

)=N
(
µu ,Σuu

)ªN (mu ,Kuu) , (4.58)

Γ= (
Σ−1

uu −K −1
uu

)−1

γ= Γ(
Σ−1

uuµu −K −1
uu mu

)
.

The intuitive meaning of N
(
µu ,Σuu

)
was obvious. This new distribution N

(
γ,Γ

)
also

has an intuitive meaning. It is the pseudo measurement distribution at the inducing input
points. That is, if we would do measurements at our inducing points (causing Xm = Xu)
and get a measured vector f̂m = γ with noise covariance Σ̂ fm = Γ, then we would get
exactly the same result as we would get from all our current measurements.

It is interesting here to note the values of both Σuu and Γ when no measurements
are present. In this case Σuu equals the prior covariance Kuu , while Γ equals the infinite
covariance matrix ∞. It effectively tells us we do not have a clue (apart from the prior
distribution) what the inducing function values are.

We can also find training and prediction equations for this alternative notation. The
training relation for the sparse GP algorithm of Section 4.1.3 (what used to be (4.5)) be-
comes

Γ= Kuu

(
Kum

(
Kmm + Σ̂ fm

)−1
Kmu

)−1
Kuu −Kuu , (4.59)

γ= mu +Kuu

(
Kum

(
Kmm + Σ̂ fm

)−1
Kmu

)−1
Kum

(
Kmm + Σ̂ fm

)−1
(

f̂m −mm

)
, (4.60)

while the prediction equation (what used to be (4.9)) turns into

Σ∗∗ = K∗∗−K∗u (Kuu +Γ)−1 Ku∗, (4.61)

µ∗ = m∗+K∗u (Kuu +Γ)−1 (
γ−mu

)
. (4.62)

Here we see two problems with this new scheme though. First of all, when we only have

few measurements (nm < nu) then the matrix
(
Kum

(
Kmm + Σ̂ fm

)−1
Kmu

)
will be singular.

As a result, the above training equation fails.
Although this can be worked around, we also have another issue. When we do find Γ,

then we still need to invert it to make predictions, while we did not need to do so when
we were working with Σuu . As such, the prediction phase in this new set-up costs more
time than in our previous set-up as well.

Both these problems cause this set-up to be much less useful than the regular set-up
that we considered in the rest of this chapter, which is why we stick with that set-up.

4.4. APPLICATIONS OF SPARSE ONLINE GP REGRESSION
It is time to apply the algorithms we have developed in this chapter. We will do two
experiments. In the first one we apply the algorithms to a simple two-dimensional trial
function and compare their performance (Section 4.4.1). In the second experiment we

4

100 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

bring in the pitch-plunge problem from Section 2.6 and apply the various algorithms to
this more practical five-dimensional test case (Section 4.4.2).

4.4.1. A COMPARISON BETWEEN ALGORITHMS
As an experiment, we will approximate a trial function using the various algorithms. The
function that we will use is the semi-randomly chosen function

f (x1, x2) =
(x1

4

)2
+

(x2

2

)2
−1− sin

(
2π

x1

4

)(
1− 1

3
cos

(
2π

x2

6

))
+ sin

(
2π

x2

4

)
, (4.63)

which is also displayed in Figure 4.8. We evaluate it on the interval x1, x2 ∈ [−2,2].
The above trial function displays nonlinearities that can be approximated by a squared

exponential covariance function with λ f = λx1 = λx2 = 1. Such an approximation, sub-
ject to a relatively strong measurement noise with standard deviation σ̂ fm = 0.5, is shown
in Figure 4.9.

Figure 4.8: The trial function (4.63) that we will approximate in the experiment.

We want to make a comparison between the various sparse algorithms we have seen
so far. Doing so in a fair way is tricky, because FITC extracts less data out of mea-
surements compared to the regular GP regression algorithm, but it does so much more
quickly. At the same time, PITC is somewhere in-between these two extremes. Because
of this, we will examine six cases.

1. Regular GP regression with 10000 measurements.

2. The PITC algorithm with the same number of measurements (10000) as 1.

3. The PITC algorithm with the same runtime as 1.

4. The FITC algorithm with the same number of measurements (10000) as 1.

5. The FITC algorithm with the same number of measurements as 3.

4.4. APPLICATIONS OF SPARSE ONLINE GP REGRESSION

4

101

Figure 4.9: Approximation of the trial function (4.63) through the regular GP regression algorithm. First nm =
50 measurements (top) were used and then nm = 500 (bottom). The plots show the approximated function
compared to the exact function (left), as well as the error, being the approximated function minus the exact
function (right). Also shown are the measurements (left) and the measurement noise (right). From the error
plot, we can calculate the root mean squared error of the mean. When nm = 50 this becomes RMSE = 0.32.
When nm = 500 this is RMSE = 0.14.

4

102 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

6. The FITC algorithm with the same runtime as 1 and 3.

It is usually hard to predict the runtime of an algorithm in advance. However, with the
online algorithms of Section 4.2, we can just keep adding measurements until we are
out of time, solving that problem. We will also compare the online algorithms with the
offline algorithms of Section 4.1, to see if one is faster than the other.

To compare the accuracy of the algorithms, we will calculate the root mean square
error over the input space. A lower RMSE is of course better, and Figure 4.9 has already
shown that more measurements generally results in a lower RMSE. When we set up the
experiments, we get the results shown in Table 4.2.

Table 4.2: The performance of the six test cases described in the main text. For the PITC algorithm, measure-
ments were added in groups of nu measurements. The experiments were run on a regular home computer.
Note that there are some deviations in runtimes due to other processes running on the computer. For instance,
the two runtimes given for case 1 should in theory be identical, but are off by about 3%.

nu = 81 inducing input points nu = 25 inducing input points

Case nm t (offline) t (online) RMSE nm t (offline) t (online) RMSE

1 (GP) 10k 9.20s N/A 0.037 10k 9.51s N/A 0.037

2 (PITC) 10k 0.26s 0.50s 0.037 10k 0.23s 0.46s 0.065

3 (PITC) 642k 7.88s 9.20s 0.0073 970k 6.69s 9.51s 0.059

4 (FITC) 10k 0.20s 0.80s 0.037 10k 0.09s 0.52s 0.066

5 (FITC) 642k 3.62s 49.8s 0.0073 970k 1.73s 48.5s 0.060

6 (FITC) 104k 0.74s 9.20s 0.013 159k 0.35s 9.51s 0.061

There are a couple of things we can notice from Table 4.2. Let’s make a list of the most
important conclusions.

• The effects of the number of inducing inputs nu

In general, using less inducing input points results in a faster algorithm. However,
if we pick too few inducing input points, then the performance of the algorithm de-
creases significantly. Having a fixed grid of 9×9 inducing input points seems to be
sufficient for this problem. In this case, given the same number of measurements,
the accuracy of the FITC and PITC algorithms is identical to that of the regular GP
algorithm. However, when using a fixed grid of 5×5 inducing input points, these two
algorithms will never be able to properly approximate the trial function. You could
say that the approximating power of these 25 basis functions is not sufficient to ap-
proximate the trial function.

• The effects of the number of measurements nm

The more measurements we use, the more accurate our predictions become. This
holds everywhere, seemingly without exception. But at the same time, the more
measurements we use, the more time we need to process them. And as predicted,
the runtime of the FITC and PITC algorithms is roughly linear in the number of mea-
surements.

• The differences between offline and online algorithms
The offline and online algorithms have exactly the same accuracy, as could be ex-

4.4. APPLICATIONS OF SPARSE ONLINE GP REGRESSION

4

103

pected. However, the online algorithms are slower than the offline algorithms. The
reason behind this is extra overhead. For instance, for online algorithms we have to
calculate Ku+ separately for nm different points, while for offline algorithms we have
to calculate Kum only once. The process is the same, but the latter is done faster.

• The effects of the choice of algorithm
Given the same number of measurements, the GP regression algorithm always seems
to be more accurate than the FITC and PITC algorithms. However, for this two-
dimensional problem, if enough inducing input points are used, then this difference
is generally very small. Given the same amount of runtime, however, things are very
different. Now FITC and PITC significantly outperform the regular GP regression al-
gorithm for the simple reason that they can incorporate more measurements.
When comparing the runtimes of FITC and PITC, something interesting can be seen.
Apparently offline FITC is faster than offline PITC, but online FITC is slower than
online PITC. You would expect FITC to always be faster than PITC. What is going on
here?
This can be explained by the implementation of the algorithms in Matlab. In gen-
eral, Matlab loops are very slow. The online implementations of FITC and PITC both
require such loops. However, PITC adds measurements in groups while FITC adds
them one by one. Hence, the FITC algorithm requires many more iterations, making
it slower than the PITC algorithm. If we would add measurements in groups in the
online FITC algorithm too, it would be faster than the online PITC algorithm as well.

In general, the FITC and PITC algorithms perform very similarly. The main conclusion
for both of these sparse algorithms is that they are a lot faster than the regular GP regres-
sion algorithm. Although if this extra speed is used to incorporate more measurement
data, and if a sufficient number of inducing input points is used, then these algorithms
will be much more accurate instead.

4.4.2. APPLICATION TO THE PITCH-PLUNGE SYSTEM

Next, we will revisit the pitch-plunge system from Section 2.6 and once more apply re-
gression to identify the system.

Just like previously when making Figure 2.15, we will put the system in a random
initial state

[
hk ,αk , ḣk , α̇k

]
, apply a random control input βk and see where the system

winds up after a time step ∆t = 0.1s. This constitutes one ‘measurement’. After making
nm such measurements, we can approximate the next height hk+1 and pitch angle αk+1.

We will make this approximation with regular GP regression, with the PITC algorithm
and with the FITC algorithm. For both the PITC and FITC algorithm, we use nu = 49
inducing input points (a grid of 7 by 7), which is sufficient since using more inducing
input points will give exactly the same results. For the PITC algorithm, we can also vary
the size of the subgroups of measurements that we use. We will use either groups of 50
or groups of 200 measurements.

For each of these algorithms, we will examine two quantities. First there is the run-
time of the algorithm, and secondly the accuracy. This accuracy is quantified through
the root mean squared error of the output.

The problem here is that we do not precisely know the ‘correct’ output. However, if

4

104 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

Figure 4.10: A remake of Figure 2.15. We used nm = 1000 measurements, through which we approximated
hk+1 (left) and αk+1 (right). The algorithms applied were regular GP regression (top row), PITC regression
with groups of size 200 (second row) and 50 (third row) and FITC regression (bottom row). The accuracy of the
algorithms becomes lower as more simplifying assumptions are made.

4.4. APPLICATIONS OF SPARSE ONLINE GP REGRESSION

4

105

Figure 4.11: The runtime (left) and accuracy (middle and right) of the GP, PITC and FITC algorithms with
respect to the number of measurements used. For the PITC, also the size of the added groups of measurements
was varied, either being 50 or 200. These measurements were randomly grouped together. Tests were run on
a regular home computer. This resulted in the variations (spikes) in the runtime, which are most likely due to
background processes.

we put the system in a stationary initial state 10000 times like in Figure 2.14 and apply
GP regression to this, we get an extremely accurate estimate, which can be considered
the ‘true’ output of the system. We use this to calculate the error and subsequently the
RMSE of the predictions.

When using nm = 1000 measurements, we get the predictions shown in 4.10. The
way in which the runtime and the accuracy of the algorithms depend on the number of
measurements is shown in Figure 4.11.

Some very interesting conclusions can be drawn from the figures. First of all, in Fig-
ure 4.11 (left) we see that the runtime of both FITC and PITC is much better than the
runtime of GP regression for large numbers of measurements. While the runtime of GP
regression scales roughly cubically, the runtime of FITC and PITC indeed scales linearly.

However, contrary to the experiment of Section 4.4.1, now there is a strong differ-
ence in accuracy between the algorithms. Both the RMSE plots of Figure 4.11 (middle
and right) and the approximations of Figure 4.10 show that the GP regression algorithm
performs much better than the other algorithms. So what causes this? Why are the re-
sults so different?

To get from the GP algorithm to the FITC algorithm, we made two assumptions: the
inducing input assumption and the FITC assumption. If we only make the inducing in-
put assumption, and hence apply the sparse GP algorithm of Section 4.1.3, we get nearly
the same results as the regular GP regression algorithm. (Results are not shown here, but
for nu = 49 the RMSE is less than 1% higher, and for nu = 81 the RMSE is identical.) So the
inaccuracies are hence caused by the FITC assumption. This is also confirmed by the fact
that the PITC algorithm performs much better than the FITC algorithm. So apparently,
while the FITC assumption did not have much effect in two-dimensional applications, it
does have a significant effect in higher-dimensional applications.

To solve this issue, we either have to stick with the regular GP regression algorithm
and suffer very long runtimes, or use the PITC algorithm with sufficiently large sub-
groups. Which option to go for depends on how much runtime and how many mea-
surements are available.

One possible improvement can still be made in the algorithm by grouping the right
measurements together in the PITC algorithm. Currently, the PITC algorithm just put

4

106 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

random measurements together in groups. By putting measurements together in groups
that are strongly correlated, or whose covariance deviates strongly with respect to the
covariance assumed by the FITC assumption, we might still be able to gain additional
accuracy.

4.5. OVERVIEW OF LITERATURE AND CONTRIBUTIONS
As in every chapter, we take a look at the earlier literature on this subject as well as sug-
gestions for future research.

4.5.1. LITERATURE OVERVIEW

As Gaussian processes gained popularity in the late 90s and early 2000s, so did the inter-
est rise in applying it to larger data sets. Several different people came up with methods
to reduce the runtime of the regression algorithm. A few examples are the contributions
by Smola and Bartlett (2001), Csató and Opper (2002), Seeger et al. (2003) and Snelson
and Ghahramani (2006a).

This all came together in the unifying view presented by Candela and Rasmussen
(2005). They showed that the algorithms set up by the other all used some sort of in-
ducing input function. And although the exact details differed – some algorithms used
predefined inducing input points, others set them equal to measurements, others tuned
them – the main idea of all the algorithms was very similar.

In the meantime, various other techniques are tried to enable GP regression to be ap-
plied to big data. The most promising one was developed by Hensman et al. (2013), who
use the theories on stochastic variational inference from Hoffman et al. (2012), Hens-
man et al. (2012) to set up a new regression algorithm. They claim to have reduced the
runtime of the algorithm from O

(
nmn2

u

)
to O

(
n3

u

)
. For more background on variational

inference, see Titsias (2009), Titsias and Lawrence (2010), Gal et al. (2014), McHutchon
(2014).

When dealing with big data sets, it may of course also be wise to apply multiple pro-
cessing units which share the computational and memory load among them. Setting up
the algorithm in such a distributed way is not as trivial as it initially sounds though. More
information on this can be found in the work of Deisenroth and Ng (2015).

There has also been a variety of work done on online GP regression. An early paper
on this was written by Csató and Opper (2002). This paper went beyond the FITC as-
sumption and assumed that, given the inducing function values f

u
, the measurement

function values f
m

could be known deterministically. This assumption is equivalent to

assuming Kmm = KmuK −1
uu Kmu and was dubbed the Deterministic Training Conditional

(DTC) assumption by Candela and Rasmussen (2005).
Others expanded on this work, like Ranganathan et al. (2011) who update and down-

date a Cholesky factorization of the covariance matrix K . In the end, they aim to wind
up with the most efficient Subset of Data (SoD) approximation. That is, they only use the
measurements that together give the best approximation. Other work was done by Kou
et al. (2013), who use an FITC approximation but constrain themselves to inducing in-
puts chosen from the set of training inputs. So it seems that, without realizing it, these
people have constrained themselves to unnecessary assumptions.

4.5. OVERVIEW OF LITERATURE AND CONTRIBUTIONS

4

107

Such extra constraining assumptions were not made by Huber (2013), Huber (2014).
His recursive Gaussian process method was inspired by the Kalman filter. As such, it does
not use conventional GP notations. At the same time I developed my own online GP
methods, published through Bijl et al. (2015). After careful analysis, both these methods
turn out to be exactly the same and effectively are implementations of the online FITC
algorithm. In the meantime, the expressions for this algorithm, as well as those of the
online PITC algorithm, have been developed further to the more intuitive form in which
they have been presented in this chapter.

4.5.2. SUGGESTIONS FOR FURTHER RESEARCH

In science, and in life in general, every answered question usually raises two more. Below
are some things that I am still curious about.

• Constrained FITC regression
Can the constrained GP regression algorithm of Section 3.3 be combined with the
FITC algorithm? If so, what would the intuitive view on this be? And what are the
resulting regression equations?

• Tuning the number of inducing input points
More inducing input points will always be able to store more information than fewer
inducing input points. However, after a certain number of inducing input points,
the additional ‘information gain’ seems to be minimal. At the same time, using more
inducing input points does significantly increase the computational complexity of all
algorithms. Would there be some way to tune the number of inducing input points?
In other words, can we figure out when the additional information gain of using an
extra inducing input point becomes so small that it is pointless to add more inducing
input points? A good starting point to investigate this would be to plot the entropy
of f ∗ (or the log-determinant log |Σ∗∗|) that can optimally be obtained, versus the

number nu of inducing input points used, for a certain example set of measurements
(Xm , f̂m).

• Online tuning/shifting of inducing input points
We know from Section 4.3.3 how to change the inducing input points online. But is it
also possible to tune them in an online way, if we only receive one measurement at a
time and have to discard it before we get the next measurement? Can we adjust our
inducing points in such a way as to improve one of the quantities like (4.44) or (4.54)
that we want to optimize?

• Improving subgroups used by the PITC algorithm
In this chapter, when applying the PITC algorithm, we have always randomly put
measurements together in groups. However, is there a better way of putting measure-
ments together in groups? Do we get more accurate predictions if we put measure-
ments together that are strongly correlated? Or is there some other way of putting
measurements together that results in a better accuracy?

• Analyzing the numerical stability of online updates
In Section 4.2.5 we noted that the many updates in online GP regression algorithms
may cause numerical problems. When exactly do these problems occur? How sig-

4

108 4. SPARSE AND ONLINE GAUSSIAN PROCESS REGRESSION

nificant are they? And what would be the best way to prevent them or work around
them? Do the different representations discussed in Section 4.3.4 have any beneficial
effects? Might it be better to store ΣuuK −1

uu instead of Σuu? Or instead only store the
Cholesky decomposition of Σuu? Or are there any better representations?

• Reducing the computational complexity even further.
The runtime of the algorithm is now O

(
nmn2

u

)
. When large nu are necessary, for

instance in multi-dimensional problems, this may cause problems. Can we reduce
this runtime further?
The main idea here is that we do not need the full matrix Σuu . After all, when two
inducing input points xui and xu j are far apart, then Σui u j will be close to zero any-
way, even before we start incorporating measurement data. This leads to the idea of
using a cut-off covariance function k(x , x ′) which is zero whenever the distance be-
tween x and x ′ exceeds a given threshold (for instance 2λx) and otherwise remains
unchanged. If we take this into account in the proper way while doing regression, we
should be able to obtain a reduction in the runtime. But how exactly does this work?
And what kind of gains could we expect?

• Approximating slowly changing functions
So far we have assumed that the function we are approximating, though noisy, is con-
stant in time. Now suppose that this function actually changes slowly over time. (An
example application is discussed in Section 6.5.7.) Can we take this into account?
Maybe we can do so by increasing the noise variance of older measurements? Or,
when using inducing input points, can we slowly increase the covariance matrix Σuu

over time? Or are there better methods to take these slow function changes into ac-
count?

• Detecting a sudden change in the approximated function
Suppose that we are approximating some function f (x), taking measurements from
it. But suddenly, without us being aware of it, something has changed in the sys-
tem, and now we take our measurements from a rather different function f ′(x). Can
we, only based on the measurements that we get, detect this change? One idea is
to look at the likelihood p(f̂m |xm) that we obtain the measurement value f̂m . If this
likelihood is too small, and its reciprocal (the so-called surprise) is hence too high,
possibly for multiple measurements in a row, then this could indicate that we are
now approximating a different function.
But that leaves the question of how we should deal with it. Should we fully ignore
all earlier measurements and start over? Or should we still take them into account
in some way? One suggestion is to increase the noise corresponding to these older
measurements, based on the likelihood of the measurements we are obtaining now.
In other words, being very surprised about a new measurements would cause us to
reduce the believed accuracy of earlier measurements. But by how much should we
do this? Or is there potentially a better way of taking this into account?

5
NOISY INPUT GAUSSIAN PROCESS

REGRESSION

Summary — When applying Gaussian process regression we have always assumed that
there is noise on the output measurements fm , but not on the input points x . This as-
sumption does of course not always hold: the input points can be subject to noise as well.

When the trial input points x∗ are subject to noise, we can integrate over all possible trial
input points. This will not result in a Gaussian distribution for the output though. One
solution is to switch to numerical techniques. The more conventional solution is to apply
moment matching instead. When we do, we analytically calculate the mean and covari-
ance of the resulting distribution and use those to approximate the result as a Gaussian
distribution.

When the measurement input points xm are stochastic, these tricks do not work anymore.
One way to work around this is to take the noise on the input points xm into account
through the output noise variance Σ̂m . The more the function we are approximating is
sloped, the more we should take input noise into account like this. We can apply this idea
to regular Gaussian process regression, resulting in the NIGP algorithm, or we can apply it
to sparse methods like FITC, resulting in the SONIG algorithm.

The SONIG algorithm is capable of incorporating new measurements (x̂m , f̂m) one by one
in a computationally efficient manner. When doing so, it provides us with Gaussian ap-
proximations of the posterior distributions of both the input and the output, as well as the
posterior covariance between these distributions. With this data it is possible to set up for
instance a nonlinear system identification algorithm.

109

5

110 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

In Gaussian process regression we have always assumed that the measured function val-
ues fm are subjected to noise, while the input points xm or x∗ are known exactly. But
what happens if there is also uncertainty in the input points? In this chapter we look at
how to deal with that.

We start off by studying the case where only the trial input x∗ is uncertain (Sec-
tion 5.1). These methods cannot be applied to stochastic measurement points xm , so
we look into dealing with that afterwards (Section 5.2). We then discuss some exten-
sions to the methods we have developed (Section 5.3), before we do some experiments
(Section 5.4) and discuss existing literature (Section 5.5).

It is also worthwhile to note that this chapter is mathematically rather heavy. Usually,
most of the mathematics is put in the appendix. However, for this chapter it is funda-
mental for the algorithms to understand the probability theory behind it, so that is why
this theory has not been relegated to appendices. For the matrix derivations, we do refer
to appendices.

5.1. USING STOCHASTIC TRIAL POINTS
Suppose that we have a known set of measurement points Xm and corresponding mea-
sured function values f̂m . We now want to predict the function value f∗ (that is, deter-
mine its posterior distribution) for some input point x∗. If x∗ is deterministic, this can
directly be done through the GP regression equation (2.30), repeated as

f ∗ ∼N
(
µ∗(x∗),Σ∗∗(x∗)

)
, (5.1)

µ∗(x∗) = m(x∗)+k(x∗, Xm)
(
Kmm + Σ̂ fm

)−1
(

f̂m −mm

)
,

Σ∗∗(x∗) = k(x∗, x∗)−k(x∗, Xm)
(
Kmm + Σ̂ fm

)−1
k(Xm , x∗).

However, now suppose that x∗ is instead a random variable x∗, subject to a Gaussian dis-
tribution x∗ ∼N

(
x̂∗, Σ̂x∗

)
. Here, x̂∗ can be seen as the measured value of x∗, while Σ̂x∗ is

the corresponding measurement noise variance. What is now the posterior distribution
of f ∗? That is the question we will find an answer to in this section.

We start by looking at the main idea, which is to integrate over all possible trial points
(Section 5.1.1). This provides us with some problems, and one way to work around this
is through moment matching, which we will briefly look into (Section 5.1.2). Using mo-
ment matching, we then derive expressions for the mean (Section 5.1.3) and the vari-
ance (Section 5.1.4). We derive the same expressions in case we are using a sparse GP
regression method (Section 5.1.5). Finally, we examine the case where we have multiple
stochastic trial input points (5.1.6).

5.1.1. INTEGRATING OVER POSSIBLE TRIAL POINTS

We want to find the posterior distribution p(f∗) of f ∗. We can calculate this through

marginalization. (See Theorem B.1 for background on this.) We then have

p(f∗) =
∫

X
p(f∗|x∗)p(x∗)d x∗. (5.2)

5.1. USING STOCHASTIC TRIAL POINTS

5

111

Figure 5.1: An example Gaussian process (left) to which we feed a trial input of x∗ ∼N
(
0,0.32)

, whose distri-
bution is also shown (left bottom). The resulting probability density of the Gaussian process output is found
through (5.2) (right). This distribution is not Gaussian, but it can be approximated as a Gaussian through mo-
ment matching (Section 5.1.2), where it is possible to analytically calculate the mean through (5.9) and the
variance through (5.19). Note that in this case, because x∗ has a very large variance, this posterior distribution
is not close to being Gaussian. Moment matching is hence a crude approximation. However, usually stochastic
trial points have smaller variances, and then this is much less of an issue.

In this expression, the first probability p(f∗|x∗) is the distribution of f ∗ for a known

trial input x∗, given by (5.1), while the second probability p(x∗) is the distribution of
x∗, which we know as N

(
x̂∗, Σ̂x∗

)
.

Can we solve the integral from (5.2) to find the probability density function p(f∗)?
We can most certainly try. If we fill in the respective terms for the probabilities, we get

p(f∗) =
∫

X

1p|2πΣ∗∗(x∗)
exp

(
−1

2

(
f∗−µ∗(x∗)

)T
Σ−1
∗∗(x∗)

(
f∗−µ∗(x∗)

))
(5.3)

1√
|2πΣ̂x∗ |

exp

(
−1

2
(x∗− x̂∗)T Σ̂−1

x∗ (x∗− x̂∗)

)
d x∗.

Here we see that, to solve the integral, we effectively have to integrate over an exponen-
tial of an expression involving a matrix inverse, which in turn depends in a nonlinear
way on the integrating parameter x∗. Solving this integral analytically is therefore very
complicated, if not impossible.

Luckily, there are numerical methods through which we can at least visualize the
process that is going on. This gives us an intuitive view of what (5.2) actually does, which
is shown in Figure 5.1.

This figure also directly shows us a problem with this approach. The resulting distri-
bution is generally not Gaussian, and we always like to work with Gaussian distributions.
After all, then we only need two numbers (the mean and the variance) to describe the full
distribution. We hence have two options, if we want to continue.

Option one is to accept that our distributions are not Gaussian anymore and deal
with any kind of distribution we may encounter. This can be done in various ways.
For example, we could approximate all non-Gaussian distributions as sum of multiple

5

112 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

Gaussian distributions (the Gaussian mixture model). Another option is using numer-
ical (particle) methods like the Monte Carlo methods described briefly in Section 6.2.
Though fascinating, this all results in a whole field of research on its own, so we will not
look further into this.

Option two is force all distributions to be Gaussian anyway. This is called moment
matching, and before we continue, we will study some background theory behind mo-
ment matching.

5.1.2. INTERMEZZO: BACKGROUND BEHIND MOMENT MATCHING

Suppose we have some parameter f with a very complicated distribution. Generally
put, the main idea behind moment matching is to take this complicated distribution
and approximate it as some easier distribution with exactly the same moments. We then
assume that f has this easier distribution. With moments, we mean the mean (first mo-
ment), the variance (second moment) and possibly higher moments like the skewness
(third moment), the kurtosis (fourth moment), and so on.

First, consider the case where we only keep the first moment the same. So we replace
the distribution of f with a simpler one with the same meanE[f]. The most simple and
obvious case of this is to just substitute the random variable f with a deterministic value
f = E[f]. So we replace the uncertain parameter by its mean. Effectively, this sets all
higher order moments to zero. It is very simple and effective, but any information about
the spread of f is lost.

A more powerful form of moment matching also takes into account the second mo-
ment. We now replace the distribution of f by one with the same mean and variance.
The most simple and obvious case of this is to go for a Gaussian distribution. Again,
this effectively sets all higher order moments to minimum values (now not always zero)
forcing the distribution of f to be Gaussian.

It is also possible to take higher order moments into account. However, in this case
the resulting approximated distribution will not be Gaussian anymore, because a Gaus-
sian distribution is already fully defined by its first and second moments. (In fact, the
third moment of a Gaussian distribution is always zero.) In addition, for multivariate
parameters f it is rather difficult to incorporate third and higher moments. Because of
this, we will not use third or higher moments here and stick with moment matching us-
ing only the first two moments.

Let’s take a brief moment to study what moment matching effectively comes down
to. Effectively, we take the distribution of f , calculate its mean and variance, remember
only these two parameters, and then throw all other data (the actual distribution of f)
out of the window. Next, knowing only the mean and variance, we have to come up with
a new distribution for f .

How do we do this? Well, ideally this distribution should have as little information as
possible, other than that it has the correct mean and variance. After all, we cannot just
assume data that isn’t there.

One way to describe this mathematically, is to demand that the distribution should
have the highest possible entropy, where the entropy is a measure of how much uncer-
tainty or how little information is contained within the distribution. (A deterministic
number has zero entropy. For a quick introduction into entropy, see Section 6.4.3.) The

5.1. USING STOCHASTIC TRIAL POINTS

5

113

so-called maximum entropy probability distribution can now be shown to be the Gaus-
sian distribution. So if we only know the mean and variance of f , it is wisest to assume
that f has a Gaussian distribution.

5.1.3. THE EXPECTED VALUE OF THE TRIAL FUNCTION VALUE
Let’s go back to our parameter f ∗. We know that its distribution p(f∗) is given by (5.2),

and that this distribution is non-Gaussian. To approximate as a Gaussian, we need to
know its mean µ∗ and its covariance matrixΣ∗∗. (Note that these two parameters are the
mean and covariance after integrating over all possible values of x∗, while µ∗(x∗) and
Σ∗∗(x∗) are the mean and covariance for a specific given value of x∗.) We will start by
finding an expression for the mean µ∗. Later on we derive the covariance matrix Σ∗∗.

Per definition, the mean of f ∗ can be found through

µ∗ ≡E
[

f ∗

]
=

∫ ∞

−∞
f∗p(f∗)d f∗ =

∫ ∞

−∞

∫
X

f∗p(f∗|x∗)p(x∗)d x∗ d f∗. (5.4)

Contrary to the integral we faced earlier, this integral can be solved analytically for var-
ious kernels like the squared exponential kernel. To do so, we have to interchange the
integrals. This gives us

µ∗ =
∫

X

∫ ∞

−∞
f∗p(f∗|x∗)p(x∗)d f∗ d x∗ =

∫
X

(∫ ∞

−∞
f∗p(f∗|x∗)d f∗

)
p(x∗)d x∗. (5.5)

The inner integral in this expression is the mean of f ∗ at some known trial input point

x∗, which equals µ∗(x∗). We therefore have

µ∗ =
∫

X
µ∗(x∗)p(x∗)d x∗ (5.6)

=
∫

X

(
m(x∗)+k(x∗, Xm)

(
Kmm + Σ̂ fm

)−1
(

f̂m −mm

))
p(x∗)d x∗.

So effectively, to find the mean of f ∗, we integrate over all possible means which f ∗ can

have for varying inputs x∗.
Let’s now define the parameters1 m̄∗ and K̄∗m as

m̄∗ ≡
∫

X
m(x∗)p(x∗)d x∗, (5.7)

K̄∗m ≡
∫

X
k(x∗, Xm)p(x∗)d x∗. (5.8)

In this case, the posterior meanµ∗, given that x∗ has the distribution N
(
x̂∗, Σ̂x∗

)
, equals

µ∗ =
∫

X
m(x∗)p(x∗)d x∗+

(∫
X

k(x∗, Xm)p(x∗)d x∗
)(

Kmm + Σ̂ fm

)−1
(

f̂m −mm

)
(5.9)

= m̄∗+ K̄∗m
(
Kmm + Σ̂ fm

)−1
(

f̂m −mm

)
.

1In other literature, it is often assumed that the mean function is zero, so m̄∗ is ignored. Additionally, Deisen-
roth (2010) used the notation q for K̄∗m . I will go for K̄∗m because it makes it much more clear how we should
eventually use it in the regression equation.

5

114 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

It is a familiar expression with slightly adjusted parameters. The values of m̄∗ and K̄∗m

here naturally depend on which mean and covariance function we choose.
Let’s pick the ones that we usually use: the zero mean function m(x) = 0 and the

squared exponential covariance function (2.35). In this case, m̄∗ is obviously zero, while
K̄∗m can be found element-wise, directly from Theorem A.18, as

K̄∗mi =
∫

X
k(x∗, xmi)N

(
x∗|x̂∗, Σ̂x∗

)
d x∗ (5.10)

=λ2
f

√
|Λx |

|Λx + Σ̂x∗ |
exp

(
−1

2

(
x̂∗−xmi

)T (
Λx + Σ̂x∗

)−1 (
x̂∗−xmi

))
.

It is interesting to note that, if Σ̂x∗ = 0, and there is hence no uncertainty in x∗, then K̄∗m

reduces back to K∗m , as can be expected.

5.1.4. THE VARIANCE OF THE TRIAL FUNCTION VALUE
To apply moment matching, we also need to know the covariance Σ∗∗ of f ∗. This is

derived in a similar way, but the process is a bit more complicated.
Per definition, we have

Σ∗∗ =V
[

f ∗

]
=E

[(
f ∗−E

[
f ∗

])2
]

. (5.11)

The key to solving this is to introduce µ∗(x∗) into the expression. Note that µ∗(x∗) is
the mean for a specific trial input x∗, while µ∗ is the expected mean, integrated over all
potential trial inputs. Using this, we can rewrite the above as

Σ∗∗ =E
[((

f ∗−µ∗(x∗)
)
+ (
µ∗(x∗)−µ∗

))2
]

(5.12)

=E
[(

f ∗−µ∗(x∗)
)2

]
+E

[(
µ∗(x∗)−µ∗

)2
]
+2E

[(
f ∗−µ∗(x∗)

)(
µ∗(x∗)−µ∗

)]
.

We will solve these terms one by one, starting with the third, continuing with the first
and ending with the second. The third term actually turns out to be zero. The short way
of explaining this would be to say that only the first term within the expectation operator
depends on f ∗, and taking the expectation over f ∗ would turn this term into zero. This

explanation may be a bit too quick to follow though, so we will just expand the equation
to show what we mean with it. When we do, we find

E
[(

f ∗−µ∗(x∗)
)(
µ∗(x∗)−µ∗

)]
(5.13)

=
∫ ∞

−∞

∫
X

(
f∗−µ∗(x∗)

)(
µ∗(x∗)−µ∗

)
p(f∗|x∗)p(x∗)d x∗ d f∗

=
∫

X

∫ ∞

−∞
(

f∗−µ∗(x∗)
)(
µ∗(x∗)−µ∗

)
p(f∗|x∗)p(x∗)d f∗ d x∗

=
∫

X

(∫ ∞

−∞
(

f∗−µ∗(x∗)
)

p(f∗|x∗)d f∗
)(
µ∗(x∗)−µ∗

)
p(x∗)d x∗.

5.1. USING STOCHASTIC TRIAL POINTS

5

115

Now the inner integral evaluates as zero. After all, given x∗, the expectation of f ∗ be-

comes µ∗(x∗). And because the inner integral is zero, the whole term is zero as well.
Next, we continue with the first term of the sum (5.12). It can be evaluated as

E

[(
f ∗−µ∗(x∗)

)2
]
=

∫ ∞

−∞

∫
X

(
f∗−µ∗(x∗)

)2 p(f∗|x∗)p(x∗)d x∗ d f∗ (5.14)

=
∫

X

(∫ ∞

−∞
(

f∗−µ∗(x∗)
)2 p(f∗|x∗)d f∗

)
p(x∗)d x∗

=
∫

X
Σ∗∗(x∗)p(x∗)d x∗.

Note that we have reduced the inner integral to Σ∗∗(x∗). This is because the inner inte-
gral denotes the variance of f ∗ for a given trial input point x∗. Since we know Σ∗∗(x∗)

from (5.1), we can solve this integral. We will do so soon.
But first we look at the second term from (5.12). Note that there is no f∗ in the inte-

grand here, so the integral over p(f∗|x∗) reduces to one. As a result, we have

E
[(
µ∗(x∗)−µ∗

)2
]
=

∫ ∞

−∞

∫
X

(
µ∗(x∗)−µ∗

)2 p(f∗|x∗)p(x∗)d x∗ d f∗ (5.15)

=
∫

X

(
µ∗(x∗)−µ∗

)2 p(x∗)d x∗.

We also know the expression of µ∗(x∗) from (5.1), which means we should be able to
solve this integral too.

Concluding, the expression for Σ∗∗ equals

Σ∗∗ =
∫

X

(
Σ∗∗(x∗)+ (

µ∗(x∗)−µ∗
)2

)
p(x∗)d x∗. (5.16)

This expression is actually quite intuitive. The first termΣ∗∗(x∗) adds up all the variances
that are already present in f ∗, while the second term takes into account a varying mean
µ∗(x∗).

Now let’s see how we can solve the integral. To do so, we will use the shorthand

notation P = (
Kmm + Σ̂ fm

)
and α = P−1

(
f̂m −mm

)
, just like we did in Section 3.1. The

expression for Σ∗∗ can now be written as

Σ∗∗ =
∫

X

(
Σ∗∗(x∗)+µ∗(x∗)2)p(x∗)d x∗−µ2

∗ (5.17)

=
∫

X

(
k(x∗, x∗)−k(x∗, Xm)P−1k(Xm , x∗)+ (m(x∗)+k(x∗, Xm)α)2)p(x∗)d x∗−µ2

∗

=
∫

X

(
k(x∗, x∗)−k(x∗, Xm)

(
P−1 −ααT)

k(Xm , x∗)

+m(x∗)k(x∗, Xm)α+m(x∗)2)p(x∗)d x∗−µ2
∗.

To solve this further, we need to specify which mean and covariance function we use. If
we once more go for the zero mean function, then everything involving m(x∗) will drop
out. Going for the squared exponential covariance function also means that k(x∗, x∗) =

5

116 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

λ2
f . That leaves us with one more difficult integral to solve. The key here is to define

Q = P−1 −ααT . If we denote the elements of Q as Qi j , then we have

Σ∗∗ =λ2
f −

∫
X

nm∑
i=1

nm∑
j=1

k(x∗, xmi)Qi j k(xm j , x∗)N
(
x∗|x̂∗, Σ̂x∗

)
d x∗−µ2

∗. (5.18)

Using Theorem A.19, the solution of this directly follows as2

Σ∗∗ =λ2
f −λ4

f

√
|Λx |

|Λx +2Σ̂x∗ |
nm∑
i=1

nm∑
j=1

Qi j exp

(
−1

2

(
xmi −xm j

)T
(2Λx)−1

(
xmi −xm j

))

exp

(
−1

2

(xmi +xm j

2
− x̂∗

)T (
1

2
Λx + Σ̂x∗

)−1 (xmi +xm j

2
− x̂∗

))
−µ2

∗. (5.19)

This is not the most intuitive expression ever, but it will have to do. With this expression,
together with (5.9), we can approximate the distribution of f ∗ subject to a stochastic trial

input point x∗ ∼N
(
x̂∗, Σ̂x∗

)
.

5.1.5. THE MEAN AND VARIANCE OF SPARSE PREDICTIONS
Suppose that we use the sparse methods of Section 4.1. (If you have not read Section 4.1,
feel free to skip this paragraph and continue with Section 5.1.6.) In this case, the regres-
sion equations of (5.1) turn, according to (4.9), into

f ∗ ∼N
(
µ∗(x∗),Σ∗∗(x∗)

)
, (5.20)

µ∗(x∗) = m(x∗)+k(x∗, Xu)K −1
uu

(
µu −mu

)
,

Σ∗∗(x∗) = k(x∗, x∗)−k(x∗, Xu)K −1
uu (Kuu −Σuu)K −1

uu k(Xu , x∗).

How can we now calculate the posterior mean µ∗ and variance Σ∗∗ of the trial function
value f ∗ subject to an uncertain trial input point x∗ ∼N

(
x̂∗, Σ̂x∗

)
?

Because the above expression is so similar to (5.1), the process is actually very similar
too. We can find the posterior mean µ∗ through

µ∗ = m̄∗+ K̄∗uK −1
uu

(
µu −mu

)
, (5.21)

where m̄∗ still satisfies (5.7). When we use the zero mean function, m̄∗ still becomes
zero. If we also use the squared exponential covariance function, then K̄∗u can be found
through

K̄∗ui =
√

|Λx |
|Λx + Σ̂x∗ |

exp

(
−1

2

(
x̂∗−xui

)T (
Λx + Σ̂x∗

)−1 (
x̂∗−xui

))
. (5.22)

2In other literature, specifically in the work by Deisenroth (2010), the solution method used is slightly different.
There they use a trace function instead of a summation. Naturally both methods are correct. I personally
prefer the summation though, because when using the trace function in a computer script, you inherently
calculate a lot of terms which you eventually do not need, making the script slower than it needs to be.

5.1. USING STOCHASTIC TRIAL POINTS

5

117

To find the posterior variance Σ∗∗, we first have to redefineα= K −1
uu

(
µu −mu

)
and

Q = K −1
uu (Kuu −Σuu)K −1

uu −ααT . (5.23)

We can now find Σ∗∗ directly through

Σ∗∗ =λ2
f −λ4

f

√
|Λx |

|Λx +2Σ̂x∗ |
nu∑
i=1

nu∑
j=1

Qi j exp

(
−1

2

(
xui −xu j

)T
(2Λx)−1

(
xui −xu j

))

exp

(
−1

2

(xui +xu j

2
− x̂∗

)T (
1

2
Λx + Σ̂x∗

)−1 (xui +xu j

2
− x̂∗

))
−µ2

∗. (5.24)

So it is still possible to deal with stochastic trial input points when we use any kind of
sparse GP regression algorithm.

5.1.6. USING MULTIPLE TRIAL INPUT POINTS
Suppose that we have multiple stochastic trial input points x∗1

, . . . , x∗n∗
, each with their

own distributions x∗i
∼ N

(
x̂∗i , Σ̂x∗i x∗i

)
. For simplicity, we assume that all inputs x∗i

are independent. That is, the covariance Σ̂x∗i x∗ j
≡ V[x∗i

, x∗ j
] between two different

trial input points x∗i
and x∗ j

is assumed to be zero3. As a result, we can simply write

Σ̂x∗i x∗i
into Σ̂x∗i

, which means the same. How do we now make predictions?
The first key insight here is that previously the trial function value f ∗ was a scalar.

Now it is a vector f ∗. So the posterior mean µ∗ becomes a vector µ∗ and the posterior
variance Σ∗∗ now turns into a covariance matrix Σ∗∗.

The second key insight is that we can actually predict the posterior distributions of
f ∗1

, . . . , f ∗n∗
all separately. That is, we can use the familiar equations

µ∗i = m̄∗i + K̄∗i m
(
Kmm + Σ̂ fm

)−1
(

f̂m −mm

)
, (5.25)

Σ∗i∗i =λ2
f −λ4

f

√
|Λx |

|Λx +2Σ̂∗i |
nm∑
i=1

nm∑
j=1

Qi j exp

(
−1

2

(
xmi −xm j

)T
(2Λx)−1

(
xmi −xm j

))

exp

(
−1

2

(xmi +xm j

2
− x̂∗i

)T (
1

2
Λx + Σ̂∗i

)−1 (xmi +xm j

2
− x̂∗i

))
.

This gives us µ∗ and the diagonal elements of Σ∗∗. However, it does not give us the
off-diagonal elements of Σ∗∗. In other words, it does not tell us how two different trial
function values f ∗i

and f ∗ j
are correlated. In some cases this covariance might still be

needed, so we will derive it. It does mean we will have to do all the derivations once
more.

3It is still possible to solve the equations if this covariance is not zero. In fact, the solution method is almost ex-
actly the same. You will just have to replace p(x∗i , x∗ j) by p(x∗i |x∗ j)p(x∗ j) instead of p(x∗i)p(x∗ j) in (5.29)

and work on from there. The main issue is that it will nearly double the size of all equations, so if you are
planning to do the derivations, bring a lot of paper.

5

118 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

Our starting point is the same as before. That is,

Σ∗i∗ j =E
[(

f ∗i
−µ∗i

)(
f ∗ j

−µ∗ j

)]
(5.26)

=E
[((

f ∗i
−µ∗(x∗i

)
)
+

(
µ∗(x∗i

)−µ∗i

))((
f ∗ j

−µ∗(x∗ j
)

)
+

(
µ∗(x∗ j

)−µ∗ j

))]
.

Expanding the brackets will give us four terms, but the cross terms will reduce to zero
like before. We remain with

Σ∗i∗ j =E
[(

f ∗i
−µ∗(x∗i

)
)(

f ∗ j
−µ∗(x∗ j

)

)]
+E

[(
µ∗(x∗i

)−µ∗i

)(
µ∗(x∗ j

)−µ∗ j

)]
=

∫
X

∫
X

(
Σ∗∗(x∗i , x∗ j)+µ∗(x∗i)µ∗(x∗ j)

)
p(x∗i , x∗ j)d x∗i d x∗ j −µ∗iµ∗ j . (5.27)

We can expand this using the expression of µ∗(x∗) from (5.1), as well as

Σ∗∗(x∗i , x∗ j) = k(x∗i , x∗ j)−k(x∗i , Xm)
(
Kmm + Σ̂ fm

)−1
k(Xm , x∗ j). (5.28)

Let’s once more use the zero mean function and the squared exponential covariance
function. Also, we again define Q = (

P−1 −ααT
)
. In this case Σ∗i∗ j reduces to

Σ∗i∗ j =
∫

X

∫
X

(
k(x∗i , x∗ j)−k(x∗i , Xm)Qk(Xm , x∗ j)

)
p(x∗i , x∗ j)d x∗i d x∗ j −µ∗iµ∗ j

=
∫

X

∫
X

k(x∗i , x∗ j)p(x∗i)p(x∗ j)d x∗i d x∗ j (5.29)

−
nm∑
k=1

nm∑
l=1

(∫
X

k(x∗i , xmk)p(x∗i)d x∗i

)
Qkl

(∫
X

k(xml , x∗ j)p(x∗ j)d x∗ j

)
−µ∗iµ∗ j .

Here we have used our assumption that x i and x j are independent, causing p(x∗i , x∗ j)
to equal p(x∗i)p(x∗ j). The first double integral in the above expression is directly solved
by Theorem A.20. We can write its solution as

K̄∗i∗ j ≡
∫

X

∫
X

k(x∗i , x∗ j)p(x∗i)p(x∗ j)d x∗i d x∗ j =λ2
f

√ |Λ|
|Λ+ Σ̂∗i∗i + Σ̂∗ j ∗ j

. (5.30)

The second double integral has already been split up, and the individual integrals equal
K̄∗mk and K̄ml∗, respectively. As a result, we find as solution

Σ∗i∗ j = K̄∗i∗ j − K̄∗i mQK̄m∗ j −µ∗iµ∗ j . (5.31)

In fact, this gives rise to the idea of introducing a new covariance function which takes
uncertainty into account. Let’s define the uncertainty incorporating squared exponential
covariance function of two random variables x ∼N

(
µ,Σ

)
and x ′ ∼N

(
µ′,Σ′) as

k̄(x , x ′) =λ2
f

√
|Λ|

|Λ+Σ+Σ′| exp

(
−1

2

(
µ−µ′)T (

Λx +Σ+Σ′)−1 (
µ−µ′)) . (5.32)

5.2. USING STOCHASTIC MEASUREMENT POINTS

5

119

In this case, we can use the uncertainty incorporating Gaussian process regression equa-
tions

f ∗ ∼N
(
µ∗,Σ∗∗

)
(5.33)

µ∗ = m̄∗+ K̄∗m
(
K̄mm + Σ̂ fm

)−1
(

f̂m −mm

)
,

Σ∗∗ = K̄∗∗+ K̄∗mQK̄m∗−µ∗µT
∗ . Note: only for non-diagonal elements.

The main exception is that this equation does not work for the diagonal elements ofΣ∗∗.
For that, we need to use the more complicated expression (5.19). Also, it is important to
keep in mind that the distribution of f ∗ is not actually Gaussian, but we only approxi-

mate it as such.
Finally, I want to note that there are still many extensions that can be thought of

to these ideas. For example, Deisenroth (2010) uses multiple (assumed independent)
Gaussian processes, plugs in the same stochastic trial input point x∗ and calculates the
posterior covariance of the resulting outputs. And there are plenty of other set-ups that
you can think of. But with the tools discussed in this section, you should be able to figure
out how to calculate all the covariances that result from them.

5.2. USING STOCHASTIC MEASUREMENT POINTS
Previously we looked at how to deal with noisy trial input points x∗. Now we will assume
those are deterministic again, but we assume that the measurement points xm1

, . . . , xmnm

are noisy. To be precise, they are distributed according to xmi
∼ N

(
x̂mi , Σ̂xmi xmi

)
. For

simplicity, we do assume that the covariance Σ̂xmi xm j
between two different measured

input points xmi
and xm j

is zero. So the noise on the measured input points is uncorre-

lated.
The main question that we will now look into is, ‘How can we incorporate this uncer-

tainty present in X m into our predictions?’ The idea we used for stochastic trial points
(see Section 5.1) will not work, and first we will check out why (Section 5.2.1). We then
look at a way to tackle this problem that does work (Section 5.2.2). Next, we try to im-
plement these methods in a sparse and online way too. This is more complicated, so
we will investigate the main ideas first (Section 5.2.3). Then we look at how we can find
the posterior distribution of the measurement input point xm+ (Section 5.2.4). We then
make some more approximations, resulting in a sparse online method that can deal with
stochastic measurement points (Section 5.2.5). This method makes use of a lot of deriva-
tives, which we finally also take a look at (Section 5.2.6).

5.2.1. THE PROBLEM BEHIND INTEGRATING OVER MEASUREMENT POINTS
The first idea is to apply the ideas of the previous Section 5.1. When we do, we will find
that these will not work, although it is still worthwhile to see exactly where it fails.

To do so, we will try to calculate the posterior mean µ∗ for a deterministic trial in-
put point x∗. If X m was deterministic too, we would know that µ∗(Xm) depends on Xm

according to

µ∗(Xm) = m(x∗)+k(x∗, Xm)
(
k(Xm , Xm)+ Σ̂ fm

)−1
(

f̂m −m(Xm)
)

. (5.34)

5

120 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

The posterior mean µ∗ of f ∗, taking into account all possible values of X m , now follows

through marginalization as

µ∗ =
∫

X
µ∗(Xm)p(Xm)d Xm (5.35)

=
∫

X

(
m(x∗)+k(x∗, Xm)

(
k(Xm , Xm)+ Σ̂ fm

)−1
(

f̂m −m(Xm)
))

p(Xm)d Xm .

And here we can see the problem. Previously we needed to integrate over k(x∗, Xm) with
respect to x∗. We integrated over a nonlinear covariance function, which is still manage-
able for many covariance functions. Now, however, we need to integrate over (among

others) the matrix inverse
(
k(Xm , Xm)+ Σ̂ fm

)−1
, where the matrix depends on the inte-

grating parameters in a nonlinear way. This is a bit more complicated than what we can
solve analytically. As a result, we need to find other methods to deal with this.

5.2.2. THE NOISY INPUT GAUSSIAN PROCESS REGRESSION ALGORITHM
An effective solution, called the Noisy Input Gaussian Process (NIGP) regression algo-
rithm, was proposed by McHutchon and Rasmussen (2011). The main idea here is to
model the input noise as output noise too. If we do that, we can use our regular GP
regression tools to take it into account.

So how does this work? The key here is to ask ourselves, ‘When plotting the GP,
and when only looking at vertical distances in this graph, how far are our measurement
points expected to be away from the function we are approximating?’ That is, what is the
vertical distance between the circles (measurements) and the line (the approximated
function) in any Gaussian process plot?

There are actually two things contributing to this vertical distance. The first is the
obvious one: the output noise σ̂2

fm
. If we have more output noise, then measurement

points will be further removed from the approximated function. But the crucial factor
here is the second one: the input noise Σ̂mi . And the influence of this input noise actually
depends on the slope of the function we are approximating. If the function is fully flat,
then input noise does not affect the vertical distance between our measurement point
and the approximated function. But when the function is highly sloped, then there will
be large vertical distances between measurements and the approximated function. The
idea now is to add this extra vertical distance due to input noise to the output noise.

How much does the input noise contribute to this vertical distance though? We can
calculate that. Let’s write the input noise as εx . So we have εx ∼N

(
0, Σ̂xm

)
. If the slope of

the function is given by4 ∂ f
∂x , and if this slope is assumed constant, then the extra vertical

distance will be ∂ f
∂x εx . This stochastic parameter will have a zero mean and a variance of

E

[(
∂ f

∂x
εx

)2]
=E

[
∂ f

∂x
εxεx

T
(
∂ f

∂x

)T
]
= ∂ f

∂x
Σ̂xm

(
∂ f

∂x

)T

. (5.36)

So before doing Gaussian process regression, we walk through all the input points xmi

4In our notation, we assume that the derivative of a multivariate function is a row vector. In other words, we

will use
∂ f
∂x =

[
∂ f
∂x1

. . .
∂ f
∂xn

]
.

5.2. USING STOCHASTIC MEASUREMENT POINTS

5

121

and replace their measurement noise σ̂2
fm

by

σ̂2
fmi

← σ̂2
fm

+ ∂ f

∂x
Σ̂xm

(
∂ f

∂x

)T

. (5.37)

If we incorporate this, we should be able to take into account the input noise.
There is just one problem with the suggested approach. We do not know the function

f (x) which we are approximating, and so we cannot know the derivative. Hence, we
cannot approximate f (x). This actually results in a chicken-and-egg story. We need f (x)
to know the derivatives, and we need the derivatives to find (approximate) f (x).

The solution is to use multiple iterations. First we approximate f (x) without any
input noise. Then, based on this first approximation of f (x), we calculate the derivatives
∂ f
∂x and use these to approximate f (x) again. We do this a few times, until things have
converged.

There is one small addition to make here. We are now using an approximation of

f (x), made through Gaussian process regression, to find the derivatives ∂ f
∂x . This means

that the derivatives
∂ f

∂x are actually random variables too. To be precise, they have a mean

E[
∂ f

∂x] and a variance V[
∂ f

∂x], both of which should be taken into account. When we do,
we get a new noise incorporation law5

σ̂2
fmi

← σ̂2
fm

+E
[
∂ f

∂x

]
Σ̂xmE

[
∂ f

∂x

]T

+ tr

(
V

[
∂ f

∂x

]
Σ̂xm

)
. (5.38)

This completes the regression method of taking into account noisy measurement points.

5.2.3. SPARSE AND ONLINE ALGORITHMS – THE MAIN IDEAS
The next question we will ask ourselves is, ‘Can we also set up a sparse and an online
regression algorithm which takes into account noisy measurement points?’ For sparse
algorithms (discussed in Section 4.1) the answer is a clear ‘yes’. In the NIGP algorithm
we just described, we can simply use any kind of sparse GP regression method instead
of regular GP regression. For online algorithms (discussed in Section 4.2) the answer is a
lot more complex. So let’s take some time to figure this out.

Suppose that we are applying online FITC regression. For this algorithm, we have
a set of inducing input points Xu , which is of course fully deterministic, since we have
chosen these points ourselves. We also have already incorporated nm measurements,
which results in a posterior distribution N

(
µu ,Σuu

)
of f

u
. But now we get a new mea-

surement, which we write as (x̂+, f̂+). Here x̂+ is the actual measured input and f̂+ is
the actual measured function value. However, these are subject to noise. As a result, the
measurement input point is actually a random variable x+, and its distribution (as in-
dicated by the measurement) is given by N

(
x̂+, Σ̂x+

)
. Similarly, the measured function

value is a random variable f + with prior distribution N
(

f̂+, σ̂2
f+

)
.

5In the main paper of McHutchon and Rasmussen (2011), this derivative variance was not taken into account,
but in the online tools accompanying the paper it was. In the documentation of these tools, they also in-
dicated that incorporating this derivative variance had a nearly negligible effect on the final result. My own
experiments verified this.

5

122 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

If our measurement input point x+ would not be subject to noise, we can use our
usual update law for the distribution of the inducing function values f

u
. We write this

new distribution, which depends on x+, as f
u

(x+) ∼ N
(
µ+

u (x+),Σ+
uu(x+)

)
. The super-

script + again indicates that the new measurement has been taken into account. The
distribution is given (through combining (4.32) and (4.33)) by

f
u

(x+) ∼N
(
µ+

u (x+),Σ+
uu(x+)

)
(5.39)

Σ+
uu(x+) =Σuu −ΣuuK −1

uu Ku+Σ̂−1
++K+uK −1

uuΣuu ,

µ+
u (x+) =µu +ΣuuK −1

uu Ku+Σ̂−1
++

(
f̂+− µ̂+

)
,

where we have defined the prior distribution of the measured value f̂ + for a given input

point x+ (based on the current inducing function value distribution f
u

) as

f̂ + ∼N
(
µ̂+, Σ̂++

)
, (5.40)

Σ̂++ = K+++ σ̂2
f+ −K+uK −1

uu (Kuu −Σuu)K −1
uu Ku+,

µ̂+ = m++K+uK −1
uu

(
µu −mu

)
.

Note that a lot of parameters, like Σ̂++, µ̂+, K++, Ku+ and m+, depend on the value of x+.
Officially we should write them as Σ̂++(x+), µ̂+(x+), and so on, but that would make the
equations rather hard to read.

Naturally, we cannot use the above update law directly here, because x+ is not known
precisely. Instead, we will integrate over all possible values of the new measurement
input point x+. This gives us a posterior distribution of f

u
equal to

p(fu | f̂+, f
u

) =
∫

X
p(f +

u
|x+, f̂+, f

u
)p(x+| f̂+, f

u
)d x+. (5.41)

In this expression it is important to note that all distributions are based on the previous
distribution of f

u
(expressed through µu and Σuu) as well as on the new measurement

f̂+. So the distribution p(fu |x+, f̂+, f
u

) indicates the distribution of f
u

given an exact

value of x+, given the measurement f̂+ and given the previous distribution of f
u

. This

hence follows from our update law (5.39).
However, the more interesting term is p(x+| f̂+, f

u
). This is not the prior distribution

N
(
x̂+, Σ̂x+

)
of x+. Instead, it is the posterior distribution of x+ based on our new mea-

surement f̂+ and on the current Gaussian process that we have, indicated through the
current distribution N

(
µu ,Σuu

)
of f

u
. Let’s see how we can find or approximate it.

5.2.4. THE POSTERIOR DISTRIBUTION OF THE MEASUREMENT POINT

The key to finding p(x+| f̂+, f
u

) is to use Bayes’ law as

p(x+| f̂+, f
u

) =
p(f̂+|x+, f

u
)p(x+| f u

)

p(f̂+| f u
)

. (5.42)

5.2. USING STOCHASTIC MEASUREMENT POINTS

5

123

Figure 5.2: An example Gaussian process (left) which is given an additional noisy measurement (x̂+, f̂+) =
(0,5). Measurement noise standard deviations are σ̂x+ = 0.3 and σ̂ f+ = 0.4. The resulting prior distribution

N
(
x̂+, σ̂2

x+
)

of the true measurement input point x+ is also shown (left bottom). The key to finding the pos-
terior distribution, is to first incorporate the output noise into the GP (right), resulting in the prior probability
distribution for the measurement f̂ + for each possible input point x+. Then, when we draw a horizontal line

through the measurement, we effectively find the ‘proof’ p(f̂+|x+, f
u

) that we obtained measurement f̂+ at

x+. We multiply this proof by the prior p(x+) and normalize the result to find the posterior measurement
input point distribution (right bottom).

Let’s discuss the three new terms in this expression. p(f̂+|x+, f
u

) is the probability (den-

sity) that we obtained measurement f̂+ at the known input point x+ of our current Gaus-
sian process, described through f

u
. We have just seen this at (5.40).

For the second probability p(x+| f u
) it is important to realize that f

u
itself does not

tell us anything about what the value of x+ is likely to be. As a result, this probability
equals the probability we got from our measurement, being p(x+) =N

(
x+|x̂+, Σ̂x+

)
. Fi-

nally, the third probability p(f̂+| f u
) is just a constant (not depending on x+) and we can

hence get rid of its effects by normalizing the distribution which we wind up with. The
process of finding the posterior distribution of x+ is visualized in Figure 5.2.

Though the approach so far works, is has one very important drawback. It results in
a non-Gaussian distribution for p(x+| f̂+, f

u
), which makes it very difficult to deal with

in the rest of our algorithm. We want to find a Gaussian distribution, and as Figure 5.2
shows, applying moment matching might not always be the best approach, because the
distribution may not even resemble anything Gaussian. We will go for a different solu-
tion.

Let’s denote the prior distribution of the measured value f̂+ by f̂ +. Its distribution

is described by (5.40). The solution now lies in linearizing this, with respect to some
linearization point x̄+. In other words, we assume that f̂ + is now a Gaussian process

with a linear mean function and a constant variance. So,

f̂ + ∼ p(f̂+|x+, f
u

) =N

(
f̂+|µ̂+(x̄+)+ ∂µ̂+(x̄+)

∂x+
(x+− x̄+) , Σ̂++(x̄+)

)
. (5.43)

If we use this instead, then the posterior distribution of x+ will be Gaussian, as is visual-

5

124 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

Figure 5.3: The Gaussian process of Figure 5.2, linearized about the point x̄+ = −0.4. The distribution of the
corresponding output f (x̄+) ∼ N

(
µ̂+(x̄+), Σ̂++(x̄+)

)
(though without noise) is indicated. For this linearized

Gaussian process, we apply the same steps. From the linearized Gaussian process (left), we incorporate mea-
surement noise (right), consider the proof p(f̂+|x+, f

u
) (the horizontal line), multiply it by the prior p(x+) (left

bottom) and normalize the result to find the posterior distribution of x+ (right bottom). This result can be
found analytically through (5.44). It is important to note here that this result may strongly depend on the lin-
earization point x̄+. Usually we reset x̄+ equal to the posterior mean x̂++ of x+ and reiterate until convergence.

ized in Figure 5.3.
There are still two important questions left. The first is how to calculate the poste-

rior distribution of p(x+| f̂+, f
u

). This is done through (5.42). So we use the linearized

version (5.43) of f̂ + and multiply this by N
(
x+|x̂+, Σ̂x+

)
. We can obtain the result of this

multiplication through Theorem A.17, where we only have to make a few clever substi-
tutions. If we then normalize the final result, we get

x+ ∼ p(x+| f̂+, f
u

) =N
(
x+|x̂+

+ , Σ̂+
x+

)
, (5.44)

Σ̂+
x+ =

((
∂µ̂+(x̄+)

∂x+

)T (
Σ̂++(x̄+)

)−1
(
∂µ̂+(x̄+)

∂x+

)
+ Σ̂−1

x+

)−1

,

x̂+
+ = x̂++ Σ̂+

x+

((
∂µ̂+(x̄+)

∂x+

)T (
Σ̂++(x̄+)

)−1
((

f̂+− µ̂+(x̄+)
)− ∂µ̂+(x̄+)

∂x+
(x̂+− x̄+)

))
.

Again, note that the parameters with the superscript + are the posterior parameters. So
the above is the posterior distribution of the measurement input point x+. Or at least,
our Gaussian approximation of it. It is also interesting to know here that, even if Σ̂x+
may be diagonal, Σ̂+

x+ generally is not. So there will be posterior correlations between
the various elements of x+.

The second question is which linearization point x̄+ we should use. Based on (5.44),
the easiest point to linearize about would be x̂+. However, if we would linearize about
x̂+ in the example of Figure 5.3 (this linearization is not shown), this would result in a
very detrimental result, because we would get a nearly flat linearization. A more ideal
choice would be to linearize about x̂++ from (5.44), but we do not know this parameter
yet. This results in another chicken-and-egg story, which can be solved by doing a few

5.2. USING STOCHASTIC MEASUREMENT POINTS

5

125

iterations. That is, we first pick x̂+ as linearization point. We use this to find x̂++ , then use
this point as linearization point, find a new value for x̂++ and continue for a few iterations,
until x̂++ has converged6. This should result in a more representative Gaussian posterior
distribution of x+ than we would get by directly applying moment matching.

5.2.5. UPDATING THE DISTRIBUTION OF THE INDUCING FUNCTION VALUES
Let’s turn our attention back to integral (5.41). We have assumed that the second proba-
bility in this integral is Gaussian. In other words, we say that x+ is a Gaussian parameter
with known (posterior) mean x̂++ and covariance matrix Σ̂+

x+ . This significantly simplifies
matters.

However, the next problem we run into is that the resulting posterior distribution for
f

u
will still not be Gaussian. To solve this, we will once more apply moment matching,

similarly to what we did in Sections 5.1.3 and 5.1.4. This results in a posterior mean
(like (5.6)) and covariance (like (5.16)) of

µ+
u =

∫
X
µ+

u (x+)p(x+)d x+, (5.45)

Σ+
uu =

∫
X

(
Σ+

uu(x+)+ (
µ+

u (x+)−µ+
u

)(
µ+

u (x+)−µ+
u

)T
)

p(x+)d x+. (5.46)

The second problem is that solving these integrals is very hard, if not impossible. The
reason is the inverse Σ̂−1++ in (5.39). Although it is not a matrix inverse this time but merely
a scalar inverse, it is still too difficult to evaluate.

To work around this, we will not use the posterior Gaussian process f
u

(x+), but in-

stead use a Taylor polynomial approximation of it. This Taylor polynomial will be taken
about the posterior mean x̂++ of x+, as given by (5.44). Additionally, we will evaluate the
Taylor polynomial element-wise. So for every element of f +

ui
(x+) we write

f
ui

(x+) = f
ui

(x̂+
+)+

∂ f
ui

(x̂++)

∂x+

(
x+− x̂+

+
)+ 1

2

(
x+− x̂+

+
)T
∂2 f

ui
(x̂++)

∂x2+

(
x+− x̂+

+
)+ (5.47)

This does give us infinitely many terms though. To manage this, we will make a third
approximation (after moment matching and the Taylor polynomial). We will assume
that the input noise covariance Σ̂x+ is small. More specifically, we assume that is small
enough that Σ̂2

x+ and higher powers of Σ̂x+ are negligible7. As a result, because the pos-

terior covariance Σ̂+
x+ is guaranteed to be smaller (that is, has a lower determinant) than

the prior covariance Σ̂x+ , the same holds for Σ̂+
x+ . So if we ever encounter a term in any

of our derivations with four or more factors of
(
x+− x̂++

)
, we know it will eventually drop

out of our equations. In addition, because x+
+ is (assumed) Gaussian, also terms with

6It is worthwhile to note here that this set-up is not guaranteed to converge. When it does not, the default
option is to just ignore the measurement altogether. Finding a better way of dealing with this is left as a
suggestion for further research.

7The idea of using Taylor polynomials of Gaussian process is not new. Girard and Murray-Smith (2003) made
the assumption that higher order derivatives (like ∂2 f

ui
(x̂++)/∂x2+) are negligible. We instead assume that

higher powers of Σ̂x+ are negligible. The effect is nearly (but not entirely) the same, while our assumption is
easier to justify/verify.

5

126 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

three (or any odd number) of such factors will drop out. This significantly simplifies all
our expressions. We only have to keep track of terms with at most two factors

(
x+− x̂++

)
.

The next step is to find the corresponding approximated mean µui (x+) and covari-
ance Σ+

ui u j
(x+) of this Taylor polynomial for any value of x+. The approximated mean is

given by

µ+
ui

(x+) =E
[

f
ui

(x+)
]

(5.48)

≈µ+
ui

(x̂+
+)+ ∂µ+

ui
(x̂++)

∂x+

(
x+− x̂+

+
)+ 1

2

(
x+− x̂+

+
)T ∂2µ+

ui
(x̂++)

∂x2+

(
x+− x̂+

+
)+ . . . ,

where the dots denote terms which will eventually disappear. We can get a similar ex-
pression for the approximated covariance. The actual derivation is a lot more involved
but, not very surprisingly, the outcome is

Σ+
ui u j

(x+) =E
[(

f
ui

(x+)−µ+
ui

(x+)
)(

f
u j

(x+)−µ+
u j

(x+)

)T
]

(5.49)

≈Σ+
ui u j

(x̂+
+)+

∂Σ+
ui u j

(x̂++)

∂x+

(
x+− x̂+

+
)+ 1

2

(
x+− x̂+

+
)T
∂2Σ+

ui u j
(x̂++)

∂x2+

(
x+− x̂+

+
)

.

Through these Taylor approximations, we now have a mean and covariance given by (5.48)
and (5.49). We can plug these into (5.45) and (5.46) to find the posterior distribution
N

(
µ+

u ,Σ+
uu

)
of f

u
, which is what this is all about.

Note that we do still need to solve the integrals of (5.45) and (5.46). Luckily, be-
cause (5.48) and (5.49) are either linear or quadratic in the integrating parameter x+, and
because x+ is taken from a Gaussian distribution, these integrals can be solved directly.
(Their solutions follow from (B.62) to (B.64).) We then find the solution8

µ+
ui

=µ+
ui

(x̂+
+)+ 1

2
tr

((
∂2µ+

ui
(x̂++)

∂x2+

)
Σ̂+

x+

)
, (5.50)

Σ+
ui u j

=Σ+
ui u j

(x̂+
+)+

(
∂µ+

ui
(x̂++)

∂x+

)
Σ̂+

x+

(
∂µ+

u j
(x̂++)

∂x+

)T

+ 1

2
tr

((
∂2Σ+

ui u j
(x̂++)

∂x2+

)
Σ̂+

x+

)
. (5.51)

These are the update laws for the so-called Sparse Online Noisy Input GP (SONIG) re-
gression algorithm.

It is rather difficult to implement all the SONIG update laws without making any
programming mistakes. It will require lots of frustrating debugging. To make this pro-
cess easier, a toolbox with all the SONIG functionalities is available online through Bijl
(2016b), although all the code is also available (as usual) through Bijl (2016a).

8It is interesting to note that in the NIGP method by McHutchon and Rasmussen (2011), which we looked at
in Section 5.2.2, we already used (5.51). However, we did not use (5.50). The last term from this expression
was missing. So by incorporating this second derivative of the mean function, we could potentially improve
the NIGP method. In fact, later on in Section 5.4.1 we will see that the SONIG algorithm works better than the
NIGP algorithm, which is mainly because it takes into account this second derivative.

5.2. USING STOCHASTIC MEASUREMENT POINTS

5

127

5.2.6. DERIVATIVES NEEDED FOR THE SONIG ALGORITHM
To apply the SONIG update laws which we just derived, we need to calculate a lot of
derivatives. These derivatives all follow from (5.39), but they may still be daunting to
calculate, especially when the input x+ is a vector instead of just a scalar. So let’s make
an overview of all the derivatives that we need. You can implement them yourself, but it
might be easier to download the code from Bijl (2016a) and use that.

We will start with the derivatives of µ+
u (x+) with respect to x+. To be precise, we

will take the derivatives with respect to a single element x+i of x+, so we can find the
derivatives element-wise. These derivatives equal

∂µ+
u (x+)

∂x+i

=ΣuuK −1
uu

(
∂Ku+
∂x+i

Σ̂−1
++µ̂++Ku+

∂Σ̂−1++
∂x+i

µ̂+−Ku+Σ̂−1
++

µ̂+
∂x+

)
, (5.52)

∂2µ+
u (x+)

∂x+i ∂x+ j

=ΣuuK −1
uu

(
∂2Ku+

∂x+i ∂x+ j

Σ̂−1
++µ̂++ ∂Ku+

∂x+i

∂Σ̂−1++
∂x+ j

µ̂++ ∂Ku+
∂x+i

Σ̂−1
++

∂µ̂+
∂x+ j

+ ∂Ku+
∂x+ j

∂Σ̂−1++
∂x+i

µ̂++Ku+
∂2Σ̂−1++

∂x+i ∂x+ j

µ̂++Ku+
∂Σ̂−1++
∂x+i

∂µ̂+
∂x+ j

+∂Ku+
∂x+ j

Σ̂−1
++

∂µ̂+
∂x+i

+Ku+
∂Σ̂−1++
∂x+ j

∂µ̂+
∂x+i

+Ku+Σ̂−1
++

∂2µ̂+
∂x+i ∂x+ j

)
.

Next, we look at the derivatives of Σ+
uu(x+). These are similarly given by

∂Σ+
uu(x+)

∂x+i

=ΣuuK −1
uu

(
∂Ku+
∂x+i

Σ̂−1
++K+u +Ku+

∂Σ̂−1++
∂x+i

K+u +Ku+Σ̂−1
++
∂K+u

∂x+i

)
K −1

uuΣuu , (5.53)

∂2Σ+
uu(x+)

∂x+i ∂x+ j

=ΣuuK −1
uu

(
∂2Ku+

∂x+i ∂x+ j

Σ̂−1
++K+u + ∂Ku+

∂x+i

∂Σ̂−1++
∂x+ j

K+u + ∂Ku+
∂x+i

Σ̂−1
++
∂K+u

∂x+ j

+ ∂Ku+
∂x+i

∂Σ̂−1++
∂x+i

K+u +Ku+
∂2Σ̂−1++

∂x+i ∂x+ j

K+u +Ku+
∂Σ̂−1++
∂x+i

∂K+u

∂x+i

+∂Ku+
∂x+i

Σ̂−1
++
∂K+u

∂x+i

+Ku+
∂Σ̂−1++
∂x+i

∂K+u

∂x+i

+Ku+Σ̂−1
++

∂2K+u

∂x+i ∂x+ j

)
.

Note that a derivative like ∂Σ+
uu(x+)/∂x2+ is actually a four-dimensional matrix. Σ+

uu(x+)
already has two dimensions, and the second derivative with respect to the vector x+ re-
sults in two more. When setting up equations involving these parameters, it is wise to
learn how to work with higher-dimensional matrices, and to keep track of which index
represents what. Feel free to check out the code at Bijl (2016a) to see how I set this up.

In the above derivatives, we have used the derivatives of the inverse Σ̂−1++. Note that
this parameter is a scalar, so we do not even need Theorem A.2 to find this derivative.
Instead, it directly follows that

∂Σ̂−1++
∂x+

=−Σ̂−2
++
∂Σ̂++
∂x+

, (5.54)

∂2Σ̂−1++
∂x2+

= 2Σ̂−3
++

(
∂Σ̂++
∂x+

)T (
∂Σ̂++
∂x+

)
− Σ̂−2

++
(
∂2Σ̂++
∂x2+

)
.

5

128 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

In these derivatives, we have in turn used the derivatives of Σ̂++. These can be found
through the definition of Σ̂++ in (5.40) as

∂Σ̂++
∂x+i

= ∂K++
∂x+

−2K+uK −1
uu (Kuu −Σuu)K −1

uu
∂Ku+
∂x+i

, (5.55)

∂2Σ̂++
∂x+i ∂x+ j

= ∂2K++
∂x2+

−2
∂K+u

∂x+ j

K −1
uu (Kuu −Σuu)K −1

uu
∂Ku+
∂x+i

−2K+uK −1
uu (Kuu −Σuu)K −1

uu
∂2Ku+

∂x+i ∂x+ j

.

Similarly, we can find the derivatives of µ̂+ as

∂µ̂+
∂x+

= ∂m+
∂x+i

+ ∂K+u

∂x+i

K −1
uu

(
µu −mu

)
, (5.56)

∂2µ̂+
∂x2+

= ∂2m+
∂x+i ∂x+ j

+ ∂K+u

∂x+i ∂x+ j

K −1
uu

(
µu −mu

)
.

The above expressions are so far all valid for any mean and covariance function. They
do contain various additional derivatives though, like ∂Ku+/∂x+i , and if we want to find
these derivatives, then we do have to choose a specific mean and covariance function.
We will use the zero mean function and the squared exponential covariance function, as
usual. This results in derivatives of Ku+ which can be found element-wise through

∂Kui+
∂x+

=λ2
f exp

(
−1

2

(
xui −x+

)T
Λ−1

x

(
xui −x+

))(
xui −x+

)T
Λ−1, (5.57)

∂2Kui+
∂x2+

=λ2
f exp

(
−1

2

(
xui −x+

)T
Λ−1

x

(
xui −x+

))(
Λ−1 (

xui −x+
)(

xui −x+
)T
Λ−1 −Λ−1

)
.

Since K+ui = Kui+, also the derivative of K+ui can be found through the above relations.
Finally, the last two sets of derivatives which we are missing are trivial. For the zero mean
function and the squared exponential covariance function, we have

∂m+
∂x+i

= ∂2m+
∂x+i ∂x+ j

= 0, (5.58)

∂K++
∂x+i

= ∂2K++
∂x+i ∂x+ j

= 0. (5.59)

Those were all the derivatives you should need for the SONIG method. Again, if you want
to apply them, you may of course implement all these derivatives yourself. But using the
code from Bijl (2016a) might save you a lot of time and frustration.

5.3. EXTENSIONS TO THE SONIG ALGORITHM
We have found a way to implement noisy measurement points in an online way to sparse
Gaussian process regression. But the resulting SONIG algorithm has a variety of poten-
tial expansions. We will look at a few of them.

5.3. EXTENSIONS TO THE SONIG ALGORITHM

5

129

First we examine whether it is possible to implement hyperparameters, both for noisy
trial and noisy measurement points (Section 5.3.1). Next, we look at how to approxi-
mate functions with multiple outputs (Section 5.3.2). We then examine if we can also
determine the posterior distribution of the measured function value f + (Section 5.3.3)

as well as its posterior covariance with the measured input x+ (Section 5.3.4). Finally we
combine all ideas to set up a system identification algorithm making good use of all the
possibilities of the SONIG algorithm (Section 5.3.5).

5.3.1. APPLYING HYPERPARAMETER TUNING

When we are dealing with noisy input points, is it possible to tune the hyperparameters?

If we are dealing with noisy trial points, like we examined in Section 5.1, there is no
problem at all. After all, for tuning the hyperparameters, we do not need the trial points
at all! Things are different when we have noisy measurement points though.

In this case, it is possible to add hyperparameter tuning to the NIGP algorithm of
Section 5.2.2. In this algorithm we are already doing various iterations of predicting a
Gaussian process, increasing the noise covariance of each measured output based on
the derivative of the previous Gaussian process. After this step, we just need to add a
hyperparameter tuning step, and then everything will work out. This does mean we need
to tune the hyperparameters multiple times, but the algorithm is supposed to converge
relatively quickly, so it is not expected that the hyperparameters change much between
successive iterations.

The next question is, ‘Is it also possible to tune the hyperparameters for the SONIG
algorithm?’ Sadly, the answer here is no, because it already was not possible to tune the
hyperparameters during the online FITC algorithm. The main way to work around this
is to grab the first couple of measurements (say, the first few hundred, depending on the
problem complexity) and apply the offline NIGP hyperparameter tuning methods to this.
This is known as the subset of data approach to hyperparameter tuning, and according
to Chalupka et al. (2013) its results are nearly as good as when we apply hyperparameter
tuning to the full data set of possible thousands or tens of thousands of data points.

5.3.2. USING MULTIPLE OUTPUTS

Suppose that we want to approximate a vector function f (x) with dx inputs and d f out-
puts. We have looked into ways to deal with this in Section 2.4.2, and examined a sim-
plification – just using a separate GP for every output – in Section 2.4.3. We will also
consider this same simplification.

So we will set up a separate Gaussian process for each output fi (x) of the vector func-
tion f (x). Each Gaussian process may have its own mean function mi (x) and covariance
function k i (x , x ′). It may also have its own set of inducing input points X i

u . (In practice
this is usually the same for each output fi (x), but it does not have to be.) And there is a
corresponding inducing function value distribution f i

u
∼N

(
µi

u ,Σi
uu

)
.

Now, what is different in the SONIG algorithm? We will see that there are only minor
changes. To see exactly what is different, we will just walk through the steps. First of all,
the prior distribution of the measured value f̂ + is now a vector. Its distribution, similarly

5

130 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

to (5.40), is given element-wise by

f̂
i

+ ∼N
(
µ̂i
+, Σ̂i

++
)

, (5.60)

Σ̂i
++ = K i

+++ σ̂2
f i+
−K i

+u

(
K i

uu

)−1 (
K i

uu −Σi
uu

)(
K i

uu

)−1
K i

u+,

µ̂i
+ = mi

++K i
+u

(
K i

uu

)−1 (
µi

u −mi
u

)
.

Here, Σ̂++ is a diagonal matrix, because we have assumed that all outputs are indepen-
dent. So its off-diagonal elements are zero.

Next, we use the above distribution to find the posterior distribution of the measure-
ment input point x+. This is, very similarly to (5.44), equal to

x+ ∼N
(
x+|x̂+

+ , Σ̂+
x+

)
, (5.61)

Σ̂+
x+ =

((
∂µ̂+(x̄+)

∂x+

)T (
Σ̂++(x̄+)

)−1
(
∂µ̂+(x̄+)

∂x+

)
+ Σ̂−1

x+

)−1

,

x̂+
+ = x̂++ Σ̂+

x+

((
∂µ̂+(x̄+)

∂x+

)T (
Σ̂++(x̄+)

)−1
((

f̂+− µ̂+(x̄+)
)
− ∂µ̂+(x̄+)

∂x+
(x̂+− x̄+)

))
.

Note that µ̂+(x+) has become a vector, and Σ̂++(x+) is now a matrix instead of a scalar.
These functions are given by (5.60).

After this, the rest of the algorithm is exactly the same. That is, we can still use the
SONIG update laws (5.50) and (5.51), although we need to do so separately for each
Gaussian process that we have set up.

5.3.3. THE POSTERIOR DISTRIBUTION OF THE MEASURED OUTPUT

We know how to find (or approximate) the posterior distribution of both x+ and f
u

.

But what is the posterior distribution of the function value f +? This is an interesting

question because, although we may know the posterior distribution of x+, we do not
know the position of this input point precisely. Can we then still say something about
the posterior distribution of the measured function value?

The key to solving this is again by integrating over all possible values of x+. That is,

p(f+| f̂+, f
u

) =
∫

X
p(f+|x+, f̂+, f

u
)p(x+| f̂+, f

u
)d x+. (5.62)

This is exactly the same type of integral as we encountered at (5.41). The second prob-
ability in the integral is again the posterior distribution of x+. The first probability is
slightly different though. It is not the distribution of f

u
for a given input point x+, but

the distribution of the function value f +. So let’s find that first.

First of all, we can establish that the prior distribution of f + for a given input point

5.3. EXTENSIONS TO THE SONIG ALGORITHM

5

131

x+, before we obtain the measurement f̂+, follows from (4.32) as9

f +(x+) ∼N
(
µ+(x+),Σ++(x+)

)
, (5.63)

Σ++(x+) = K++−K+uK −1
uu (Kuu −Σuu)K −1

uu Ku+,

µ+(x+) = m++K+uK −1
uu

(
µu −mu

)
.

But of course we do have a measurement f̂+ now. We can incorporate this using (4.33),
which tells us that

f +(x+) ∼N
(
µ+
+(x+),Σ+

++(x+)
)

, (5.64)

Σ+
++(x+) =Σ++

(
Σ+++ σ̂2

f+

)−1
σ̂2

f+ =Σ++Σ̂−1
++σ̂

2
f+ ,

µ+
+(x+) =µ++Σ++

(
Σ+++ σ̂2

f+

)−1 (
f̂+−µ+

)=µ++Σ++Σ̂−1
++

(
f̂+−µ+

)
.

Note that, in the above expressions, we have omitted the dependency on x+, but natu-
rally it still exists.

From here on, we can take exactly the same path as before. That is, we approximate
f +(x+) through a Taylor polynomial

f +(x+) = f +(x̂+
+)+

∂ f +(x̂++)

∂x+

(
x+− x̂+

+
)+ 1

2

(
x+− x̂+

+
)T
∂2 f +(x̂++)

∂x+2

(
x+− x̂+

+
)+ . . . , (5.65)

and we use this to evaluate (5.62). The result will, identically to the SONIG update laws (5.50)
and (5.51), be10

µ+
+ =µ+

+(x̂+
+)+ 1

2
tr

((
∂2µ++(x̂++)

∂x2+

)
Σ̂+

x+

)
, (5.66)

Σ+
++ =Σ+

++(x̂+
+)+

(
∂µ++(x̂++)

∂x+

)
Σ̂+

x+

(
∂µ++(x̂++)

∂x+

)T

+ 1

2
tr

((
∂2Σ+++(x̂++)

∂x2+

)
Σ̂+

x+

)
. (5.67)

These expressions derive the posterior distribution of f + for single-output functions.

Naturally, we can also expand these ideas to multi-output functions, as those considered
in Section 5.3.2. In this case µ++ is a vector and Σ+++ is a matrix. If we denote individual
elements according to µ++i

and Σ++i+ j
, then the above expressions turn into

µ+
+i

=µ+
+i

(x̂+
+)+ 1

2
tr

((
∂2µ++i

(x̂++)

∂x2+

)
Σ̂+

x+

)
, (5.68)

Σ+
+i+ j

=Σ+
+i+ j

(x̂+
+)+

(
∂µ++i

(x̂++)

∂x+

)
Σ̂+

x+

(
∂µ++ j

(x̂++)

∂x+

)T

+ 1

2
tr

((
∂2Σ++i+ j

(x̂++)

∂x2+

)
Σ̂+

x+

)
. (5.69)

9The main difference between this prior distribution and the prior distribution of f̂ +, given by (5.40), is that

this is the prior distribution of the actual function value f (x), and not that of the measured function value f̂+.
This is why the noise variance σ̂2

f+ is not taken into account in this new distribution.
10Once more, keep in mind the distinction between a parameter like Σ+++(x+), which holds for a given value of

x+, and a parameter like Σ+++, which is the result of integrating over all possible values of x+.

5

132 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

It is important to realize here that the matrix Σ++(x+), for a given input point x+, is ac-
tually diagonal by assumption, and hence the same holds for Σ+++(x+). This will simplify
the above expression for off-diagonal terms, but it does not imply that Σ+++ itself will be
diagonal.

5.3.4. THE POSTERIOR COVARIANCE BETWEEN INPUT AND OUTPUT

We now have a posterior distribution x+ ∼N
(
x̂++ , Σ̂+

x+
)

for the input and a posterior dis-
tribution f + ∼ N

(
µ++,Σ+++

)
for the output. Since these are now both random variables,

they naturally also have a covariance.
To find this covariance, we should use both the Taylor approximation (5.65) of f +(x+)

and relation (5.66) for µ++. The covariance then follows as

V
[

f +, x+
]
=E

[(
f +(x+)−µ+

+
)(

x+− x̂+
+
)T

]
(5.70)

=E
[(

f +(x̂+
+)−µ+

+(x̂+
+)

)(
x+− x̂+

+
)T − 1

2
tr

((
∂2µ++(x̂++)

∂x2+

)
Σ̂+

x+

)(
x+− x̂+

+
)T

+
∂ f +(x̂++)

∂x+

(
x+− x̂+

+
)(

x+− x̂+
+
)T + . . .

]

= ∂µ++(x̂++)

∂x+
Σ̂+

x+ .

Note that most terms have dropped out, because taking the expectation of
(
x+− x̂++

)
will

result in zero. Also, the higher order terms have dropped out due to our assumption that
higher powers of Σ̂x+ are negligible.

When we deal with multi-output functions, then the above expression can be used
individually for every output. In fact, in that case we could also write that

V
[

f +, x+
]
= ∂µ++(x̂++)

∂x+
Σ̂+

x+ . (5.71)

5.3.5. AN ONLINE SYSTEM IDENTIFICATION ALGORITHM
Consider a nonlinear autoregressive model with exogenous inputs (a NARX system) of the
form

yk+1 =φ(yk , yk−1,uk), (5.72)

withφ(. . .) a nonlinear function of past outputs and inputs. Suppose that we are running
such a system. That is, at the start of every time step we need to specify a certain input
uk , and at the end of the time step we get a noisy measurement of the output yk+1, which
we can use to determine the next input.

We can use the SONIG algorithm to identify this system. To do so, we set up the
function input vector

xk+1 =
 yk

yk−1

uk

 . (5.73)

We hence have yk+1 = φ(xk+1). We should note here that all outputs yk are actually
random variables, and we hence write them as y

k
. After all, we have only made noisy

5.3. EXTENSIONS TO THE SONIG ALGORITHM

5

133

measurements ŷk of them. As a result, also xk is a random variable. We can determine its
prior distribution based on the output noise covariance Σ̂y y , which we assume is known.
For example, we have

x3 =

y
2

y
1

u2

∼N

 ŷ2

ŷ1

u2

 ,

Σ̂y y 0 0
0 Σ̂y y 0
0 0 0

 . (5.74)

Here we assume that there is no prior correlation between measurement noise at differ-
ent time steps.

Now, suppose that we measure y
3

. We write the resulting measurement as ŷ3. This

effectively tells us that y
3

is distributed according to

y
3
∼N

(
ŷ3, Σ̂y y

)
. (5.75)

But we know that y
3
=φ(x3), so we can plug this into our SONIG algorithm. One result

of this is that the SONIG algorithm goes through an update, taking into account this new
data. But additionally the SONIG algorithm also gives posterior distributions11 of both
y

3
and x3. This means that we get more data about what the true outputs (without being

disturbed by noise) would have been. In fact, where y
1

initially had a mean value of ŷ1,

it will now have a mean value which we denote by µ̂y1 , and similarly for y
2

and y
3

.

Note that, because the SONIG algorithm provides us with a posterior distribution of
x3, we also learn more about the covariance Σ̂y1 y2 between y

1
and y

2
. In addition, the

algorithm also tells us (through (5.71)) the covariance between the function input x3 and
the function output y

3
. From this we learn the posterior covariances Σ̂y1 y3 and Σ̂y2 y3 .

Next, let’s consider the next time step. For this time step, we need to determine the
prior distribution of the function input x4. Using all our data, it equals

x4 =

y
3

y
2

u3

∼N

µ̂y3

µ̂y2

u3

 ,

Σ̂y3 y3 Σ̂y3 y2 0
Σ̂y2 y3 Σ̂y2 y2 0

0 0 0

 . (5.76)

So when applying the SONIG algorithm, we should use these parameters for the input
distribution N

(
x̂+, Σ̂x+

)
. We can then measure y

4
, apply another update, and continue

the process like that. By applying all these steps consecutively, always keeping track of
the covariances between successive outputs y

k
, we can identify the system.

Note that so far we have assumed that we know the inputs uk precisely. If there is,
due to whatever reason, also noise present in the input, this can of course also be taken
into account.

Let’s formalize all our thoughts a bit more. We consider the more general NARX sys-
tem

yk+1 =φ(yk , . . . , yk−ny+1,uk , . . . ,uk−nu+1), (5.77)

11At the first few updates, the SONIG algorithm knows nearly nothing of the system, so the posterior dis-
tributions of y

3
and x3 will not be very different from the prior distributions. When more data has been

incorporated into the SONIG algorithm, this will of course change.

5

134 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

where ny is the output order and nu is the input order. In this case, we have a function
input of the form

xk+1 =
[

y T
k · · · y T

k−ny+1 uT
k · · · uT

k−nu+1

]T
. (5.78)

To identify such a system, we can use Algorithm 1 which outlines all the steps that we
need to take.

Input:
A set of inputs u1,u2, . . . and outputs y1, y2, . . . of a system that is to be
identified. Both the input and the output can be disturbed by noise.

Preparation:
Define hyperparameters by using expert knowledge about the system, or
through tuning methods like those described in Section 5.3.1. Optionally, also
define an initial set of inducing input points Xu .

Updating:
while there are unprocessed measurements yk+1 do

1. Set up xk+1 (shortened to x+) according to (5.78). Find its prior
Gaussian distribution using known covariances between system outputs
y

k
, . . . , y

k−(ny−1)
and (if necessary) system inputs uk , . . . ,uk−(nu−1). Also

find the prior distribution of the function output y
k+1

(denoted as f
k+1

or

shortened as f +).

2. Apply (5.61) to find the posterior distribution N
(
x̂++ ,Σ+

x+
)

of x+. Use this
to update the posterior distribution of the system outputs y

k
, . . . , y

k−(ny−1)

and system inputs uk , . . . ,uk−(nu−1).
3. Optionally, if x̂++ is far removed from any inducing input point, add it to
the set of inducing inputs Xu using (4.57). (Or rearrange the inducing
input points in any desired way.)
4. Calculate the posterior distribution of the inducing input vector f

u
for

each of the outputs ofφ using (5.50) and (5.51).
5. Calculate the posterior distribution of the output y

k+1
using (5.68)

and (5.69). Additionally, calculate the covariances between y
k+1

and each

of the previous system outputs y
k

, . . . , y
k−(ny−1)

and inputs

uk , . . . ,uk−(nu−1) through (5.71).

end
Prediction:

For any deterministic set of previous outputs yk , . . . , yk−(ny−1) and inputs
uk , . . . ,uk−(nu−1), apply the sparse GP regression equations (4.9) to predict the
next output yk+1. For stochastic parameters, use the expansions from
Section 5.1.

Algorithm 1: System identification through SONIG: an application of the SONIG algo-
rithm to identify a non-linear system in an online way.

5.4. EXPERIMENTS

5

135

5.4. EXPERIMENTS
It is time to put the SONIG algorithm to the test. We first take a look at how well it per-
forms compared to other GP regression algorithms, when applied to a simple function
subject to input noise (Section 5.4.1). We then perform system identification through
the SONIG algorithm. We do this both for the benchmark problem of a fluid damper,
comparing it to other nonlinear system identification algorithms (Section 5.4.2), and for
the by now familiar pitch-plunge system (Section 5.4.3).

5.4.1. APPLICATION TO A TEST FUNCTION

We will start with a simple one-dimensional function approximation example. We will
set up a Gaussian process with λ f = λx = 1 on the range [−5,5]. From this Gaussian
process, we take a random sample function. We then take nm random input points and
perform measurements (xm , fm) on this sample function. Subsequently, we distort these
measurements through an input noise with standard deviation σ̂xm = 0.4 and output
noise σ̂ fm = 0.1 to get our actual measurement (x̂m , f̂m).

We want to know how good the SONIG algorithm works, in various set-ups. To figure
this out, we will use a variety of different GP regression set-ups.

(1) Regular GP regression with the exact hyperparameters, applied to the data set with-
out input noise (σ̂ f = 0) but with output noise. This serves as a reference case, to see
how much we lose due to the input noise. All other algorithms do get noisy measure-
ment input points and have to tune their own hyperparameters.

(2) Regular GP regression. Hyperparameters are tuned through the maximum-likelihood
method of Section 3.1.3. Measurements are (as usual) distorted by both output and
input noise.

(3) The NIGP algorithm of McHutchon and Rasmussen (2011). This algorithm has its
own method of tuning hyperparameters, including σ̂xm .

(4) The SONIG algorithm, starting with µu = mu and Σuu = Kuu , using the hyperparam-
eters given by (3). We use nu = 21 evenly distributed inducing input points.

(5) The same as (4), but now with more measurements (800 instead of 200). Because the
SONIG algorithm is computationally a lot more efficient than the NIGP algorithm,
the runtime of this is similar to that of (3), being roughly 2-3 seconds when using
Matlab, although this of course does depend on the exact implementation of the al-
gorithms.

(6) NIGP applied on a subset of data (100 measurements) to predict the distribution
N

(
µu ,Σuu

)
of the inducing input points, followed by the SONIG algorithm applied

to the remainder (700) of the measurements, further updating the inducing input
points. The runtime of this approach is again similar to that of (3), being 2-3 sec-
onds.

(7) The FITC algorithm, using the hyperparameters of (2). This serves as a reference
case, to see how well we do when we ignore the presence of input noise.

For all the algorithms, the most important quality indicator is the Mean Squared Er-
ror (MSE). To measure this, we let each regression algorithm predict the output f ∗ ∼

5

136 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

Table 5.1: Comparison of various GP regression algorithms, applied to noisy measurements of 400 randomly
generated sample functions. For details, see the main text.

Set-up Measurements MSE Mean variance Ratio

(1) GPR with exact hyperparameters and no input noise 200 0.87 ·10−3 0.85 ·10−3 1.02
(2) GPR with tuned hyperparameters 200 28.0 ·10−3 8.3 ·10−3 3.4
(3) NIGP with its own hyperparameter tuning 200 26.2 ·10−3 5.6 ·10−3 4.7
(4) SONIG using the hyperparameters of (3) 200 21.5 ·10−3 8.1 ·10−3 2.7
(5) SONIG using the hyperparameters of (3) 800 12.5 ·10−3 2.2 ·10−3 5.6
(6) NIGP on a subset, followed by SONIG on the rest 100/700 16.5 ·10−3 2.3 ·10−3 7.1
(7) FITC, using the hyperparameters of (2) 800 19.5 ·10−3 2.7 ·10−3 7.1

N
(
µ∗,Σ∗∗

)
for a large trial input set X∗. We then compare µ∗ with the true function

values and derive the MSE from this.

But just looking at the MSE is not enough. A crucial part of Gaussian process regres-
sion is that it knows how certain its predictions are. This is indicated by the covariance
matrix Σ∗∗, or at least, its diagonal elements Σ∗i∗i . Ideally the mean variance for all our
predictions should equal the MSE. This indicates that the algorithm is integer. If the
MSE is much larger than the mean variance, then it means that the algorithm believes
it is much more accurate than it actually is, leading to an overconfident algorithm. As
such, the ratio between the MSE and the mean prediction variance is an indication of
the ‘overconfidence’ of the algorithm.

An example outcome of the experiment is shown in Figure 5.4. Here we see that the
SONIG algorithm actually seems to be better at approximating strongly varying func-
tions than the NIGP algorithm. This is initially somewhat surprising, since the SONIG
algorithm has more approximating assumptions. However, this difference is mainly be-
cause the SONIG algorithm takes into account the second derivative of the mean in its
update law (5.50), while the NIGP method does not. If the SONIG algorithm also ignores
this second derivative, its performance would be similar to that of the NIGP algorithm.

However, we cannot make significant conclusions based on just one example run.
Instead, we run the experiment a large number (400) times. The average of the results is
subsequently shown in Table 5.1. There are various things that can be noticed from this
table. First of all, it confirms that the SONIG algorithm works better on these kinds of
problems than the NIGP algorithm, which we already explained.

Secondly, it seems that all algorithms are rather overconfident in their predictions,
apart from the regular Gaussian process regression method. That is, their actual MSE
is far higher than what the algorithm expects the MSE to be (being the mean predicted
variance).

Thirdly, it appears that using more measurements will provide a better accuracy. This
is of course not very surprising. But nevertheless it is worthwhile to note that the FITC
method (which does not take into account input uncertainty at all) with 800 measure-
ments performs better than the NIGP method with 200 measurements, and is still faster.
So sometimes it may be worthwhile to go for a ‘quick and dirty’ approach.

5.4. EXPERIMENTS

5

137

Figure 5.4: Example results after running the various algorithms described in the main text. Shown are the
results for (1) and (2) in the top, (3) and (4) in the middle and (5) and (7) in the bottom. The results for (6) are
not shown because they are nearly identical to those of (5).

5

138 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

Figure 5.5: The measurements obtained from the magneto-rheological fluid damper. These are used to identify
the dynamical behavior of the system.

5.4.2. IDENTIFICATION OF A MAGNETO-RHEOLOGICAL FLUID DAMPER
The next step is to test Algorithm 1, applying system identification through SONIG. We
will start doing so with a benchmark problem which is used more often in literature:
modeling the dynamical behavior of a magneto-rheological fluid damper. In particular,
the fluid damper is given a certain velocity (the input) and the damping force resulting
from this (the output) is then measured.

The measured data for this example was provided by Wang et al. (2009) and supplied
through The MathWorks Inc. (2015), which also discusses various system identification
examples using the techniques from Ljung (1999). More recently, it has been used in the
context of Gaussian Process State Space Models (GP-SSM) by Svensson et al. (2016) in
their Reduced Rank GP-SSM (RR GP-SSM) algorithm. These are the methods which we
will compare the SONIG algorithm to.

The measurement data has 3499 measurements, sampled every ∆t = 0.05 seconds,
and consisting of a single input u and a single output y . These are shown in Figure 5.5.
We will use the first 2000 measurements (10 seconds) for training (estimation) and the
next 1499 measurements (7.5 seconds) for evaluation (validation). The MathWorks Inc.
(2015) recommended to use one past output and three past inputs to predict subsequent
outputs. Based on this, we should use a model of the form

yk+1 =φ(yk ,uk ,uk−1,uk−2). (5.79)

We can tune the hyperparameters through the NIGP algorithm. Passing all 2000 mea-
surements to this algorithm will be very slow, so we feed a subset to it. Subsequently, we
do some further manual tuning of the hyperparameters, winding up with

Λx = diag
(
702,202,102,102) , λ2

f = 702, (5.80)

Σ+x = diag
(
22,0.12,0.12,0.12) , Σ+ f = 22.

Interestingly, these hyperparameters tell us something about the significance of the vari-
ous input parameters. It seems that uk does not affect the output yk+1 as much as earlier
inputs uk−1 and uk−2, as shown by its larger length scale.

5.4. EXPERIMENTS

5

139

After processing a measurement ŷk+1, the SONIG algorithm will provide us with a
posterior distribution of y

k+1
, y

k
, uk , uk−1 and uk−2. Of these parameters, we need the

joint posterior distribution of y
k+1

, uk and uk−1 for the prior distribution of the next
input point.

We do not pick a specific set of inducing input points. Instead, we add them in an
online way according to the method discussed in Section 4.3.3, whenever we encounter
a training input point which is not close to any already existing inducing input point.
With the exact settings used, which can be found in the source code through Bijl (2016a),
this results in 32 inducing input points. This is a modest number, resulting in a relatively
fast training time of only a few (roughly 10) seconds for all 2000 measurements.

Now that the SONIG algorithm has been trained, we can apply it to the validation
data set. For this, we inform the SONIG algorithm about the starting point of the magneto-
rheological fluid damper and subsequently only feed it input data u. Based on this, the
algorithm needs to figure out the output y at every subsequent time step.

During this process, we also take into account the uncertainty in the SONIG esti-
mates. Note that, when predicting y

k
, the resulting posterior distribution of y

k
will have

some uncertainty. In other words, this random variable has a nonzero variance. If we
then use y

k
to predict y

k+1
, we take this variance into account according to the methods

of Section 5.1.
By applying all these ideas in the proper way, we get the results shown in Figure 5.6.

Here we see that the SONIG algorithm is very well capable of predicting future outputs.
The Root Mean Squared Error (RMSE) of the SONIG predictions, compared to that of
other methods, is shown in Table 5.2. This table also lists the results we would get if we’d
blindly apply GP regression or the NIGP algorithm to the nonlinear ARX function (5.77).
It confirms the good performance of the SONIG algorithm.

Table 5.2: Comparison of the results of various system identification methods when applied to the data from
the magneto-rheological fluid damper. All algorithms were given 2000 measurements for training and 1499
measurements for evaluation.

Algorithm RMSE Source

Linear OE model (4th order) 27.1 The MathWorks Inc. (2015)

Hammerstein-Wiener (4th order) 27.0 The MathWorks Inc. (2015)

NLARX (3rd order, wavelet network) 24.5 The MathWorks Inc. (2015)

NLARX (3rd order, tree partition) 19.3 The MathWorks Inc. (2015)

NIGP 10.2 This paper

GP regression 9.87 This paper

NLARX (3rd order, sigmoid network) 8.24 The MathWorks Inc. (2015)

RR GP-SSM 8.17 Svensson et al. (2016)

SONIG 7.12 This thesis

The caveat for these results is that they only follow from the proper hyperparameters.
Changing the hyperparameters slightly will already give results that are slightly worse,
though still better than those of the other methods. (Yes, I have done a bit of tweaking,
though not all that much.) And using strongly different hyperparameters will of course

5

140 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

Figure 5.6: Prediction of the output of the magneto-rheological fluid damper by the SONIG algorithm, com-
pared to the true output and the best non-linear ARX model given by The MathWorks Inc. (2015). Note that in
transition regions like those at t = 11.3s, in which the SONIG algorithm is trained less well, the uncertainty is
relatively large. Also note that the two system identification methods often make the same mistakes, like for
instance at t = 12.3s.

completely invalidate the predictions.

5.4.3. NOISY STATE MEASUREMENTS OF THE PITCH-PLUNGE SYSTEM
Going back to wind energy applications, we apply our system identification algorithm
to the nonlinear pitch-plunge system described in Section 2.6. You may recall that this

system has four states: h, α, ḣ and α̇. We usually write x = [
h α

]T
so that the state

consists of x and ẋ . There was also one input β.
To identify the system, we will discretize it with time step ∆t = 0.1s. We can now

approximate the system as
xk+1 ≈ f (xk , xk−1,βk). (5.81)

This is the function that we will strive to find using the SONIG algorithm.
To get any data about the system, we need to excite it. For this we use a sinusoidal

input signal β(t) = A sin(2π f t), with amplitude A = 0.5rad and frequency f = 0.4Hz. To
make it a bit more challenging, we also add a disturbance to the input signal randomly
taken from the uniform interval [−0.06,0.06]. The resulting input signal for the first ten
seconds is shown in Figure 5.7.

You may argue here that only identifying the dynamical behavior of the system at one
input frequency is a bit too easy. In fact, to properly identify a system, you generally need
to excite it at a sufficient number of different frequencies. Only then can you identify all
the different dynamics that may be present in the system. That is also the case here.
We mainly pick one frequency for reasons of simplicity: it is easier to understand what

5.4. EXPERIMENTS

5

141

Figure 5.7: The first ten seconds of input β(t) provided to the pitch-plunge system during its identification
through the SONIG algorithm. It is a sinusoid with distortions added for extra excitations.

is going on during the learning process, and the reduced training time makes it easier
to play around with the algorithm. Naturally it is also possible to introduce more input
frequencies, but this will increase the training time required for the SONIG algorithm to
figure out sufficiently well what is going on.

For the given input signal we run a simulation. This results in the state development
shown in Figure 5.8. This development already looks rather shaky. To make things harder
for our prediction algorithm, we will also add noise to these state values. Specifically, we
use Gaussian white noise with standard deviations of σh = 10−4m and σα = 6 ·10−4rad.

After the SONIG algorithm has been trained on the first fifty seconds of measure-
ments, it has only 27 inducing input points. With these inducing input points, we can
make the predictions shown in Figure 5.9. For these predictions, only the state x at time
t = 50s was given as well as the input β at any subsequent time.

In Figure 5.9 it is worthwhile to note that the variances of the estimates increase as
time passes. This makes sense. The further we go into the future, the more uncertain our
predictions become. What is more interesting is that, at some point, the uncertainties
just explode. At this point the algorithm basically tells us it does not have a clue anymore
what the state is likely to be.

The position of this big increase in variance depends on many factors. If the SONIG
algorithm gets more training data, then it becomes more certain about its predictions,
so this ‘uncertainty explosion’ takes place later. But if the input noise would become
larger, then the uncertainty increases and the jump happens sooner. Predicting in ad-
vance when this variance increase takes place seems to be nearly impossible though. It
depends on too many factors.

After the big increase in the prediction variance, also the mean of the estimates is not

5

142 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

Figure 5.8: The state development of the pitch-plunge system. The first fifty seconds are used for training and
the remaining ten seconds for validation. Measurements were taken at a wind speed of U = 10m/s.

Figure 5.9: The prediction of the state development of the pitch-plunge system for the final ten seconds. Ini-
tially the estimates are valid, but as we go further into the future, the uncertainties grow, until the prediction
algorithm has no idea anymore what the future will hold.

5.5. OVERVIEW OF LITERATURE

5

143

Figure 5.10: The prediction of the state development of the pitch-plunge system for the final ten seconds, when
the SONIG algorithm is told to reduce the variance of its estimates by 5% after every time step.

always sensible anymore, especially when predicting α. But this does raise the question,
‘What would have happened if that jump in variance had not occurred? Would the mean
of the estimates be more sensible then?’ We can figure this out if we manually toggle
down the variance. For example, we can manually tell the SONIG algorithm to reduce
the variance of the state predictions by 5% after every time step. This seems like a rather
arbitrary thing to do, but it does provide us with more accurate results, shown in Fig-
ure 5.10. So apparently it can sometimes be worthwhile to manually adjust the variance
of predictions made by the SONIG algorithm.

From this experiment we can conclude that the SONIG algorithm is capable of iden-
tifying nonlinear systems with multiple states that are subject to measurement noise.
Further research can look into what exactly the limits of the SONIG algorithm are. Can
the SONIG algorithm also identify more complicated systems?

This is actually a very subjective question. I believe that, if plenty of computational
resources are available, and if sufficient time is spent on properly tuning the hyperpa-
rameters, then pretty much any system can be identified through the SONIG algorithm.
So the main question is not what the SONIG algorithm is capable of doing, but how easy
it is to apply, especially when time and computational resources are limited. And that
strongly depends on the background of the person applying the SONIG algorithm.

5.5. OVERVIEW OF LITERATURE
As usual we take a look at how this subfield of Gaussian process regression developed,
and would what would be potential areas of future exploration.

5.5.1. LITERATURE OVERVIEW

The general problem of dealing with uncertain input points in (not necessarily Gaus-
sian process) regression problems is known as the errors-in-variables regression. An early
analysis into such methods was given by Dellaportas and Stephens (1995).

When it comes to Gaussian processes regression, early work was done by Girard and
Murray-Smith (2003). Their approach towards dealing with stochastic trial points con-

5

144 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

sisted of using a Taylor approximation of the Gaussian process and integrating over that.
Though promising, it is not the solution which has become commonplace for stochas-
tic trial points. After all, it turns out that a Taylor approximation is not necessary here.
Instead, the moment matching approach discussed in Sections 5.1.3 and 5.1.4 suffices.
This approach was already described by Girard et al. (2003), Candela et al. (2003), but
was further developed by Deisenroth (2010), who then successfully used it in his PILCO
algorithm (see Deisenroth and Rasmussen (2011)).

When it comes to stochastic measurement points, there have been various less suc-
cessful attempts. One attempt was made by Dallaire et al. (2009), who effectively applied
the uncertainty incorporating SE covariance function (5.32). A similar approach was
taken by Girard and Murray-Smith (2003), who incorporated a Taylor approximation to
set up their own uncertainty incorporating covariance function.

The problem with these methods is that they do not take into account posterior data.
To see how this works, suppose that our measurements have given us a strong indication
that the function f (x) that we are approximating is mostly flat in one part of the input
space, and highly sloped in another part. In that case, we know that in the first part
the input noise does not have any significant effect, while in the second part it most
certainly does. This is useful data which we should take into account. Yet none of the
articles which we just described do. As a result, their predictions do not use all available
data and hence will not be as accurate as they could be.

A method that does take into account posterior data is the NIGP method developed
by McHutchon and Rasmussen (2011), also described in Section 5.2.2. This is a promis-
ing and effective method of taking into account uncertainty in the measurement input
points. Its main downside is that it cannot be applied to large data sets. That issue is
solved by the SONIG method developed in this chapter and published about through Bijl
et al. (2017a).

There are also other more circuitous methods to take into account uncertainty in
the measurement input points. Recent work makes use of techniques like variational
inference, as described by Titsias (2009), Titsias and Lawrence (2010). To learn more
about how you can apply these methods to take into account noisy input points, read
the work by McHutchon (2014), Damianou et al. (2016).

In addition, it is also possible to see the problem as a heteroscedastic one. In a het-
eroscedastic problem, the noise variance is yet another function of the input x . Con-
tributions on this were made by Goldberg et al. (1998), Le et al. (2005), Snelson and
Ghahramani (2006b), Kersting et al. (2007), Lazaro-Gredilla and Titsias (2011), Wang and
Neal (2012). We will not go further into depth on this though. After all, assuming het-
eroscedasticity would give more degrees of freedom to the learning algorithm than is
actually required – we already know that the ‘additional output noise’ due to the input
noise depends on the slope of the function – so these methods are expected to perform
less well than other methods which do take this knowledge into account.

5.5.2. SUGGESTIONS FOR FURTHER RESEARCH

The SONIG algorithm developed in this chapter is still very new. As a result, there are
plenty of ways in which it can be improved further. We will look at a few.

5.5. OVERVIEW OF LITERATURE

5

145

• Improving the method to find the posterior input distribution
In Section 5.2.4 we looked at a method to find/approximate the posterior distribution
of the measurement input point. At the end of this section we discussed an iterative
procedure of getting the most accurate approximation. The problem with this pro-
cedure is that it does not always converge. It would be very interesting to figure out
in which cases this happens, and whether this can be worked around in such a way
that the method always returns a proper posterior distribution.

• Improving the toolbox inversion problems
There is a SONIG Matlab toolbox available at Bijl (2016b). The main problem that
this toolbox is subject to is the inability of Matlab to invert certain types of matrices.
(For example, take Xu = {−10,−9, . . . ,9,10}, use λ f = 1, λx = 4 and set up Kuu . Matlab
will not be able to properly find the inverse K −1

uu .) Working around this in some way
would significantly improve at least the user-friendliness of the toolbox. However,
doing so might require fundamental changes in the way Matlab inverts matrices, or
a switch away from Matlab altogether. I would recommend the latter.

• Incorporating a prior covariance between the input and the output
In Section 5.3.4 we have looked at how we can calculate the posterior covariance be-
tween the input x+ and the output f +. However, if such a covariance is also present a

priori, then the SONIG algorithm is not yet capable of taking that into account. This
may for instance happen when the measurement noise present on the input and on
the output is correlated. How can we take such a correlation into account?

• Online tuning of the hyperparameters
The SONIG algorithm is an online method. However, it depends on offline methods
(like the NIGP method) for the tuning of its hyperparameters. Just like we wondered
in the previous chapter, we should once more ask ourselves, ‘Is it possible to tune the
hyperparameters in an online way?’ And can we then also do so when the measure-
ment input points are subjected to noise?

• Improving the NIGP algorithm by incorporating the second mean derivative
In footnote 8 on page 126 we noted that the NIGP method could potentially be im-
proved by incorporating the second derivative of the mean in its expressions. Whether
this actually amounts to an improvement is something which needs to be confirmed
by experiments. It would be interesting to see how much of an improvement this
would actually result in. Also, incorporating this improvement into the NIGP source
code could also be useful for people using this code.

• Sampling from the future development of a system output
In Sections 5.4.2 and 5.4.3 we saw that we can use the SONIG algorithm to predict
the future for systems we identified. The result can again be plotted like a Gaussian
process. An interesting question is, ‘Can we also take samples from this prediction,
as if it was a Gaussian process?’
For the Gaussian processes we have seen in earlier chapters this used to be possible,
because we can know the covariance between any two predicted values. However,
the SONIG algorithm does not provide us with the covariance between predicted val-
ues that are quite some time apart. So how would sampling work then? Is it possible

5

146 5. NOISY INPUT GAUSSIAN PROCESS REGRESSION

to adjust the SONIG algorithm to calculate such covariances after all? And addition-
ally, if it would be possible to sample from the future development of the state, would
these samples be sensible, especially after the variance blows up like in Figure 5.9?

6
GAUSSIAN PROCESS OPTIMIZATION

Summary — The maximum of a Gaussian process does not occur at a fixed point, but it is
actually a random variable with a distribution of its own. This distribution cannot be cal-
culated analytically, and trying to find it by looking at the derivative of a Gaussian process
fails because we also find local optimums. Instead, we can approximate the maximum
distribution using a Monte Carlo approach: through particles.

To improve the convergence properties of the resulting Monte Carlo maximum distribu-
tion algorithm, we can implement several ideas from sequential Monte Carlo samplers,
mostly related to importance sampling. When we do, we can efficiently approximate the
distribution of the maximum of a Gaussian process.

We can then apply this algorithm to the Gaussian process optimization problem. The
problem here is to optimize an unknown function: which inputs should we try, to find
the optimum, while keeping the regret limited? A variety of methods exist here. Most of
them make use of an acquisition function, and we pick the input point maximizing this
acquisition function. An alternative idea is to sample from the maximum distribution,
which results in Thompson sampling.

Experiments show that which optimization method works best mostly depends on which
function you are optimizing, as well as how much you tune the optimization method to
this function. As such, we cannot say which optimization method works best.

Despite this, various optimization methods have successfully been applied at tuning the
controller gains of a wind turbine simulation, reducing the fatigue damage it sustained
by minimizing the damage equivalent load. Directly minimizing the damage equivalent
load in an online data-driven way is something that most tuning algorithms cannot do,
due to the nonlinear nature of the damage equivalent load. However, Gaussian process
optimization has been designed to deal with uncertainties and nonlinearities, making it
ideally suited for systems suffering from these properties.

147

6

148 6. GAUSSIAN PROCESS OPTIMIZATION

We often use Gaussian processes to approximate value functions, cost functions and
such. Because of this, it is important to know how to find the maximum (or equivalently,
the minimum) of a Gaussian process. We can do this either for a given Gaussian process,
or we can choose measurement points ourselves to most efficiently find the maximum.

We will start with looking at how to find the maximum of a given Gaussian process
(Section 6.1). We discover that particles methods are an effective way of doing so, but to
further improve on the developed method, we need to learn more about particle meth-
ods. That is why we take a quick intermezzo on sequential Monte Carlo samplers (Sec-
tion 6.2) and then use these ideas to further improve our methods (Section 6.3).

After knowing how to find the maximum of a given Gaussian process, we look into
the process of Gaussian process optimization, where we have to find the optimum of a
function f (x), all the while approximating it through Gaussian process regression (Sec-
tion 6.4). We continue by testing all our methods in a couple of experiments (Section 6.5)
and end with an overview of the literature (Section 6.6).

6.1. FINDING THE MAXIMUM OF A GAUSSIAN PROCESS
Consider a given Gaussian process. How do we find the maximum of this? That is the
central question we will look at now. We start with introducing the concept of the maxi-
mum distribution (Section 6.1.1). We then apply an analytical approach (Section 6.1.2), a
derivative approach (Section 6.1.3) and a particle approach (Section 6.1.4) towards find-
ing this maximum distribution. For the particle approach, we then study the distribution
which the particles in the limit converge to (Section 6.1.5) and what this distribution in-
tuitively means (Section 6.1.6).

6.1.1. THE MAXIMUM DISTRIBUTION
Consider a Gaussian process with a posterior mean function µ(x) and posterior covari-
ance function Σ(x , x ′). An example is shown in Figure 6.1. We want to find the maximum
of this Gaussian process. That is, the optimal input1 x∗ where this maximum appears
and the corresponding optimal output f ∗ = f (x∗). However, first we should ask our-
selves ‘What do we mean with the maximum?’

You could argue that the maximum of the GP is simply the maximum of the mean
function µ(x), but this would be incorrect. After all, we have seen in Section 2.3.2 that
a Gaussian process is basically a distribution over functions. As such, we should look at
various sample functions from this distribution, which are also shown in Figure 6.1.

Here we see something interesting though. All these samples functions from Fig-
ure 6.1 have a different maximum! As such, the maximum x∗ is not a fixed point, but is
a random variable x∗. And just like every random variable, it has a distribution called
the maximum distribution. Hence, finding the maximum of a Gaussian process comes
down to finding the maximum distribution.

How do we do that? Option one is to sample thousands of functions from the Gaus-
sian process, find the maximum for each one and make a histogram of the results. This
brute-force method gets the job done pretty well, resulting in Figure 6.2. However, it

1In literature the optimal input is usually denoted by x∗, but we use x∗ so as not to confuse it with trial input
points x∗.

6.1. FINDING THE MAXIMUM OF A GAUSSIAN PROCESS

6

149

Figure 6.1: An example Gaussian process (λ f = 1, λx = 0.6) generated from nm = 20 measurements, with three
sample functions. Note that the three sample functions all have their maximums, indicated by crosses, in very
different positions. The measurements were generated from the function f (x) = cos(3x)− 1

9 x2+ 1
6 x (not shown

here) and were subjected to a noise with standard deviation σ̂ fm = 0.3.

Figure 6.2: The maximum distribution of the Gaussian process of Figure 6.1. It was obtained by taking 100000
sample functions from the GP, finding the position of the maximum for each one and generating a histogram.
Note that within the interval [−3,3] there are three places where maximum is likely to be, each with its own
likelihood. There is also a spike at the left end of the interval. Such spikes regularly happen when there is a
strong uncertainty near the end of the interval.

6

150 6. GAUSSIAN PROCESS OPTIMIZATION

is very computationally intensive. And although this can be solved through parallel
computing, we still run the risk of finding only local optimums, especially for higher-
dimensional nonlinear functions. So isn’t there an analytical solution for the maximum
distribution?

6.1.2. AN ANALYTICAL APPROACH TO FINDING THE MAXIMUM
Let’s suppose that we have a set X of possible input points x1, x2, (Usually, X equals
the set of trial points X∗.) For each of these input points xi , we have a function value
f

i
≡ f (xi). We now write the maximum distribution as pm(xi). So we have pm(xi) ≡

p(xi = x∗). In other words, this equals the probability that f
i

is the maximum.

To make this problem a bit easier, we will for now assume that the number of points
is a finite number n. Within Gaussian processes, this does not have to be the case, so
this assumption does limit us somewhat, but for now we ignore that. In this case, the
probability that f

1
is the maximum can be written as

pm(x1) = p(f
1
> f

2
, . . . , f

1
> f

n
), (6.1)

and similarly for other input points. To find this probability, we can find the difference

f̃ ≡


f

1
...

f
1

−


f

2
...

f
n

∼N
(
µ̃, Σ̃

)
(6.2)

=N


µ1 −µ2

...
µ1 −µn

 ,

Σ11 −Σ12 −Σ21 +Σ22 · · · Σ11 −Σ1n −Σ21 +Σ2n
...

. . .
...

Σ11 −Σ12 −Σn1 +Σn2 · · · Σ11 −Σ1n −Σn1 +Σnn


 .

The probability that f
1

is the maximum is now given by

pm(x1) = p(f̃ > 0), (6.3)

where the inequality must hold for every element of the vector f̃ . Note that the number

of elements of f̃ equals n−1. As such, when n = 1 we directly have pm(x1) = 1 and when
n = 2 it follows through Theorem B.12 that

pm(x1) = p(f̃ > 0) (6.4)

=Φ (∞)−Φ
(

µ2 −µ1p
Σ11 +Σ22 −2Σ12

)
=Φ

(
µ1 −µ2p

Σ11 +Σ22 −2Σ12

)
,

where Φ(x) is the Cumulative Density Function (CDF) of the standard Gaussian distri-
bution, defined in (B.70). Note that we have used Φ(∞) = 1 and 1−Φ(x) = Φ(−x). The
CDFΦ(x) does not have an analytical expression, but at least it is well-known and can be
easily computed through numerical methods.

6.1. FINDING THE MAXIMUM OF A GAUSSIAN PROCESS

6

151

This is a different story when n > 2. Now we need to compute the probability

pm(x1) = p(f̃ > 0). (6.5)

However, doing so in an efficient and accurate way for arbitrary µ̃ and Σ̃ is a very com-
plicated problem.

For small n (up to n = 4) the resulting probability is usually approximated through
adaptive quadratures, while for larger n (up to n = 25) it is often better to use some kind
of quasi-Monte Carlo integration algorithm. For more details about these methods, see
the work by Drezner (1994), Genz (2004).

However, when we have many more dimensions, the problem becomes impossible
to solve. Either the results will be very inaccurate, or the runtime will increase to unac-
ceptable proportions. (Or both.) In Gaussian process regression we generally work with
hundreds to thousands of points, if not more. As such, we can conclude that solving this
problem analytically is not possible.

6.1.3. A DERIVATIVE APPROACH TO FINDING THE MAXIMUM

Another option is to use the derivative to find the position of the maximum. At the po-
sition of the maximum, the derivative must be zero. Since the derivative of a Gaussian
process is a Gaussian process as well, as we saw in Section 2.5.1, we can just check the

probability of
d f

d x being equal to zero. When we apply this and normalize the result, we
get Figure 6.3 (right).

Figure 6.3: For the Gaussian process shown in Figure 6.1, the derivative Gaussian process (left) together with
the normalized probability that this derivative equals zero (right).

There are two main problems with this approach. The first is that we also find the
minima of the function. This can be solved by taking into account the second derivative
as well. That is, we consider the probability

p

(
d f

d x
= 0,

d 2 f

d x2 < 0

)
= p

(
d 2 f

d x2 < 0

∣∣∣∣d f

d x
= 0

)
p

(
d f

d x
= 0

)
. (6.6)

6

152 6. GAUSSIAN PROCESS OPTIMIZATION

The easy part here is finding the probability p

(
d f

d x = 0
)
, since we just calculated this for

Figure 6.3. The hard part is finding the probability

p

(
d 2 f

d x2 < 0

∣∣∣∣d f

d x
= 0

)
. (6.7)

We know how to find the joint distribution of
d f

d x and
d 2 f

d x2 and as such we can also find the

distribution of
d 2 f

d x2

∣∣∣ d f

d x = 0. However, you should keep in mind that, since x is a vector,

this quantity is a matrix. As such, we need to determine the probability that this random
matrix is negative definite. This problem by itself is very hard, if not impossible, to solve
efficiently.

We can work around this, if we add an assumption: we assume that all non-diagonal

elements of the second derivative
d 2 f

d x2 are zero. In this case, checking for negative def-
initeness is easy: all diagonal elements have to be negative. However, this assumption,
suggested by Hernández-Lobato et al. (2014a), can also mark saddle points as optimums,
which is of course incorrect.

If we are dealing with a single-input function in which the input x equals a scalar
x, this saddle point problem does not occur. After all, a scalar value is negative defi-
nite when it is negative. By working out this idea further, we can obtain the maximum
distribution displayed in Figure 6.4, which directly shows a second problem with this
approach.

Figure 6.4: The (normalized) probability that the GP from Figure 6.1 has both a zero derivative and a negative
second derivative.

Looking at Figure 6.4, we see that all the peaks are more or less equally large, so it

6.1. FINDING THE MAXIMUM OF A GAUSSIAN PROCESS

6

153

seems as if the maximum is equally likely to be at −2, at 0 and at −2. Naturally this is
incorrect, and the fault comes from the fact that our method only considers local maxi-
mums. We do not consider the value of these maximums and which one might have the
largest value.

To solve this, Hernández-Lobato et al. (2014a) suggest to add the requirement that
f (x∗) is larger than all previous measurements f̂m1 , . . . , f̂mnm

. Or equivalently, by re-

quiring f (x∗) to be larger than the maximum of f̂m1 , . . . , f̂mnm
. This is a rather sensi-

tive assumption, as the maximum of these values strongly depends on what noise we
happened to have during that particular measurement. A single case of very ‘benefi-
cial’ noise will significantly affect the algorithm. Nevertheless, it may be better than the
alternative assumptions, though for more information on this you can read the work
by Hernández-Lobato et al. (2014a).

We can conclude that using derivatives may in some cases be an effective way of
finding local maximums of a Gaussian process. Finding global maximums is still difficult
though, and it requires additional restrictive assumptions. Since this method is not ideal
yet, let’s consider a different method.

6.1.4. A PARTICLE APPROACH TO FINDING THE MAXIMUM
Let’s go back to our situation where we had n function values f

1
, . . . , f

n
. To find the true

maximum distribution of Figure 6.2, we basically set up n bins, one for each input xi . We
then took a sample from the n-dimensional distribution f and found the maximum. The
bin corresponding to this maximum got one counter or particle. After a fixed number np

samples, we were done. We found our approximated maximum probability distribution.
The problem here was that, if n is large, then this will be a computationally intensive

process. After all, generating a sample from f takes O (n3) time. We need to fix that. The
idea now is not to compare all n points, but only compare two points at a time. In short,
the plan is the following.

1. We start by dividing all np particles randomly (or regularly) over all n bins.

2. For each particle, we apply the following steps.

(a) Consider the bin xi it is in.

(b) Pick a random bin x j (which in theory might be the same).

(c) Set up the joint distribution[
f (xi)

f (x j)

]
∼N

([
fi

f j

]∣∣∣∣[µ(xi)
µ(x j)

]
,

[
Σ(xi , xi) Σ(xi , x j)
Σ(x j , xi) Σ(x j , x j)

])
(6.8)

and take a sample
[

f̂i f̂ j
]T

from this.

(d) If f̂ j > f̂i , move the particle from bin xi to x j .

3. We repeat the above procedure until the distribution of particles has more or less
converged.

We call this algorithm the Monte Carlo Maximum Distribution (MCMD) algorithm, named

6

154 6. GAUSSIAN PROCESS OPTIMIZATION

after the Monte Carlo methods which we further discuss in the next Section 6.2.
Let’s discuss some terminology. We will call the existing particles, and the bins which

they are in, the champions. The comparison of a particle and its input point by another
input point is called a challenge and the corresponding challenging input point is called
the challenger. The whole process of challenging every individual champion is called a
round of challenges. We denote the number of rounds used by nr .

When we apply the algorithm for several rounds, we get the developments shown in
Figure 6.5. Here we see that the MCMD algorithm mostly works, but there are two poten-
tial issues. The first is that the particles do not seem to converge to the true maximum
distribution but to a different distribution. The second is that convergence is somewhat
slow. After nr = 20 challenge rounds we are nearly there. For problems with a larger or
higher-dimensional input space, we will require far more rounds, which would be unac-
ceptable.

Figure 6.5: The development of the distribution of particles over nr = 20 rounds. Shown are the true maximum
distribution from Figure 6.2, the limit distribution of the particles derived in Section 6.1.5 and the distribu-
tion of the particles over each of the rounds. The darker the line, the later the round is. Note that the limit
distribution of the particles does not equal the true maximum distribution.

We will save the second problem for Section 6.3, after a quick intermezzo into Monte
Carlo and particle methods (Section 6.2), but we can look into the problem of the limit
distribution now.

6.1.5. FINDING THE LIMIT DISTRIBUTION OF THE PARTICLES
Let’s see if we can analytically calculate the limit distribution of the particles in the MCMD
algorithm. If we can indeed do so, then we right away know that the distribution is dif-
ferent from the true maximum distribution, since no analytical expression for that dis-
tribution exists.

6.1. FINDING THE MAXIMUM OF A GAUSSIAN PROCESS

6

155

Suppose that, after round k, the number of particles in bin xi is denoted by nk
i . Let’s

calculate how many particles are expected to be in each bin after another round of chal-
lenges. To be precise, let’s calculate the quantity nk+1

i .
We know that the particles from any bin x j (with j 6= i) might move to bin xi . There

currently are nk
j particles in bin x j . These particles have a 1

n chance to be challenged by

xi . Additionally, let’s denote the chance that xi will ‘beat’ x j by Pi j . As such, a number
1
n Pi j nk

j particles will move from bin x j to xi . This means that the expected number of

particles moving into the bin xi equals

Expected particles entering xi :
1

n

n∑
j=1

Pi j pk
j . (6.9)

In this equation, we can calculate the probability Pi j from (6.4). It equals

Pi j ≡ p(f
i
> f

j
) =Φ

(
µi −µ j√

Σi i +Σ j j −2Σi j

)
= 1

2
+ 1

2
erf

 µi −µ j√
2
(
Σi i +Σ j j −2Σi j

)
 , (6.10)

with erf(. . .) being the well-known error function.
However, particles may also leave the bin xi . There are currently nk

i particles in the

bin xi . Each other bin x j has a 1
n chance of challenging each of these particles, and

subsequently a chance of P j i of winning. As such, the expected number of particles
leaving bin xi equals

Expected particles leaving xi :nk
i

1

n

n∑
j=1

P j i . (6.11)

From this it follows that

nk+1
i = nk

i + 1

n

n∑
j=1

(
Pi j nk

j −P j i nk
i

)
. (6.12)

Note that in the sum we should actually ignore j = i , but even if we do sum over it, the
corresponding summation term will become zero. This does not even depend on the
value which we would assign to Pi i , even though I usually define Pi i = 1

2 .

Next, let’s lump all values nk
1 , . . . ,nk

n into the vector nk and let’s lump all probabili-
ties Pi j into the matrix P . Note that P is not a symmetric matrix, but we instead have
P +P T = 1n , with 1n being the n ×n matrix in which all elements equal 1. By carefully
considering (6.12), and which terms we are multiplying and adding up, we can now write

nk+1 = nk + 1

n

(
P −diag(1nP)

)
nk . (6.13)

In the limit case we will have a stationary distribution n̄ of particles. As such, we then
have nk+1 = nk = n̄. This can only happen if the last term in the above expression is
zero. Hence, we must have (

P −diag(1nP)
)

n̄ = 0. (6.14)

6

156 6. GAUSSIAN PROCESS OPTIMIZATION

We cannot use this expression directly to find n̄, because the above matrix is not invert-
ible. To be precise, it is of rank n −1. However, we also know that the sum of all particles
in all bins equals the total number of particles np . That is,

1T n̄ = np . (6.15)

If we replace the bottom row of (6.14) by this expression, then we do have an invertible
matrix and we can calculate the limit distribution of the particles. This limit distribution
is also shown in Figure 6.5.

From Figure 6.5 we can see that the limit distribution does not equal the true max-
imum distribution. It is slightly less peaky. This means that the algorithm is somewhat
less certain of where the maximum will be, but it is aware of this uncertainty. In addition,
as the Gaussian process gets more measurement data and hence becomes more accu-
rate, also the maximum distribution will become more and more accurate, reducing the
effects of this problem.

6.1.6. AN INTUITIVE VIEW ON THE TWO DIFFERENT DISTRIBUTIONS
Let’s ask ourselves, ‘Why is the limit distribution different from the true maximum dis-
tribution?’ To figure this out, we will consider an example problem.

Consider the Gaussian random variables f
1

, f
2

and f
3

. We assume that f
1

and f
2

are always equal, except for a tiny bit of noise. That is, f
2
= f

1
+ν, with ν ∼ N

(
0,ε2

)
and where ε is a very small number. On the flip side, f

3
is independent from all other

parameters. If we furthermore take the means as zero and the variances as one, then we
get the distribution  f

1
f

2
f

3

∼N

 f1

f2

f3

∣∣∣∣
0

0
0

 ,

1 1 0
1 1+ε2 0
0 0 1

 . (6.16)

We can reason for ourselves what the true maximum distribution will be. In 50% of the
cases f

3
will be larger than f

1
≈ f

2
and hence be the maximum. In the other 50% of the

cases, either f
1

or f
2

will be the largest, depending on the noise ν. So f
1

and f
2

each are

the maximum in 25% of the cases.
However, now let’s consider the matrix P . Any function value f

i
has a 50% chance to

be bigger than any other function value f
j
. As such, P equals

P =
 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

 , (6.17)

which eventually results in a stationary particle distribution of

n̄ =
 1

3
1
3
1
3

n. (6.18)

6.2. INTERMEZZO: SEQUENTIAL MONTE CARLO SAMPLERS

6

157

Based on this, the particle method is incapable of taking into account covariances be-
tween other function values. That is, if f

3
happens to be larger than f

2
in a certain case,

the algorithm cannot determine that f
3

then automatically is also larger than f
1

. This

leads to a lower estimated probability that f
3

is the maximum.

This problem is inherent in the algorithm and in the simplifications that we had to
make. However, as we saw in Figure 6.5, for most Gaussian processes it just results in a
slightly less peaky maximum distribution, which is not a significant problem. And there
also is a way in which we could reduce this effect.

6.1.7. USING MULTIPLE CHALLENGERS
We have found that the limit distribution of the particles does not equal the true maxi-
mum distribution of the Gaussian process. We can get the limit distribution closer to the
true maximum distribution by adjusting the MCMD algorithm. Instead of challenging
every champion particle by a single challenger, we now challenge it by nc challengers.
So for each of the np particles xi , we pick nc random bins x j1 , . . . , x jnc

and set up the
joint distribution

f (xi)

f (x j1)
...

f (x jnc
)

∼N




fi

f j1

...
f jnc


∣∣∣∣

µ(xi)
µ(x j1)

...
µ(x jnc

)

 ,


Σ(xi , xi) Σ(xi , x j1) · · · Σ(xi , x jnc

)
Σ(x j1 , xi) Σ(x j1 , x j1) · · · Σ(x j1 , x jnc

)
...

...
. . .

...
Σ(x jnc

, xi) Σ(x jnc
, x j1) · · · Σ(x jnc

, x jnc
)


 .

(6.19)
We then take a sample from this distribution, find the maximum of this sample vector,
and put the particle in the corresponding bin.

Note that in the limit case, if we set the number of challengers nc equal to the number
of bins n, and if we ensure that all challengers are from different bins, then we get the true
maximum distribution. This even happens after a single round of challenges. Naturally,
for continuous problems with infinitely many bins n, this will not be possible, but this
does show that if we take a sufficient number of challengers, we get closer and closer to
the true maximum distribution. This is also confirmed by Figure 6.6, which shows that
by using multiple challengers we not only get faster convergence but also converge to a
distribution closer to the true maximum distribution.

For the rest of this thesis, for reasons of simplicity, we will use only nc = 1 challenger.
We can always implement more challengers in the case where we wind up with an incor-
rect distribution of particles.

6.2. INTERMEZZO: SEQUENTIAL MONTE CARLO SAMPLERS
We can improve the MCMD algorithm significantly by applying ideas from sequential
Monte Carlo samplers (SMC samplers). To do so, we first need to know how such sam-
plers work. This is explained well by the books of Owen (2013) and Schön and Lindsten
(2017). However, this section provides you with a quick introduction into the subject,
with most of the theory taken from either of these books.

We start by examining the main idea behind Monte Carlo methods (Section 6.2.1).
Then we introduce a technique called importance sampling (Section 6.2.2) and extend

6

158 6. GAUSSIAN PROCESS OPTIMIZATION

Figure 6.6: The development of the distribution of particles over nr = 5 rounds when we use nc = 30 chal-
lengers per round. Shown are the true maximum distribution from Figure 6.2, the limit distribution of the
particles if we would use only nc = 1 challenger per round, and the distribution of the particles over each of the
rounds. The darker the line, the later the round is. Note that the final distribution of particles converges faster
and also converges to a limit distribution closer to the true maximum distribution, as compared to the previ-
ous limit distribution which is still shown for comparison. (Calculating the new limit distribution analytically
is impossible.)

6.2. INTERMEZZO: SEQUENTIAL MONTE CARLO SAMPLERS

6

159

it to self-normalized importance sampling (Section 6.2.3). We then extend the ideas
to multiple time steps through sequential importance sampling (Section 6.2.4). Sub-
sequently, we solve a few problems which might occur by introducing the concepts of
resampling (Section 6.2.5), mixture importance sampling (Section 6.2.6) and defensive
importance sampling (Section 6.2.7).

6.2.1. THE IDEA BEHIND MONTE CARLO METHODS
Suppose that we have some system with state equation

xk+1 = f (xk). (6.20)

Here the state transition function f (xk) does not even have to be a deterministic sys-
tem. It can also be subject to process noise, such that inserting the same input xk does
not always give the same output xk+1. However, we do assume that we know this state
transition function f (xk), including the distribution of the noise.

The main question we now want to ask is, ‘If xk is a random variable, distributed
according to p(xk), what is then the distribution p(xk+1) of xk+1?’

For arbitrary distributions p(xk) and arbitrary functions f (xk), there is no general
analytical solution. There is something else we can do though. We can pick a large num-
ber np of samples x1

k , . . . , x
np

k from the distribution p(xk). We will call these particles. For

each of them, we calculate x1
k+1, . . . , x

np

k+1 through (6.20). Bluntly put, we just pick lots
of random initial states from our known distribution and see what the outcome will be.
This type of methods is known as Monte Carlo2 methods.

Based on the particles x1
k+1, . . . , x

np

k+1, we can now set up the distribution of xk+1.
Officially the result would be the probability density function

xk+1 ∼ p(xk+1) = 1

np

np∑
i=1

δ
(

xk+1 −x i
k+1

)
. (6.21)

This posterior distribution has a lot of advantages when we want to calculate things with
it. For instance, if we want to find the expected value of h(xk+1) for any transforming
function h(. . .), it follows as

E
[
h

(
xk+1

)]= ∫
X

h(xk+1)p(xk+1)d xk+1 (6.22)

= 1

np

np∑
i=1

∫
X

h(xk+1)δ
(

xk+1 −x i
k+1

)
d xk+1

= 1

np

np∑
i=1

h
(

x i
k+1

)
.

The probability density function (6.21) is not very suitable for making nice plots though.
After all, we are plotting very spiky delta functions. We would get a result like that from
Figure 6.7 (top right).

2The name ‘Monte Carlo’ originated as a code name for the method during the Manhattan Project in the 1940s,
where such methods were central to the simulations that were performed. The name itself refers to the Monte
Carlo casino in Monaco.

6

160 6. GAUSSIAN PROCESS OPTIMIZATION

Figure 6.7: An application of calculating the distribution of the next state of a system. We start with the distribu-
tion of the initial state xk (top left), which we (quite arbitrarily) choose to be uniform. We know its properties.
We then sample np particles from this initial distribution. We use either np = 20 or np = 1000 in this example.

For all these particles xk we calculate xk+1 = f (xk) = 0.8xk +ν, where we have ν ∼ N
(
0,0.12)

. We then use
these particles to approximate the distribution of xk+1. We either do this through the delta function (top right),
a block kernel function with width w = 0.1 (bottom left) or a Gaussian kernel function with width σx = 0.05
(bottom right). Also the analytical distribution of the next state has been calculated and plotted as comparison.

6.2. INTERMEZZO: SEQUENTIAL MONTE CARLO SAMPLERS

6

161

To solve this issue, we can use a technique known as Kernel Density Estimation (KDE).
In this method we use a kernel3 kx (xk+1, x i

k+1) to estimate the probability density as

xk+1 ∼ p(xk+1) = 1

np

np∑
i=1

kx (xk+1, x i
k+1). (6.23)

As kernel function, we can use a block function with some width w , a Gaussian expo-

nential function N
(

xk+1|x i
k+1,Σx

)
, or something else. Pretty much any kernel can be

used, although we do want to use kernel functions whose integral equals one, to get a
proper probability density functions. Some possible results are shown in Figure 6.7.

It is worthwhile to note here that, as you get more particles, your approximation be-
comes more accurate. At the same time, as you get more particles, you can also reduce
the width of your kernel function, up to the point where you graph stops being nice and
smooth.

6.2.2. IMPORTANCE SAMPLING
Let’s take a look at the distribution p(xk) of the initial state. It may happen that there
is a certain region χ in the state space where the states are very important, while the
probability p(xk), with xk ∈ χ, is very small. We call these rare events. If we sample our
particles from p(xk), then we are unlikely to get particles representing these rare events
at all. This results in an incomplete picture. How can we solve this?

The key is to not draw our samples from the distribution p(xk), but use another dis-
tribution q(xk) to sample our particles from. For instance, we can take a distribution
q(xk) which gives more particles representing rare events. There is one small problem
with this though.

Suppose that we want to find the mean of xk . This mean is formally defined as

E
[

xk

]= ∫
X

xk p(xk)d xk . (6.24)

We can also find the mean from our particles x1
k , . . . , x

np

k . This is done by applying (6.21),
similarly to what we did at (6.22). In our old set-up it would follow that

E
[

xk

]= ∫
X

xk p(xk)d xk = 1

np

np∑
i=1

∫
X

xkδ
(

xk −x i
k

)
d xk = 1

np

np∑
i=1

xk . (6.25)

If we use the new set-up, and select our particles from q(xk), we wind up with a different
result though. The key here is to instead write

E
[

xk

]= ∫
X

xk
p(xk)

q(xk)
q(xk)d xk =

∫
X

xk w(xk)q(xk)d xk , (6.26)

where we have defined the weight w(xk) to equal p(xk)
q(xk) . From this comes the idea of

adding weights to the particles, also known as importance sampling.

3We use the notation kx (. . .) here, instead of k(. . .), to prevent confusion with the Gaussian process covariance
function.

6

162 6. GAUSSIAN PROCESS OPTIMIZATION

Let’s take a look at how exactly it works. Suppose that we want to find the posterior
distribution of xk+1. To find this, we sample particles x1

k , . . . , x
np

k from q(xk). To every

particle we attach a weight w i = w(x i
k). Subsequently, we feed all particles x1

k , . . . , x
np

k
through the state transition function f (xk) to get the particles in the next time step
x1

k+1, . . . , x
np

k+1. The posterior distribution of xk+1 can now be approximated through

xk+1 ∼ p(xk+1) = 1

np

np∑
i=1

w i kx (xk+1, x i
k+1). (6.27)

It is important to note that events which we emphasize through q(xk) (like the rare
events) will get more particles than before, but these particles subsequently have a lower
weight. As such, we will still find the correct posterior distribution.

6.2.3. SELF-NORMALIZED IMPORTANCE SAMPLING
Let’s consider these weights w(xk). What kind of values can they have? Naturally, if q(xk)
is very large or very small for certain states xk , these weights can have very small or very
large values as well. The average value for these weights, however, is

E [w(xk)] =
∫

X
w(xk)q(xk)d xk =

∫
X

p(xk)

q(xk)
q(xk)d xk =

∫
X

p(xk)d xk = 1. (6.28)

So the sum of all np weights on average equals np . Note that this is an average. It may
happen that we have selected more rare events than expected, and the sum of all weights
will be a bit lower, or we have selected less rare events, and the sum will be higher. Never-
theless, the sum of all weights has an expected value of np , which is an important insight
to keep in mind.

Now let’s make our problem a bit harder. Suppose that we do not know the prior
distribution p(xk) itself, but we do know it up to a proportionality constant. That is,
we can calculate the value of p̃(xk) = C p(xk), but both C and p(xk) are unknown. In
addition, we cannot just integrate over p̃(xk) to find C , because that would require too
many computations. How can we now still get our algorithm working?

The key here is to use our knowledge that the weights on average equal one, and to
manually enforce this. To accomplish this, we first redefine the weights w(xk) as

w(xk) = p̃(xk)

q(xk)
=C

p(xk)

q(xk)
. (6.29)

So every time we sample a particle x i
k , we use the above equation to calculate its weight

w i . Next, we need to enforce that our weights on average equal one. In other words, we
normalize the weights according to4

w̃ i ≡ w i

w̄
, (6.30)

4In some literature the weights are normalized such that their sum equals one. We normalize the weights such
that their sum equals np and their mean value equals one.

6.2. INTERMEZZO: SEQUENTIAL MONTE CARLO SAMPLERS

6

163

where the w̃ notation means ‘weights after normalization’ and the mean weight w̄ equals

w̄ ≡ 1

np

np∑
i=1

w i . (6.31)

The approximation of the distribution of xk+1 now becomes

xk+1 ∼ p(xk+1) = 1

np

np∑
i=1

w̃ i kx (xk+1, x i
k+1) =

∑np

i=1 w i kx (xk+1, x i
k+1)∑np

i=1 w i
. (6.32)

Note that, irrespective of which value C might have, it will drop out of the equations.
This method – normalizing the weights by making sure they are on average equal to one
– is known as self-normalized importance sampling.

6.2.4. SEQUENTIAL IMPORTANCE SAMPLING
We now know how to find the distribution of xk+1 given the distribution of xk . Or equiv-
alently, we know how to find the distribution of xk given the distribution of xk−1. Next,
suppose that we perform a state measurement according to

yk = g (xk)+ν, (6.33)

with g (. . .) the known output function and ν ∼ N
(
0,Σy

)
being Gaussian white output

noise, where Σy is also known. How can we take this measurement into account in our
distribution of particles?

The key here is to apply Bayes’ law. The probability that we have some state xk , given
that we have obtained a measurement yk , equals

p(xk |yk) = p(yk |xk)p(xk)

p(yk)
. (6.34)

We can apply this law to the distribution of the state xk . The left-hand-side term p(xk |yk)
is the posterior state distribution which we want to find. We know the observation like-
lihood p(yk |xk) from (6.33) and the prior state distribution p(xk) from (6.32). It follows
that

p(xk |yk) = p(yk |xk)

p(yk)

1

np

np∑
i=1

w̃ i kx (xk+1, x i
k+1). (6.35)

From this we can see that incorporating our measurement comes down to adjusting the
weights. Ideally, we would use as weight update law

w̃ i ← w̃ i p(yk |xk)

p(yk)
. (6.36)

However, this is generally not possible, because the marginal likelihood p(yk) is not
known. It is a constant though, not depending on xk . As such, we can apply the self-
normalization trick again, first defining

w i ← w̃ i p(yk |xk), (6.37)

6

164 6. GAUSSIAN PROCESS OPTIMIZATION

and then normalizing the weights through

w̃ i ← w i

w̄
= w i∑np

i=1 w i
. (6.38)

By updating the weights in this way, we can take into account measurements of the state.

6.2.5. RESAMPLING
There is a problem with the set-up we have now. To see what it is, we need to do a thought
experiment.

Suppose that we have some unknown state xk which we want to find. Initially, we do

not have any clue what this state is, so when we choose particles x1
0 , . . . , x

np

0 to approxi-
mate the distribution of x0, we choose them all over the state space. Over time, the state
transforms to x1, x2, . . . and we get the corresponding measurements y1, y2, We use
these measurements to adjust the weights of our particles. Particles which do not cor-
respond to the measurements (which are most of them) get a lower weight, ultimately
reducing to zero, while particles which do correspond to the measurements (hopefully
at least one) will get a higher weight.

The problem is that, after some time, most particles will have a weight of zero and
ultimately become useless, while we will have one or (with some luck) a few particles
with a very high weight. Naturally, these few particles cannot describe the full state dis-
tribution by themselves. This problem is known as weight degeneracy. The solution is
that we need to get rid of particles with zero weights and add more particles near those
with high weights. This idea is called resampling.

When applying resampling, we effectively choose a new set of particles x̃1
k , . . . , x̃

np

k

out of the old particles x1
k , . . . , x

np

k . The x̃ notation here denotes the resampled particles.
Old particles with high weights are likely to be picked multiple times, while old particles
with a zero weight will not be picked at all. After doing this resampling, all new particles
will have the same weight 1.

But how does this ‘picking’ process work in detail? There are actually many ways to
do resampling. To demonstrate them, we consider a simple example problem. Suppose
that we have five particles x1 = 1, x2 = 2, x3 = 3, x4 = 4 and x5 = 5 with weights w i of 0.1,
0.4, 1, 1.5 and 2, respectively. Note that all the weights add up to the number of particles
np = 5. In fact, we can plot the weights in a cumulative weight chart as in Figure 6.8 (top
left).

The first thing we can do is randomly pick np = 5 new particles, where the chance
that we pick a particle xi is proportional to the weights w i . So the chance that we pick
(for instance) x4 equals w4

np
= 1.5

5 = 30%. This process is known as multinomial resam-

pling and has been visualized in Figure 6.8 (top right).
The problem with this approach is that there is a large degree of randomness. In the

example selection of Figure 6.8 (top right), we wind up with new particles [2,4,5,5,5].
Note that we have lost the old particle 1 (rightfully so) and the old particle 3 (not very
rightfully so).

To reduce the randomness, we could divide the vertical axis from Figure 6.8 into np

blocks and randomly pick a particle from each block. This idea, called stratified resam-

6.2. INTERMEZZO: SEQUENTIAL MONTE CARLO SAMPLERS

6

165

Figure 6.8: An example resampling problem. We have a cumulative weight chart (top left). When we take np
random points along the vertical axis and choose the corresponding particles, we are applying multinomial
resampling (top right). When we split the vertical axis up into np equally sized blocks and take random points
in each block, we apply stratified resampling. And when we pick the same point in each of the np blocks,
we are using systematic resampling. Note that in the first two resampling algorithms we have to use np ran-
dom numbers, while the latter algorithm only requires one random number, making the algorithm a lot less
random.

6

166 6. GAUSSIAN PROCESS OPTIMIZATION

pling, is shown in Figure 6.8 (bottom left).
In this new approach, we are (rightfully) guaranteed to get particle 5 twice. However,

it may still happen that we get particle 2 twice, while we only get particle 3 once. This
seems odd, and it can be solved by adjusting the strategy slightly.

Instead of picking random points from each block, we now only pick a random point
from the first block, and put all other points at exactly the same point in their respective
blocks. This process is referred to as systematic resampling and is visualized in Figure 6.8
(bottom right).

Because systematic resampling seems to be the most fair approach with the least
degree of randomness involved, we will use it for the rest of this chapter.

6.2.6. MIXTURE IMPORTANCE SAMPLING
An interesting property of resampling is that we suddenly wind up with multiple parti-

cles x̃ j
k at exactly the same location. We could ask ourselves, ‘Is this a problem?’

The answer actually depends on the state transition function f (xk). If this function
has some process noise in it, then this is not much of a problem. At the next time step,
when we calculate xk+1, the particles will all be different. They automatically spread out
across possible state values. If f (xk) is deterministic though, then all these particles will
remain the same. In this case it is rather pointless to keep track of a (possibly large) num-
ber of particles which all do the exact same thing. As such, we need to change something
in our method.

To see how we can fix this problem, we need to look at what resampling actually
comes down to. When we apply (multinomial) resampling, we effectively draw each new

particle x̃ j
k from the distribution

p(x̃ j
k) = 1

np

np∑
i=1

w̃ iδ
(

x̃ j
k −x i

k

)
. (6.39)

However, when we wanted to plot the distribution of the unknown state xk , we did not
use the above expression. Instead, we used the kernel density estimate

xk ∼ p(xk) = 1

np

np∑
i=1

w̃ i kx

(
xk , x i

k

)
, (6.40)

for some properly chosen kernel function kx (. . . , . . .). As such, we could also apply resam-
pling by picking our new samples from the above distribution. Since the above distri-
bution is a summation, or mixture, of various different distributions/kernels, this tech-
nique is known as mixture importance sampling.

In practice, when we apply this mixture importance sampling, we perform two steps.

Suppose that we are choosing a new particle x̃ j
k . The first step is essentially the same as

what we did before: we pick one of our old particles x i
k , where particles with high weights

w i are more likely to be chosen. We call x i
k the ancestor of x̃ j

k of x i
k . In the second step,

we now do not set x̃ j
k equal to x i

k , but instead sample it from kx (x̃ j
k , x i

k). This generally

causes x̃ j
k to be close to its ancestor, but not exactly equal to it.

6.2. INTERMEZZO: SEQUENTIAL MONTE CARLO SAMPLERS

6

167

6.2.7. DEFENSIVE IMPORTANCE SAMPLING

We use our set of particles x i
k to approximate the distribution of the state xk . Now, let’s

suppose that we have made some mistake in choosing our initial distribution of parti-
cles: the true state xk is not among our particles x i

k , or even close to one. What happens
then?

In the usual version of our algorithm, we are then unlikely to find the true state. It
may happen that the process noise within the state transition function f (xk), or alterna-

tively the kernel kx (x̃ j
k , x i

k) within our mixture importance sampling, accidentally puts a
wrong particle in the right place, but that is extremely unlikely. Instead, it is also possible
to defend ourselves from this by applying defensive importance sampling.

The idea is that most of the time, in a large part α, we still sample our new set of
particles from the KDE (6.40) in the usual way. However, in a small part 1−α of the cases,

as some sort of ‘extra security’, we sample from a completely different distribution q(x̃ j
k)

instead, where this distribution is set up to include all possible values of the state xk . As

such, we are now sampling x̃ j
k from

q ′(x̃ j
k) = (1−α) q(x̃ j

k)+α 1

np

np∑
i=1

w̃ i kx

(
x̃ j

k , x i
k

)
. (6.41)

When we apply this, we do distort our posterior distribution of particles. As such, we
need to compensate for this using weights. Previously, resampling caused all weights
to be equal to one again. Now this is not the case. Instead, according to the idea of

importance sampling, the weight w j of a new particle x̃ j
k will be equal to

w j =
p(x̃ j

k)

q ′(x̃ j
k)

=
1

np

∑np

i=1 w̃ i kx

(
x̃ j

k , x i
k

)
(1−α) q(x̃ j

k)+α 1
np

∑np

i=1 w̃ i kx

(
x̃ j

k , x i
k

) . (6.42)

This idea works well, except for one small issue. To calculate the weight w j of a new
particle, we need to sum over np terms. Calculating the weight w j of a single particle
hence takes O (np) time, and resampling all particles takes O (n2

p) time. Since we want to
use large numbers of particles to get the highest accuracy possible, this is unacceptable.

The solution lies in applying a mindshift. We just noted that resampling consists of
two steps: first we select an old particle x i

k (step 1) and then we sample a new one from

the kernel kx (x̃ j
k , x i

k) (step 2). In defensive importance sampling we added an extra rule

prior to this whole scheme. ‘In (1 −α) part of the cases, sample from q(x̃ j
k) instead.’

Instead of applying this extra rule before these two steps, we will now put it between
them. So, we first select an old particle x i

k . Then, in a part α of the cases, we select a new

particle from the kernel kx (x̃ j
k , x i

k), while in a part (1−α) of the cases, we ignore this old

particle x i
k and select a new particle from q(x̃ j

k). According to this mindshift, instead of

using expression (6.42) for the weights w j , we can also use

w j =
p(x̃ j

k |x i
k)

q ′(x̃ j
k |x i

k)
=

kx

(
x̃ j

k , x i
k

)
(1−α) q(x̃ j

k)+αkx

(
x̃ j

k , x i
k

) . (6.43)

6

168 6. GAUSSIAN PROCESS OPTIMIZATION

Here, the notation ‘|x i
k ’ can be read as ‘Given that we have picked x i

k as ancestor.’ Note
that the above expression can be calculated in O (1) (constant) time for each particle,
solving our problem. As such, our algorithm remains efficient.

This technique of defensive importance sampling guarantees that, if we just iterate
long enough, and if the correct state xk can be sampled from q(xk) with nonzero proba-
bility, we are guaranteed to eventually find it. So even if our initial set of particles is bad,
we can fix this along the way.

6.3. APPLYING SMC IDEAS TO FIND THE MAXIMUM
In this section we will use the SMC ideas we just picked up to improve the MCMD al-
gorithm from Section 6.1.4. Keep in mind here that we mainly use SMC for inspiration.
The resulting method will not actually be an SMC method, because the target distribu-
tion cannot be calculated analytically; not even up to a proportionality constant.

We start by getting all our notations and definitions clear (Section 6.3.1). We then
improve the convergence rate of the algorithm (Section 6.3.2), fix some issues by adding
weights to particles (Section 6.3.3), discuss the resampling of particles (Section 6.3.4),
adding a trick to ensure we always eventually find the correct optimum (Section 6.3.5).
Finally, we enable the algorithm to not only deal with discrete functions but also with
continuous functions (Section 6.3.6), and look at how we can find the corresponding
distribution of the optimal function value f ∗ (Section 6.3.7).

6.3.1. NOTATIONS AND DEFINITIONS
Before we start, we should make it clear what exact problem we are working on. We are
going to start with an easy discrete problem and slowly build it up to the full continuous
problem.

We start with the problem where the input x can only take a finite number n possible
values, which we denote by x1, . . . , xn . As a result, we can set up n bins, which we also
name x1, . . . , xn , into which we can put particles.

We will use a number of np particles in the MCMD algorithm. We write these as
x1, . . . , xnp . Each of these particles x j will be set equal to some possible input value xi .

Each of the existing (champion) particles will be challenged by challenger particles.
When we have a challenger particle challenging x j , then we will denote the challenger

particle as x j
c , which means as much as ‘the particle challenging x j ’. If we are talking

about a generic challenger particle, we just write it as xc .
Eventually our goal is to approximate the maximum distribution. We will write this

distribution as pm(x) ≡ p(x = x∗). It is the chance that a given input point x equals the
optimal input point x∗. For now, the function pm(x) equals the number of particles x j

that are equal to the given input point x . We can write this as

p(x) = 1

n

np∑
j=1

δ(x , x j), (6.44)

where δ(x , x j) here is the discrete delta function: it equals one when x = x j and zero
otherwise. So effectively, the above sum counts the number of particles that equals x ,
and the probability p(x) is the part of all particles that are in bin x .

6.3. APPLYING SMC IDEAS TO FIND THE MAXIMUM

6

169

6.3.2. IMPROVING THE CONVERGENCE RATE
Now let’s consider the algorithm from Section 6.1.4. How long does it take for the dis-
tribution of particles to converge to the limit distribution? Naturally, the answer to that
question depends on this limit distribution.

Let’s consider a relatively simple example problem. Suppose that the input x can
only be an integer number 1,2, . . . ,10. In addition, we know with full certainty that f (7)
is the maximum. If we use np = 100 particles, how long will it take before all particles are
in bin x = 7?

The problem is that challenger particles are taken randomly from all possible inputs
1, . . . ,10, so only a tenth of the challenger particles will be at x = 7. So only a tenth of
the challenges may cause a particle to shift from an incorrect bin to the correct bin. This
causes slow convergence. And in many practical applications this problem is far worse,
because we have many more bins than just 10.

The solution is to sample our challenger particles based on where we think that the
maximum is. In other words, we sample the next challenger particle xc from the current
belief of the maximum distribution pm(x). To do so, we could calculate pm(x), but we
don’t even need to do so. We could also just randomly select a currently existing cham-

pion particle x i and use it as the next challenger particle x j
c to challenge some (usually

different) champion particle x j .
Though this new challenger sampling method definitely does speed up convergence,

it also changes the limit distribution. In fact, the algorithm stops changing only when all
particles are in the same bin. And this bin does not even have to be the right bin! So
effectively we have not only sped up the convergence of the algorithm, but also changed
its outcome, and that is not what we wanted.

6.3.3. ADDING WEIGHTS TO PARTICLES
The key realization here is that we have changed the distribution from which we are
sampling our challengers. We used to sample challenger particles from the flat distribu-
tion q(x) = 1

n , and now we are sampling them from the distribution pm(x). We need to
compensate for this change.

Identically to Monte Carlo methods (see Section 6.2.2) we will do so by attaching a
weight wc to each new challenger particle xc . This weight will equal

wc = q(xc)

pm(xc)
= 1/np

pm(x)
. (6.45)

So when pm(xc) is large for some input xc , we select this input more often than before,
but we also give particles from it a lower weight. Similarly, when pm(xc) is small, we
select this input less often than before, but we give it particles from it a higher weight.
And on average, the weights equal one.

To see how this works out, consider a simple example problem with n = 2 bins. Sup-
pose that we have pm(1) = 3/4 of the particles in the bin x = 1 and pm(2) = 1/4 of the
particles in the bin x = 2, and up till now all particles have the same weight. Normally we
would select challenger particles randomly from each of the two bins, so q(1) = q(2) = 1

2 .
However, because bin x = 1 is more likely to be the maximum, we now sample more chal-
lenger particles from it. As a result, these challenger particles get a weight w = 1/2

3/4 = 2
3 ,

6

170 6. GAUSSIAN PROCESS OPTIMIZATION

while challenger particles from the bin x = 2 will get a weight w = 1/2
1/4 = 2. Given that we

get three times more challenger particles from the bin x = 1 than from the bin x = 2, this
keeps things fair.

Because particles have a weight now, the expression for pm(x) has changed. We have
to take into account the weights. This is done through

pm(x) =
∑np

i=1 w iδ(x , x i)∑np

i=1 w i
. (6.46)

So to find pm(x), we look at the sum of the weights of the particles in bin x and compare
it to the total weight of all particles in all bins.

This also means that sampling from pm(x) is done differently. Previously we could
just take a random champion particle and use that as our sample. Now we have to take
into account the weights as well: the chance that we pick some particle x i is proportional
to its weight w i .

6.3.4. RESAMPLING OF PARTICLES
At this point you may be wondering, ‘If we take into account the weights of particles
while selecting a new challenger point, should we then also take into account the weights
of particles while selecting a champion to challenge?’

The answer here is ‘No, because this is already being taken into account in another
way.’ To see how, consider a small example. We have a bin for x = 1 with three particles
with weight 1, and a bin for x = 2 with one particle with weight 3. Note that in this case, if
we ignore weights of particles when finding a champion to challenge, we are three times
more likely to challenge a particle from bin x = 1 than a particle from bin x = 2. However,
if we do challenge a particle from bin x = 1 and it loses, then the bin loses a weight of 1.
On the other hand, if we challenge the particle from bin x = 2 and it loses, then the bin
loses a weight of 3. So the conclusion is that bin x = 2 is three times less likely to be
challenged, but when it is challenged and loses, it loses three times more weight, which
matches out. As a result, we should still challenge each champion particle just as often,
irrespective of its weight.

However, we can also prevent this issue from occurring in the first place by applying
resampling. Suppose that we have done a full round of challenges. In other words, we
have challenged every single champion particle, and some have gotten replaced while
others have survived. In this case, many particles will have different weights. To fix this,
we can randomly sample np new particles from the distribution pmax (x) (or apply any
of the other resampling techniques from Section 6.2.5) and give all of these new particles
a weight of 1. Because all particles have the same weight now, there is no need to make a
distinction between them based on their weight.

6.3.5. ENSURING CORRECT CONVERGENCE
At the start of our algorithm, we randomly (or evenly) divide all our np particles over
all n bins. Now suppose that the correct bin, which corresponds to the optimal input
x∗, through some unfortunate coincidence does not have any particles in it. With our
current set-up, we can only get challengers from bins that already have particles in them.
So this guarantees that we will never find the optimal input x∗.

6.3. APPLYING SMC IDEAS TO FIND THE MAXIMUM

6

171

We can solve this by implementing a variant of defensive importance sampling (see
Section 6.2.7). That is, we don’t just sample new challenger particles from the maxi-
mum distribution pm(x), and we don’t just sample them from the original flat distribu-
tion q(x), but we do something in-between. In a part α of the cases we sample from
pm(x), and in the remaining part (1−α) of the cases we sample from q(x). As a result,
we sample from the distribution

q ′(x) =αpm(x)+ (1−α)q(x). (6.47)

By doing this we ensure that, if we just keep running the algorithm, we are guaranteed to
eventually always select a challenger particle xc at the optimal input point x∗.

In practice, to sample from this distribution q ′(x), we pick a random champion par-
ticle x i (taking into account weights). In a part α of the cases we use this as the next

challenger x j
c , but in a part (1−α) of the cases we ignore it and use a fully random chal-

lenger particle x j
c instead.

When we apply this method, we do have to adjust the way we calculate the weight of
a challenger particle. We do this according to

wc = q(xc)

q ′(xc)
= q(xc)

αpm(xc)+ (1−α)q(xc)
, (6.48)

where we use (6.46) to find pm(xc).
There is a problem with the above expression though. If we use (6.46) to calculate

pm(xc), we need to consider all particles, only to calculate the weight of a single particle.
This is very inefficient and will slow down our algorithm when the number of particles is
large.

We have seen this problem before, in Section 6.2.7. We can use the same solution idea
here. Suppose that we do not consider the sampling distribution q ′(x) from before we
pick a random champion particle x i , but the sampling distribution q ′(x |x i) after having
picked the champion particle x i . It equals

q ′(x |x i) =αδ(x , x i)+ (1−α)q(x). (6.49)

In other words, in a part α of the cases we set the new challenger particle x j
c equal to x i ,

and in a part (1−α) we pick a fully random challenger. Using this expression, we can set
the weight of the resulting challenger particle xc equal to

wc = q(xc)

q ′(xc |x i)
= q(xc)

αδ(xc , x i)+ (1−α)q(xc)
. (6.50)

By using this expression, we get on average the same result as when we would use (6.48),
but we save ourselves a lot of computations.

6.3.6. EXPANDING THE ALGORITHM TO CONTINUOUS FUNCTIONS
The algorithm so far has been set up for functions f (x) with a finite number of possible
input points x . Continuous functions have an infinite number of possible input points.
This changes some things, although less than may initially be expected.

6

172 6. GAUSSIAN PROCESS OPTIMIZATION

The main difference is how we calculate pm(x). Instead of an actual probability, it
is now a probability density function, officially written as fx∗ (x), although we still write
it as pm(x) to keep the same notation. Through weighted kernel density estimation, we
can approximate it as

pm(x) = 1

np

np∑
i=1

w i kx (x , x i), (6.51)

where kx (x , x i) is a kernel function we have to choose ourselves. Personally, I prefer a
Gaussian kernel with a small length scale.

Sampling from pm(x) is also done slightly differently. Previously, if we wanted to
sample from pm(x), we just needed to pick a random champion particle x i , taking into
account their weights. Now, we need to do an extra step. First we still need to pick a
random champion particle x i , but afterwards we need to generate a sample from the
kernel kx (x , x i), which then is our sample from pm(x). We need to use this method as
well when sampling challenger particles from pm(x).

Because the way in which we sample challenger particles has changed, we also need
to calculate the weight of these particles in a new way. To be precise, equation (6.49) for
q ′(x |x i) turns into

q ′(x |x i) =αkx (x , x i)+ (1−α)q(x), (6.52)

which turns the expression for the weight wc into

wc = q(xc)

q ′(xc |x i)
= q(xc)

αkx (xc , x i)+ (1−α)q(xc)
. (6.53)

When we apply this, the algorithm can safely be applied to continuous functions. This is
special, as most algorithms cannot be extended so easily from finitely many possible in-
put points to infinitely many. Through it, we can approximate the maximum distribution
of a Gaussian process in a relatively efficient way. The algorithm itself is summarized in
pseudo-code in Algorithm 2, while the result of applying the algorithm is shown in Fig-
ure 6.9.

6.3.7. THE DISTRIBUTION OF THE MAXIMUM VALUE
So far we have focused on the distribution of the optimal input x∗. Another interesting
random variable is the corresponding optimal function value f ∗. Can we find/approximate
the distribution of this parameter too?

Naturally, we can. To do so, we should focus on the actual ‘challenging’. Just like we
described in Section 6.1.4, this is done by setting up a joint distribution[

f (x i)

f (x i
c)

]
∼N

([
f i

f i
c

]∣∣∣∣[µ(x i)
µ(x i

c)

]
,

[
Σ(x i , x i) Σ(x i , x i

c)
Σ(x i

c , x i) Σ(x i
c , x i

c)

])
(6.54)

for the champion particle x i and its challenger x i
c . We then take a sample

[
f̂ i f̂ i

c

]T

from this distribution. If f̂ i
c > f̂ i , we replace the champion particle by its challenger.

Next, we will do something extra. Whenever a challenger particle wins, we remember
the value of f̂ i

c through which it won. As a result, every particle x i will get a correspond-
ing victory function value f̂ i . (For an initial champion particle x i , we can sample the
initial victory function value f̂ i from N

(
µ(x i),Σ(x i , x i)

)
.)

6.3. APPLYING SMC IDEAS TO FIND THE MAXIMUM

6

173

Data: A Gaussian process, user-defined parameters np , α and a kernel k ′(x , x ′).
Result: An approximate distribution pm(x) of the optimal input x∗ through (6.51).
Initialization:

for i ← 1 to np do
Sample x i from the flat distribution q(x). Assign w i = 1.

end
end
Iteration:

repeat
Apply systematic resampling to all particles.
for i ← 1 to np do

Select a random particle x j .
if we select a challenger based on x j (probability α) then

Sample a challenger particle x i
c from the kernel kx (x , x j).

else
Sample a challenger particle x i

c from the flat distribution q(x).
end

Sample a vector
[

f̂ i f̂ i
c

]T
based on (6.54).

if f̂ i
c > f̂ i then
Replace particle x i by its challenger x i

c .
Set the new weight w i according to (6.53).

end
end

until a sufficient number of challenge rounds has passed;
end

Algorithm 2: The Monte Carlo maximum distribution algorithm for continuous func-
tions. All the discussed improvements, like self-normalized importance sampling,
mixture importance sampling and systematic resampling, have been incorporated.

6

174 6. GAUSSIAN PROCESS OPTIMIZATION

Figure 6.9: The development of the distribution of particles over nr = 10 rounds using the improved version of
the MCMD algorithm. Shown are the true maximum distribution from Figure 6.2, the limit distribution of the
particles derived in Section 6.1.5 and the distribution of the particles over each of the rounds. The darker the
line, the later the round is. Note that convergence for the improved algorithm is much faster than for the basic
algorithm (Figure 6.5).

These victory function values now describe the distribution of f ∗. To be precise, we

can approximate the distribution of f ∗ using kernel density estimation as

f ∗ ∼ f f ∗ (f) =
∑np

i=1 w i k f (f , f̂ i)∑np

i=1 w i
. (6.55)

In other words, we just make a histogram of all the victory function values, based on the
particle weights and a self-defined kernel function k f (f , f̂ i). An example distribution
resulting from this is shown in Figure 6.10.

6.4. GAUSSIAN PROCESS OPTIMIZATION

We will now look at the actual Gaussian process optimization problem, where we need
to find the optimum of a function f (x) approximated by a GP. We start by considering
the exact problem set-up (Section 6.4.1). Then we look at some basic solution methods,
which generally involve acquisition functions (Section 6.4.2). We continue with a short
intermezzo on the concept of entropy (Section 6.4.3) before we apply it to set up a new
type of acquisition function (Section 6.4.4). We then look into ways of combining acqui-
sition functions (Section 6.4.5). Finally we consider a very different method, where we
sample from the maximum distribution to select new points to try out (Section 6.4.6).

6.4. GAUSSIAN PROCESS OPTIMIZATION

6

175

Figure 6.10: The distribution of the maximum value, derived using either brute force methods (the true maxi-
mum distribution) or the MCMD algorithm. Note that the MCMD algorithm gives a slightly lower estimate of
the maximum than what we can expect in reality. This slight conservatism is inherent to the algorithm and can
be expected at any application. The difference becomes smaller when the variance of the Gaussian process
decreases.

6.4.1. THE GAUSSIAN PROCESS OPTIMIZATION PROBLEM SET-UP

Consider a function f (x). Here, the input x may represent ‘choices’ we have to make,
and the function f (x) specifies how good these choices are. For instance, it may be a
cost function that we need to minimize, or a reward function we need to maximize. In
this chapter we consider the maximization problem, but maximizing a function f (x) is
of course equivalent to minimizing the function − f (x).

We do not know what the function f (x) is though. We can only try certain inputs
x to obtain a (usually noisy) indication of the result f (x). However, evaluating f (x) is
expensive. We can only try out a limited number n input points x1, . . . , xn called try-
out points. How should we now choose these try-out points to most efficiently find the
optimum of f (x)?

Part of the solution lies in approximating the function f (x) at every step of the way.
We do so using Gaussian processes. As such, this optimization problem is generally
known as Gaussian process optimization (GPO) or sometimes as Bayesian optimization.
How can we use a GP approximation to find the optimum of a function?

There are actually two different versions of this problem. In the first set-up, which
is the most common, we have to give a recommendation x̂∗ at the end of the algorithm
run. This recommendation x̂∗ equals the input point which we believe optimizes the
function. Subsequently, we compare the value f (x̂∗) to the true optimum f ∗. The dif-
ference is known as the error, or sometimes as the instantaneous regret. So,

error = f ∗− f (x̂∗). (6.56)

6

176 6. GAUSSIAN PROCESS OPTIMIZATION

Because of this, this set-up is known as the error minimization set-up, although it is also
known as probabilistic global optimization.

The second set-up differs from the first on one important point. In the first set-up
we were free to try out any input point x . In the second set-up different input points x
result in different costs. Specifically, we want to maximize the sum

n∑
i=1

f (xi). (6.57)

In the perfect case, when we choose the optimal input x∗ every single time, we obtain
a sum equal to n f ∗. If the actual sum we obtain is less than this ‘perfect score’, then we
call the difference the regret. It follows that the regret is defined as the sum of the errors

regret =
n∑

i=1

(
f ∗− f (xi)

)
. (6.58)

Since we want to minimize this regret, this set-up is known as the regret minimization
set-up, although it is also known as the continuous armed-bandit problem.

These two different set-ups may seem similar, but they require very different strate-
gies. In the error minimization set-up, we want to explore as much as possible, trying out
a variety of possible input points. In the regret minimization set-up, we have to trade off
exploration versus exploitation. Initially, we should do some exploring, looking for input
points x resulting in good function values f (x). However, after we have done enough
exploring, we should stick with the best input point we found, exploiting it as much as
possible. How to transition from exploration to exploitation is known to be a very diffi-
cult problem.

6.4.2. BASIC GPO METHODS: ACQUISITION FUNCTIONS
We are approximating the function f (x) using a Gaussian process. Suppose that, based
on all our current data, we have come up with a mean function µ(x) and a covariance
function Σ(x , x ′). Corresponding to this is the standard deviation function

σ(x) ≡
√
Σ(x , x). (6.59)

The main question in GPO is ‘How do we select the next try-out point xk ?’
Almost all existing methods try to optimize some criterion. This criterion is known

as the acquisition function (AF): it specifies which input point to try or ‘acquire’ next. So
given an acquisition function AF(x), we acquire

xk = argmin
x

AF(x). (6.60)

However, which acquisition function should we take? There are numerous possibilities.

THE EXPECTED VALUE ACQUISITION FUNCTION

A simple example of an acquisition function is the expected value acquisition function
(EV AF). This is defined as

EV(x) ≡µ(x). (6.61)

6.4. GAUSSIAN PROCESS OPTIMIZATION

6

177

Picking the input point x maximizing this acquisition function comes down to picking
what we currently believe is the optimal input x̂∗. This is also shown by the example in
Figure 6.11. As such, the EV AF is a strategy purely focused on exploitation and not on
exploration, making it a pretty bad strategy.

Figure 6.11: Examples of acquisition functions applied to a Gaussian process. As Gaussian process (left) we
have used the same set-up as Figure 6.1, except that we only used nm = 8 measurements to create some regions
with strong uncertainties. For this Gaussian process, both the UCB and EV acquisition functions are plotted
(middle) and the PI and EI acquisition functions (right), for a variety of parameters. The optimums of the AFs
are indicated by a cross. Note that the PI and EV acquisition function (with κ= ξ= 0) both suggest to try a point
near x = 2 (exploitation) while all other acquisition functions suggest a point near x =−1.5 (exploration).

THE PROBABILITY OF IMPROVEMENT ACQUISITION FUNCTION

A more suitable acquisition function is the probability of improvement acquisition func-
tion (PI AF). To implement this, we ask ourselves two questions. First of all, ‘If we had to
give a recommendation about the position of the optimum, what would we pick?’ The
obvious choice here would be to choose this recommendation x̂∗ as the optimum of the
mean function µ(x). We write the corresponding optimal value as f̂ ∗.

Naturally, we want to find an input point x which does better than this current op-
timum. So the second question is, ‘Which input x is most likely to give a value f (x)
satisfying f (x) > f̂ ∗?’ In other words, we want to maximize the probability p(f (x) > f̂ ∗)
that we find an improvement5. The corresponding acquisition function equals

PI(x) =
∫ ∞

f̂ ∗
N

(
f |µ(x),σ(x)2) d f =Φ

(
µ(x)− f̂ ∗

σ(x)

)
, (6.62)

where Φ(z) is still the cumulative density function of the standard Gaussian probability
distribution, as defined in Section B.4.2.

The problem with the PI AF is that it still does a lot of exploitation: the selected try-
out point is often close or equal to the current optimum x̂∗. This is also confirmed by
the example in Figure 6.11. To make sure that we only try points that offer a significant
improvement, we can add an exploration parameter ξ. We now adjust the PI AF to the

5In some literature, the possible function value f (x) is not compared to the current belief about the maximum
f̂ ∗, but instead to the best output max f̂mi obtained so far. This is computationally easier – we do not have
to optimize µ(x) – but since this best output is affected by noise, this also may result in unexpected results. A
single instance of very positive noise can disrupt the entire algorithm.

6

178 6. GAUSSIAN PROCESS OPTIMIZATION

probability that we get an improvement of at least size ξ. So,

PI(x) = p(f (x) > f̂ ∗+ξ) =Φ
(
µ(x)− f̂ ∗−ξ

σ(x)

)
. (6.63)

Through this parameter ξ, we can vary between exploration and exploitation. A high
value of ξ will give us more exploring try-out points, while a low value will result in more
exploitation.

THE EXPECTED IMPROVEMENT ACQUISITION FUNCTION

It might be wiser to not just look at the probability of improvement, but also consider
the amount of improvement which we can expect to get. This is done by the expected
improvement acquisition function (EI AF). It is given by

EI(x) =
∫ ∞

f̂ ∗

(
f − f̂ ∗)

N
(

f |µ(x),σ(x)2) d f (6.64)

= (
µ(x)− f̂ ∗)

Φ

(
µ(x)− f̂ ∗

σ(x)

)
+σ(x)φ

(
µ(x)− f̂ ∗

σ(x)

)
,

withφ(z) =N (z|0,1) the probability density function of the standard Gaussian distribu-
tion. And just like previously, it is possible to add the exploration parameter ξ to adjust
the above to

EI(x) = (
µ(x)− f̂ ∗)

Φ

(
µ(x)− f̂ ∗−ξ

σ(x)

)
+σ(x)φ

(
µ(x)− f̂ ∗−ξ

σ(x)

)
. (6.65)

Again, the higher ξ is, the more this acquisition will focus on exploration. For an example
problem the acquisition function is shown in Figure 6.11.

THE UPPER CONFIDENCE BOUND ACQUISITION FUNCTION

In general, both the PI and the EI acquisition functions are quite focused on exploration,
and as such are most suitable for the error minimization set-up. An acquisition which is
more suitable for the regret minimization set-up is the upper confidence bound acquisi-
tion function (UCB AF). It is defined as

UCB(x) =µ(x)+κσ(x). (6.66)

Often κ= 2 is used. In this case, this acquisition function simply comes down to picking
the input point x where the grey area from the GP plot reaches the highest, as is also
shown in Figure 6.11. In general, high values of κ result in more exploration, while a
value of κ= 0 reduces the UCB AF to the EV AF, causing pure exploitation.

Out of all the acquisition functions, the UCB AF has been analyzed the most thor-
oughly. Under certain conditions, bounds on the regret that will be obtained are known,
as well as the values of κ optimizing these bounds. For further reading, see the work
by Srinivas et al. (2012).

6.4. GAUSSIAN PROCESS OPTIMIZATION

6

179

6.4.3. INTERMEZZO: THE ENTROPY OF DISTRIBUTIONS

After the basic methods we just discussed, more advanced methods got developed. An
important one is entropy search. To understand how it works, you need to know what
entropy means in the field of information theory. So we have a short intermezzo on
this. If you are familiar with the concept of entropy, feel free to jump to Section 6.4.4 on
entropy search.

Suppose that we have a discrete random variable x . This variable can take n differ-
ent values x1, . . . , xn , each with corresponding probability p(x1), . . . , p(xn). (For example,
imagine that x has a 50% chance to equal 1 and a 25% chance to equal either 2 or 3.) For
this discrete random variable, the entropy H(x) is defined as

H(x) ≡E[− log
(
p(x)

)]=−
n∑

i=1
p(xi) log

(
p(xi)

)
. (6.67)

You can see the entropy as the amount of chaos or uncertainty in a distribution. Suppose
that we do not have a clue at all what x is. That is, all possible values x1, . . . , xn are equally
likely, and hence have probability p(xi) = 1

n . In that case the entropy turns out to be at a
maximum and equals

maximum entropy =−
n∑

i=1

1

n
log

(
1

n

)
= log(n) . (6.68)

If we gain more information, some probabilities p(xi) will rise while others p(x j) will
drop. In the extreme case that we know that x exactly equals xi , then p(xi) → 1, which
causes log

(
p(xi)

) → 0 and hence p(xi) log
(
p(xi)

) → 0. Similarly, when p(x j) → 0, it fol-
lows that p(x j) log

(
p(x j)

)→ 0. As a result, if we are fully certain what the value of x is, all
terms in the sum become zero and hence the entropy equals zero as well.

We can extend this to continuous distributions. However, for continuous distribu-
tions, when x can take infinitely many values, the probability p(x = x) generally equals
zero for (nearly) all x , which means the entropy is also always zero. To fix this problem,

we replace p(x) in the definition by the probability density function fx (x) = p(x)
d x . The

result is known as the continuous entropy or the differential entropy and equals

H(x) ≡E[− log
(

fx (x)
)]=−

∫
X

fx (x) log
(

fx (x)
)

d x . (6.69)

If x has a Gaussian distribution x ∼N
(
x |µ,Σ

)
, then we can rewrite the entropy to

H(x) =E
[
− log

(
1p|2πΣ| exp

(
−1

2

(
x −µ)T

Σ−1 (
x −µ)))]

(6.70)

=E
[

1

2
log(|2πΣ|)+ 1

2

(
x −µ)T

Σ−1 (
x −µ)]

.

Note that the first term in the above expectation is constant and so can be pulled out. The
second term can be solved by applying the trace operator, reordering terms and noticing

6

180 6. GAUSSIAN PROCESS OPTIMIZATION

that Σ per definition equalsE
[(

x −µ)(
x −µ)T

]
. As a result, we have

H(x) = 1

2
log

(
(2π)dx |Σ|

)
+ 1

2
tr

(
E

[(
x −µ)(

x −µ)T
]
Σ−1

)
(6.71)

= 1

2

(
log(|Σ|)+dx log(2π)+dx

)
, (6.72)

where dx is the size of the vector x . So when the determinant of the covariance is large,
and hence the uncertainty we have about x is large, then the entropy will also be large.

What does the above become in the limit cases? If we do not know anything about x ,
then the probability density function fx(x) is constant, which is equivalent to an infinite
variance. I call this the null distribution. (For background on this, see Sections B.1.4
and B.4.5.) As a result, the entropy becomes H(x) = ∞. However, when we are fully
certain of the value of x , then the PDF turns into a delta function (zero variance) and we
obtain an entropy of H(x) =−∞.

This is actually undesirable, since previously the entropy was always positive, unless
we were absolutely certain about the value of x , in which case the entropy was zero. This
problem is solved by considering the relative entropy with respect to another PDF f x̃ (x).
This is also known as the Kullback-Leibler divergence and is defined as

D(x , x̃) ≡E
[

log

(
fx (x)

f x̃ (x)

)]
=

∫
X

fx (x) log

(
fx (x)

f x̃ (x)

)
d x . (6.73)

Note that we do not have D(x , x̃) here. The Kullback-Leibler divergence is not a symmet-
ric operator.

When x ∼N
(
µ,Σ

)
and x̃ ∼N

(
µ̃, Σ̃

)
, then the above can be rewritten as

D(x , x̃) = 1

2

(
log

(|Σ̃|
|Σ|

)
+ tr

(
Σ̃−1Σ− I

)+ (
µ̃−µ)T

Σ̃−1 (
µ̃−µ))

. (6.74)

This relative entropy has some useful properties. It cannot be negative, and it is only zero
if x and x̃ have exactly the same distribution. The more different these two distributions
are though, the bigger the relative entropy becomes.

So what comparison distribution x̃ do we pick? That depends. An idea is to let x̃ have
the null distribution, making f x̃ (x) a constant. If we are integrating over an infinitely
large space of possible input values X , then this will not be possible though. The reason
is that the resulting constant f x̃ (x) will be zero, and hence the relative entropy will always
be infinite (unless x also has the null distribution). If, however, the region X is bounded,
then f x̃ (x) will be a non-zero constant and this trick will work.

In this case, the more we know about x , the further it will lie away from x̃ , and hence
the larger the relative entropy becomes. So in this case a high relative entropy means we
know more about x , while a high entropy means we know less about x .

6.4.4. ENTROPY SEARCH
Using the ideas of entropy which we just discovered, it is now possible to set up a com-
pletely new acquisition function.

6.4. GAUSSIAN PROCESS OPTIMIZATION

6

181

Consider the optimal input point x∗. This is a random variable, and as such it has a
probability density function fx∗ (x∗). We want to obtain as much information as possible
about where the optimal input point will be. As a result, we want to minimize the entropy
H(x∗), or alternatively we want to maximize the relative entropy D(x∗, x̃∗), where x̃∗ is a
random variable with the null distribution. This mindset gives rise to the idea of entropy
search.

In entropy search we use an acquisition function describing the change in entropy.
We want to find the input point x which maximizes the change in relative entropy. As
such, we could try to use the entropy search acquisition function

ES(x) =∆D(x∗, x̃∗). (6.75)

The question remains how to calculate this change in relative entropy. Calculating the
current distribution of x∗ and subsequently the current relative entropy is already a chal-
lenging problem. However, picking an input point x , and then calculating the new rela-
tive entropy is even harder. This is because the new relative entropy actually depends on
the measurement f̂m which we make of f (x).

So to find the expected change in entropy, we need to integrate over all possible val-
ues of f̂m . As a result, we should have actually written (6.75) as

ES(x) =E[
∆D(x∗, x̃∗)

]
, (6.76)

where the expectation is taken with respect to the possible measurement f̂m . Solving
this expectation is a very challenging problem which is outside the scope of this text,
so for more information you can read the work of Hennig and Schuler (2012). In ad-
dition, further improvements were made by Hernández-Lobato et al. (2014a), who also
added derivative data into the algorithm and integrated over different possible hyperpa-
rameters. However, both groups of people struggled in finding a method to efficiently
optimize the change in relative entropy without making too many approximations.

6.4.5. PORTFOLIO METHODS
So far we have seen many different kinds of acquisition functions. However, it is not
the case that one acquisition function is always better than another. Each works well
for specific kinds of functions. Additionally, some work well at the start of the learning
process, when we need exploration, while others work well later on. This gives rise to an
idea, resulting in the so-called portfolio methods.

The idea is that we take a whole portfolio AF1(x), . . . ,AFna (x) of na different acqui-
sition functions. Just think of all the acquisition functions we have seen so far, and we
can even include an acquisition function multiple times if we change its parameters a
bit. When we need to decide which input xk to try at time k, each acquisition function
AFi (x) in our portfolio first makes a recommendation x i

k . We then set up an encompass-
ing algorithm that decides which of these recommendations is the most suitable in the
current situation. This is the fundamental idea behind portfolio methods.

The main question is, ‘How do we decide which recommendation is suitable?’ A first
idea is to take into account the previous performance of each acquisition function. That
is, we keep track of all previous recommendations x i

1, x i
2, . . . of every acquisition function

6

182 6. GAUSSIAN PROCESS OPTIMIZATION

AFi (x) and look at the means µ(x i
1),µ(x i

2), . . . for these recommendations given all the
data that we have now. If these means are all very high for some acquisition function
AFi (x), then this acquisition function apparently gives decent recommendations. Right?

Actually, it may also be an acquisition function that is fully focused on exploiting and
not on exploring. As a result, this method works reasonably well, but it is not the best
method developed so far. If you want to read more about it, see the work by Hoffman
et al. (2011).

A very different idea is to ignore past recommendations and instead only look at the
current recommendations x1

k , . . . , xna
k from the various acquisition functions. We have

already seen that the input point x maximizing the expected change E [∆D] of the rela-
tive entropy is probably a good choice. So we could hence simply check the na different
recommendations we have been given and see which one results in the largest change in
entropy. This means that we do not have to optimize ES(x) over a large input space, but
we only need to check which of the recommendations x1

k , . . . , xna
k results in the largest

value of ES(x). For more background on this idea, you can look into the work by Shahri-
ari et al. (2014).

All the methods we have discussed so far here (with the exception of the UCB AF) are
methods designed for the error minimization set-up. If you would apply these methods
to the regret minimization set-up, they would not perform too well, because they keep
on exploring. However, the number of methods applicable to the regret minimization
set-up is still very scarce. So let’s consider a new method which can tackle this problem.

6.4.6. THOMPSON SAMPLING

The last method we discuss is called Thompson sampling, or sometimes also probability
matching or posterior sampling. This method is special in that it does not use an acqui-
sition function. Instead, it randomly selects its try-out points, where the probability that
a certain point x is selected as the next try-out point xk equals (matches) the probability
that x is the optimal input point x∗, given all the data that we have so far.

Effectively, with this method we sample our next try-out point xk from the maxi-
mum distribution fx∗ (x). However, the problem is that we generally do not know this
maximum distribution. Luckily, several ways have been invented to work around this.

Suppose that we only have a finite number of possible input points. We can then take
a trial input set X∗ that contains all these input points, and subsequently take a sample
f̂∗ of the posterior distribution of f ∗. Such a sample can be visualized as a function

sample, like we did in Figure 6.1. For this sample, we then find the input point x∗ for
which this sample is at a maximum and use it as the next try-out point xk . By doing this,
we indeed select our next try-out point according to the maximum distribution.

This trick is great, but it does not work when there are infinitely many possible input
points. We could try to optimize a sample function then, through a recursive process. So
pick a first input point x1, sample the output f̂1, then pick a second input point x2, sam-
ple the output f̂2 given the value of f̂1, and so on. By picking the input points in a smart
way, trying to find the optimum of the sample, we can optimize the sample. However,
sampling f̂k takes Ok2 time, resulting in a runtime of On3

opt for the full optimization al-
gorithm, with nopt the number of points we need to check to optimize the sample. Of
course this runtime is far too high.

6.5. EXPERIMENTS

6

183

There are methods to work around this. It is for instance possible to approximate
function samples using a finite number of basis functions. (See the supplement written
by Hernández-Lobato et al. (2014b) to learn how to do this.) Since these basis functions
can be approximated at any input point x∗ this solves the problem that we could not
generate samples on infinitely many points. However, it does not solve the problem that
we need to optimize a nonlinear function. As a result, this method is effective but not
very efficient.

The problem is solved by the MCMD algorithm we developed in Section 6.1.4 and
further improved in Section 6.3. It allows us to efficiently sample input points from the
maximum distribution. We should keep in mind here that the MCMD algorithm pro-
vides only an approximation of the maximum distribution. But with the approximation
being reasonably accurate, this does mean that it is now possible to apply Thompson
sampling to problems with a continuous input space.

In short, Thompson sampling now works as follows. We use the MCMD algorithm
to approximate the maximum distribution. When we need to pick the next try-out point
xk , we just take a random sample from the maximum distribution and use it.

6.5. EXPERIMENTS
It is time to do some experiments with our newly developed methods. We start off with
simple one-dimensional (Section 6.5.1) and two-dimensional (Section 6.5.2) example
problems. We then see if we can apply the methods to tune the controller of a wind
turbine. For this, we first check out the wind turbine simulation that we will use (Sec-
tion 6.5.3). We then study some necessary concepts, like the Coleman transformation
(Section 6.5.4) and the damage equivalent load (Section 6.5.5), before we evaluate the
experiment results (Section 6.5.6). Afterwards, we apply the same methods to an actual
wind turbine in a wind tunnel (Section 6.5.7). Finally, we look at some lessons that we
learned from the experiments (Section 6.5.8).

6.5.1. OPTIMIZING A ONE-DIMENSIONAL FUNCTION
We start our experiment section off with a familiar one-dimensional experiment. We will
apply our Gaussian process optimization algorithms towards finding the optimum of the
unknown function

f (x) = cos(3x)− 1

9
x2 + 1

6
x, (6.77)

which we also drew measurements from in Figure 6.1. Once more we use σn = 0.3. As
parameters for the various algorithms we use κ = 2 (for the UCB AF) and ξ = 0.1 (for
the PI and EI AFs), which have shown to work better than significantly larger or smaller
parameters. For Thompson sampling through the MCMD algorithm, we use a value of α
that decreases from 2

3 to 1
6 as more measurements have been made. This has shown to

have a slightly beneficial effect on the performance, compared to using a constant α.
Whenever we perform a new measurement, we update the Gaussian process. To do

so, we apply the online FITC method of Section 4.2.3. We also set up the set of inducing
input points in an online way: we add an inducing input point (according to the ideas
of Section 4.3.3) whenever the new measurement is not within a distance du (decreasing
from 0.3 to 0.02 during the execution of the algorithm) from an already existing inducing

6

184 6. GAUSSIAN PROCESS OPTIMIZATION

input point. This does result in a small data loss; early measurements do not provide
their data directly to inducing input points that are added later on. However, this loss is
relatively small, because our strategy implies that there is always an inducing input point
close to any chosen measurement point.

An example of the various strategies at work is shown in Figure 6.12. Here we see that
all algorithms are quite capable of finding the optimum. However, some require more
exploration, and some continue to check other local optimums just to make sure that
they do not happen to give better results.

Figure 6.12: Execution runs of various Gaussian process optimization strategies for the problem described in
Figure 6.1 for the first n = 50 measurements. The real function f (x) = cos(3x)− 1

9 x2 + 1
6 x is shown, as well

as the posterior Gaussian process with its inducing input points. We have used Thompson sampling through
the MCMD algorithm (top left), the upper confidence bound AF (top right), the probability of improvement
AF (bottom left) and the expected improvement AF (bottom right). Note that the algorithms all explore in a
different way. In particular, many acquisition functions insist on trying out the boundary of the input interval,
while Thompson sampling does not.

Every now and then it happens that an algorithm initially finds the wrong optimum.
An example of this is shown in Figure 6.13. An interesting question is whether an al-
gorithm can manage to ‘escape’ from this wrong belief, as it is given more and more
measurements. For traditional acquisition functions, the answer may in some cases be
a definite ‘no’. For instance for the UCB AF, if the value of µ(x)+κσ(x) is smaller every-
where than the mean value µ(x̂∗) at the believed optimum, as is the case in Figure 6.13,

6.5. EXPERIMENTS

6

185

then no more exploration will ever take place. A similar thing can take place for other
acquisition functions. Thompson sampling here is different, because it uses random-
ness when selecting try-out points. It is hence guaranteed, when given infinitely many
measurements, to eventually find the global optimum. However, in certain unfortunate
cases this of course may take a while.

Figure 6.13: An execution run, similar to the ones of Figure 6.12, where initially a wrong optimum is found.
This often takes place due to an unfortunate case of noise when a point near the true optimum is tried out.

This is confirmed when we examine how the regret evolves as we run the various al-
gorithms. This regret is shown in Figure 6.14. We see that, in this particular problem,
Thompson sampling through the MCMD algorithm does slightly worse than other algo-
rithms. This is caused exactly by cases like those shown in Figure 6.13, where initially
a wrong belief of the maximum is obtained. Because Thompson sampling is partly fo-
cused on exploiting this (incorrect) maximum, it stays around there for a little while.
On the other hand, acquisition functions like the EI and PI AFs are focused on getting as
much information as possible. As a result, in the cases where these acquisition functions
escape their wrong belief of the optimum, they do so relatively soon.

It may seem that the EI and PI AFs are hence better optimization algorithms. How-
ever, this is certainly not always the case, as the next example will show us.

6.5.2. OPTIMIZING A TWO-DIMENSIONAL FUNCTION
The next function we try to optimize is the two-dimensional Branin function. It is used
often as test function in optimization literature, for instance by Dixon and Szegö (1978).
The Branin function is defined as

f (x1, x2) =
(

x2 −
51x2

1

40π2 + 5x1

π
−6

)2

+10

(
1− 1

8π

)
cos(x1)+10, (6.78)

6

186 6. GAUSSIAN PROCESS OPTIMIZATION

Figure 6.14: The instantaneous (left) and cumulative (right) regret, of various GPO algorithms, as more mea-
surements are added. To reduce the effect of ‘unfortunate events’, a total of 50 full executions of the algorithms
was run, and their average was plotted. For the error minimization set-up, the endpoint of the left graph is
crucial, while for the (cumulative) regret minimization set-up, the endpoint of the right graph is the quantity
that needs to be optimized.

where x1 ∈ [−5,10] and x2 ∈ [0,15]. The challenge is to minimize this function. We are
dealing with maximizing functions here, so instead we will maximize minus this func-
tion. This function is shown in Figure 6.15.

Figure 6.15: A plot of minus the Branin function (6.78). Note the three optimums at
(
−π, 491

40

)
,
(
π, 91

40

)
and(

3π, 99
40

)
, all at a value of − 5

4π .

A special property of the Branin function is that it has three identical global opti-
mums. Their locations can be found analytically as

(−π, 491
40

)
,
(
π, 91

40

)
and

(
3π, 99

40

)
, and

these optimums all have a value of 5
4π . (Or minus this value for minus the Branin func-

tion.)

6.5. EXPERIMENTS

6

187

When optimizing the function, we use the same set-up as in our previous experi-
ment. For the measurement noise, we use σ̂ fm = 5. As parameters for the various op-
timization methods we use κ = 2 and ξ = 2, with α once more decreasing from 2

3 to 1
6

as we go. When we run the algorithm, we get regret developments like those shown in
Figure 6.16, and here we see that this time Thompson sampling performs much better
than the alternatives.

Figure 6.16: The instantaneous (left) and cumulative (right) regret, of various GPO algorithms, as more mea-
surements are added. Again a total of 50 full executions of the algorithms was run, and their average was plot-
ted. While information-based acquisition functions manage to find the optimum sooner, Thompson sampling
appears to do so with less regret.

It is interesting to study why Thompson sampling is doing so much better than the
other algorithms. We can do so by looking at which try-out points the various algorithms
pick. These are shown in Figure 6.17. Here we see that the three acquisition functions
often wind up picking try-out points at the border of the input space. In particular, they
always try the four corners of the input space. Because one of these corners at input
(−5,0) has a significantly low value (even less than −300), this results in a large loss. Be-
cause Thompson sampling is more random in choosing its try-out points, it avoids this
bad point and hence performs better.

From this analysis, we see that we cannot conclude that Thompson sampling works
significantly better than the other algorithms. In fact, any conclusion stating that an op-
timization always works better than other optimization methods is unlikely to be true.
The exact problem has a very strong effect. We can conclude that Thompson sampling
works better on this specific problem. It may still work less well on other problems
though.

One upside of using Thompson sampling together with the MCMD algorithm is that
we can study the maximum distribution of the resulting Gaussian process. (Even though
you can also apply the MCMD algorithm to the resulting GP from the other acquisition
functions.) Such a maximum distribution is shown in Figure 6.18.

Note that in the case of Figure 6.18 the algorithm has managed to find all three op-
timums. This is not always the case. All optimization methods usually find two of the
three maximums, and regularly they find all three, but this is by no means guaranteed
given the limited number of measurements.

6

188 6. GAUSSIAN PROCESS OPTIMIZATION

Figure 6.17: The measurements that were obtained, and the subsequent function approximation, for the var-
ious optimization methods. Note that all acquisition functions try input points on the edges/corners of the
input space, while Thompson sampling does not.

Figure 6.18: The maximum distribution corresponding to the GP of Figure 6.17 (top left) as approximated by
the MCMD algorithm. The algorithm has managed to find all three optimums, some with more confidence
than others. Some stray particles still reside in the lesser explored regions, where the variance is high. In the
part of the input space which has been explored but found suboptimal, there are no more particles remaining.

6.5. EXPERIMENTS

6

189

6.5.3. A WIND TURBINE SIMULATION SYSTEM

It is time to apply our methods to a more practical problem: a wind turbine simulation.
More specifically, we use a linearized version of the so-called TURBU model, developed
by van Engelen and Braam (2004). TURBU is a fully integrated wind turbine design and
analysis tool. It deals with aerodynamics, hydrodynamics, structural dynamics and con-
trol of modern three bladed wind turbines, and as such gives very similar results as an
actual real-life wind turbine.

We will use a linearized version of the full TURBU model, to keep the computational
time required to run all the optimization methods multiple times within reasonable
bounds. This linearized model has only ten states. First there is the angular position
ψ (the azimuth) of the turbine, and its derivative, the rotor speed Ω. Secondly, there is
the forward/backward position of the nacelle due to bending of the tower, as well as its
derivative. Then a single bending mode is also incorporated for each wind turbine blade,
resulting in the remaining six states.

The turbine simulation also has several inputs. Some of these cannot be controlled.
For instance, there is a wind speed for each of the blades, in which both the rotation
of the wind turbine and a representative turbulence spectrum are taken into account.
Others can be controlled, like the torque applied by the turbine generator. Through a
simple proportional controller, this is used to keep the rotor speed constant. Finally,
there are also flaps installed on the turbine blades, and it is through the control of these
flaps that we should reduce the loads within the wind turbine.

As output of the model, we first of all have basic data like the angular position and
velocity of the turbine, and the forward/backward motion of the nacelle. However, we
also measure the wind speed encountered by each of the blades and, more importantly,
the bending moment at the root of each of the blades, around each of the three axes. Of
these three moments, the in-plane bending and the twisting (torsion) of the blades are of
lesser importance. It is mainly the out-of-plane flapping moment of the blades which is
problematic, because it causes significant bending of the thin wind turbine blades, with
high stresses as a result. We will refer to this as the Root Bending Moment (RBM). An
example of such RBMs can be seen in Figure 6.19 (left).

6.5.4. MULTIPLE REFERENCE FRAMES: THE COLEMAN TRANSFORMATION

For all the parameters related to the blades, we can choose in which reference frame we
want them. We can either use these parameters as they are in real life, which is known as
the rotating reference frame. So then we would know the (for instance) bending loads of
each individual blade.

However, we could also apply the Coleman transformation, also known as the multi-
blade coordinate transformation. Let’s assume we are dealing with a three-bladed wind
turbine. We write the azimuth angle of each of the blades as ψ1, ψ2 and ψ3. So if the
first blade is pointing upwards, then ψ1 = 0◦, ψ2 = 120◦ and ψ3 = 240◦. We also write
the corresponding RBMs (or any other blade parameters) as q1, q2 and q3. We can now

6

190 6. GAUSSIAN PROCESS OPTIMIZATION

Figure 6.19: The root bending moments of the wind turbine in flapping direction. This is plotted in the rotating
reference frame (left) and the fixed reference frame (right). In the rotating reference frame you can clearly see
the oscillation of the RBMs of the various blades as the turbine rotates. In the fixed reference frame the signals
do not vary with the turbine azimuth, but only due to other processes like turbulence.

transform these parameters into the so-called fixed reference frame through6q0

qt

qy

= 1

3

 1 1 1
2cos(ψ1) 2cos(ψ2) 2cos(ψ3)
2sin(ψ1) 2sin(ψ2) 2sin(ψ3)

q1

q2

q3

 . (6.79)

The first of these parameters is known as the collective or cone-wise RBM (or whatever
blade parameter we transform). It reflects the amount in which the wind turbine blades
are bending all together. The second parameter is known as the tilt-wise or pitch-wise
RBM. It is large if blades that are pointing up are bending one way and blades that are
pointing down are bending the other way. The third parameter is called the yaw-wise
or flap-wise RBM, and it is large if blades pointing to the right are bending one way and
blades pointing to the left are bending the other way. Ideally, in a perfectly symmetric
world, it is zero. An example of this transformation being applied is shown in Figure 6.19
(right).

We can also apply the inverse Coleman transformation to go from the fixed to the
rotating reference frame. This follows asq1

q2

q3

=
1 cos(ψ1) sin(ψ1)

1 cos(ψ2) sin(ψ2)
1 cos(ψ3) sin(ψ3)

q0

qt

qy

 , (6.80)

where the above matrix is the inverse of the Coleman transformation matrix.
When working with wind turbines, it is generally more convenient to work within

the fixed reference frame. That is, we keep track of the RBMs within the fixed refer-
ence frame, and then use these to determine how much we should deflect the flaps, also
within the fixed reference frame.
6As always, there is a multitude of notation conventions in literature. Also the order in which the elements

appear within the vector may differ. So when applying this transformation, always check which element
represents which mode.

6.5. EXPERIMENTS

6

191

When we do this, we should ignore the collective RBM. One reason for this is that the
collective RBM does not cause any fatigue damage. After all, while the other two RBMs
represent cyclic loads, the collective RBM represents constant loads, and constant loads
do not cause fatigue damage. At the same time, the main way to reduce the collective
RBM is to slow the wind turbine down. In other words, reducing the collective RBM gets
in the way of the generator controller, which we do not want. As a result, we will only use
the tilt-wise and yaw-wise RBMs to determine how much to deflect the flaps in a tilt-wise
and yaw-wise fashion.

The way in which we do this is rather simple: we use a proportional controller. In
other words, we take the RBMs in the fixed reference frame, multiply them by a constant
gain, and feed those signals to the blade flaps. The reason behind this overt simplic-
ity mainly lies in the conservativeness of the wind turbine industry. Many wind turbine
manufacturers prefer proven technologies above new and potentially risky algorithms.
And if there is any control method which is simple and effective (though not necessarily
optimal) then it is the proportional controller. The main question now is: which con-
troller gains should we use?

6.5.5. A QUALITY CRITERION: THE DAMAGE EQUIVALENT LOAD

To know which controller gains are optimal, we need a quality criterion. What are we
actually trying to optimize?

In short, we are trying to maximize the lifetime of the wind turbine by reducing the
fatigue damage. But measuring how much ‘fatigue’ a blade has absorbed is not as easy
as it may seem, because the blade may be subject to lots of small oscillations, a few big
ones, and anything in-between, as is shown in Figure 6.19. How do we compare all this?

The first step is to analyze how many oscillations of which magnitude our blades
have been subject to. This is done through a method called rainflow counting. A proper
explanation is given by Niesłony (2009), but we briefly take a look at it anyway with the
help of Figure 6.20.

To start the rainflow counting procedure, we take the RBM plot and only consider
the peaks (the turning points) in it. We then rotate the plot so it resembles a ‘roof’ with
potential rain running down. The idea is to introduce a ‘flow’ of rain at every point where
the graph turns to the right. This rain slides down the roof, until the plot turns back to
the left, at which point the rain falls down to the ‘roof’ directly beneath it. When it lands
on this roof, it encounters an already existing flow of rain. The shorter one of these two is
cut off, and the longer one continues. At the end, when we have set up all the rain flows
in this way, we look at the sizes of all the rain flows. These are the magnitudes of the
oscillations. It hence gives us an overview of all the various oscillation stress magnitudes
S1,S2, . . .Sns we have encountered, with ns the number of oscillations.

We now know the magnitudes of all the individual oscillations we encountered. The
next step is to compare them with each other. To do this, we ideally need a so-called S-N
Curve. Here, S is the stress magnitude of the oscillations which the blade encounters,
and N is the number of such oscillations which the material can survive before failing,
also known as the life cycles. Naturally, if we subject a piece of material to stronger os-
cillations (higher stress S) it fails after fewer of these oscillations (lower lifetime N). The
speed at which these oscillations is applied generally has little influence.

6

192 6. GAUSSIAN PROCESS OPTIMIZATION

Figure 6.20: The rainflow procedure visualized. We start with a signal to analyze (top left). We then extract
the peaks of this signal (top right). Everything else is irrelevant. We turn the plot sideways and let rain flow
down from every rightward turning point (bottom left). When two flows meet, the shorter one (based on hor-
izontal distance traveled) is cut off and the longer one continues. Based on these flow lengths, we can split
the signal up into individual oscillations (bottom right). Here we should distinguish half oscillations from full
oscillations. The bottom right figure was generated using the tools made by Niesłony (2009).

6.5. EXPERIMENTS

6

193

The S-N curve is generally plotted using a logarithmic scale for N . In this case, it often
takes a mostly linear shape. This means that N and S approximately satisfy a relation of
the form SN m = constant. This means that, if the oscillation stress S becomes twice as
big, the number of life cycles is reduced by a factor 2m .

The factor m here is known as the Wöhler exponent. It depends on the material used.
According to Savenije and Peeringa (2009), our glass fiber composite blades have a Wöh-
ler exponent of m = 11. This is a very significant number. After all, if we get twice as much
stress, the number of life cycles is reduced by a factor 211 = 2048. Or in other words, a
single oscillation of magnitude 2S is equivalent to 2048 oscillations of magnitude S. This
idea of ‘equivalence’ is also known as Miner’s rule. Using it, we can calculate a so-called
Damage Equivalent Load (DEL).

Suppose that we have subjected our blade to a time t of oscillations. During this time
it has encountered all sorts of oscillations S1,S2, . . . ,Sns , as evaluated by our rainflow
counting algorithm. Using this, we can calculate the number of equivalent oscillations
Neq at a given reference stress amplitude Sr . This is done through7

Neq =
(

S1

Sr

)
+

(
S2

Sr

)
+ . . .+

(
Sns

Sr

)m

. (6.81)

In practice, we often look at this in a different way. Instead of looking at the number of
equivalent oscillations for a given reference stress magnitude, we look at the equivalent
stress magnitude for a given number of oscillations. In other words, we ask ourselves,
‘If we had encountered Nr oscillations, all of the same magnitude Seq , what would this
equivalent stress Seq be that results in exactly the same fatigue damage as our whole
assortment of oscillations?’ We refer to Seq as the damage equivalent load and we can
calculate it through

Seq = Sr

(
Neq

Nr

) 1
m

=
(Sm

1 +Sm
2 + . . .+Sm

ns

Nr

) 1
m

. (6.82)

How do we choose Nr though? To do so, we usually look at the time t over which we
analyzed the stress oscillations. We then pick a reference frequency fr (often fr = 1Hz)
and use Nr = fr t . As a result of this, we can now say that all oscillations put together give
the same fatigue damage as a sinusoidal stress signal with frequency fr and magnitude
Seq . This is irrespective of the duration of our experiment.

So in our application, we want to minimize this damage equivalent load, which we
now know how to calculate. However, there is a second side of the story, which is that
more aggressive controllers will almost always do better at reducing the DEL. We do not
want very aggressive controllers though, because they provide too many highly varying
input signals to the flaps. This will wear out the bearings on the flaps.

The lifetime of bearings is often measured in the amount of angular distance trav-
eled. So we should also take into account this distance traveled. Or, normalizing per
unit of time, we should take into account the mean rate of change of the input signal
provided to the flaps. By setting up a weighted combination of the DEL and the mean

7If the rainflow counting algorithm indicates that only half of an oscillation has taken place, instead of a full
oscillation, we should add a factor 1

2 to the corresponding oscillation term.

6

194 6. GAUSSIAN PROCESS OPTIMIZATION

rate of change of the input signal, we can come up with a performance (or damage) score.
The goal of the algorithm now is to minimize this performance score, or equivalently to
maximize its reciprocal.

6.5.6. OPTIMIZING THE CONTROLLER SETTINGS OF A WIND TURBINE

It is time to discuss the actual experiment. Sadly, code for this experiment is not available
online, since TURBU is third-party software and would also take up much more memory
space than is available in the online repository. However, the method that is used is the
same as for the two-dimensional problem of Section 6.5.2.

For our simulation, we will use a wind speed of 10m/s, with a representative tur-
bulence spectrum. For every experiment, we put the wind turbine in the zero initial
state, which it has been linearized about. We then simulate for a relatively long time of
T = 200s. This minimizes the influence of random effects like turbulence, reducing the
noise in the resulting parameters, like the damage equivalent load.

As was mentioned at the end of Section 6.5.4, we will use a proportional controller
for both the tilt-wise and the yaw-wise flap input signals. The signal that is fed to this
proportional controller are the tilt-wise and yaw-wise RBMs. That gives us two gains to
tune. Very low gains (in the order of 10−8) will result in an inactive controller which does
not reduce the RBM, while very high gains (in the order of 10−5) will react to every small
bit of turbulence, resulting in an overly aggressive controller with a highly varying input
signal. While the first will result in a large fatigue damage, the latter will result in a high
bearing damage. Since our performance score is a weighted combination of these two
parameters, the optimum should lie somewhere in-between.

To get an idea of what the performance score plot will look like, we can apply a brute
force method. That is, we simply apply 500 random control settings and apply GP regres-
sion to the outcome. This results in Figure 6.21. In real life we can of course not apply
such an approach. Trying out random control laws like this, without good reason, would
result in an unacceptable amount of fatigue damage, if not anything worse.

Figure 6.21 shows us that the performance score is a mostly convex function with
respect to the controller gains. There does not seem to exist any local optimums. As a
result, after some basic manual tuning of the parameters of the acquisition functions,
we wound up with the low values of κ= 1 and ξ= 0.005. This shows that this problem is
not so much about exploration – finding the optimum – but mainly one of exploitation –
sticking with the first optimum found.

When we apply the various optimization methods to this problem, we get the results
shown in Figure 6.22. They are very similar to the the results of the one-dimensional
problem shown in Figure 6.14. Once more, it seems that the UCB and the EI acquisi-
tion functions still do quite some exploring, starting off with the corners of the input
space, while both Thompson sampling and the PI acquisition function are more focused
on exploiting. This gets them better results in the short term, but in the long run the
performance of the various algorithms is once more similar.

It should be noted here that the various optimization methods directly optimize (a
function of) the DEL of the wind turbine. Many controller tuning algorithms cannot
do so, because of the highly nonlinear nature of the DEL. Instead, they optimize other
related quantities, assuming that this would have a beneficial effect on the DEL. This may

6.5. EXPERIMENTS

6

195

Figure 6.21: An approximation of the wind turbine performance score, with respect to the controller gains. The
approximation was made by taking 500 random points and applying a GP regression algorithm to the outcome.

Figure 6.22: The cumulative regret of the various GPO algorithms when applied to the wind turbine problem.
Again a total of 50 full executions of the algorithms was run, and their average was plotted.

6

196 6. GAUSSIAN PROCESS OPTIMIZATION

not always be the case though, which makes Gaussian process optimization, definitely
for this application, all the more powerful.

6.5.7. APPLYING THE METHODS TO A WIND TUNNEL TEST
To see whether Gaussian process optimization works in real life as well, we can check
out its performance in a wind tunnel experiment. For this, a two-bladed wind turbine
with controllable flaps on the wind turbine blades was available, depicted in Figure 6.23.
A two-bladed wind turbine works slightly different from a three-bladed turbine, but the
differences are not significant to how GPO is applied.

Figure 6.23: The wind turbine used in the experiment, placed in the open-jet wind tunnel of the Delft University
of Technology.

One thing that was very different was the absence of turbulence. The open-jet wind
tunnel that was used has been set up with the specific goal of minimizing turbulence. As
a result, setting up a controller to reduce the effects of turbulence, like in the previous
experiment, did not work so well. The optimal strategy was quite close to ‘Do nothing,
because there is no turbulence.’

Instead, the focus was on optimizing the cyclic loads due to other factors, like tower
shadow. For this, we gave a cyclic (sinusoidal) input signal to the wind turbine blade
flaps, expressed in the azimuth ψ of the respective blade. That is, we used

u(t) = A sin
(
ψ+φ)

, (6.83)

where A is the amplitude and φ is the phase shift of the input signal. Equivalently, we
can also rewrite the above (see Theorem A.40) to the form

u(t) = θ1 sin
(
ψ

)+θ2 cos
(
ψ

)
. (6.84)

The challenge now is to tune θ1 and θ2 such that the damage equivalent load is min-
imized. In this experiment, we did not take the loads on the bearing into account, be-

6.5. EXPERIMENTS

6

197

cause restricting the control signal to a sinusoidal form already removes the risk of wind-
ing up with an overly aggressive controller.

For this experiment only n = 15 measurements were performed, and only for Thomp-
son sampling. These measurements, together with the resulting approximation of the
damage equivalent load, is shown in Figure 6.24 (left). The corresponding belief about
where the optimal parameters are is shown in Figure 6.24 (right).

Figure 6.24: The results of the wind turbine experiment, with the approximated damage equivalent load mean
(left) and the belief of where the optimal controller settings would be (right). A total of n = 15 measurements
were performed using Thompson sampling. During these experiments, the Thompson sampling algorithm
first tried a few not-so-optimal controller settings, but quickly managed to find a better operating region and
stay within it. During these experiments, it got more and more certain of where the optimal operating point
would be.

There are two questions that arise from this experiment. First of all, are the resulting
parameters correct? Naturally, this is hard to know for sure. However, the controller
parameters that were found were close to the parameters found by colleagues Navalkar
et al. (2016), who set up an identical control law and tuned it using Iterative Feedback
Tuning (IFT) just before the experiment. IFT fundamentally works very differently from
GPO. For instance, IFT is not capable of using the highly nonlinear quality criterion of
the DEL, while GPO is able to deal with this. But the fact that both IFT and GPO come
up with similar controller parameters is at least an indication that these parameters are
somewhat sensible.

The second question is why only n = 15 experiments were run. These are practical
reasons. Changing the controller settings required shutting off the wind turbine con-
troller which, for safety reasons, required shutting off the entire wind tunnel. As a result,
running each experiment took quite some time.

Still, more than fifteen experiments were planned. But after the fifteenth experiment,
which involved a slightly longer wind tunnel downtime (read: a coffee break8), some-
thing had mysteriously changed in the wind turbine dynamics, and the optimal con-
troller parameters were suddenly very different, closer to θ1 = 2.5 and θ2 = 0. Later on it
turned out that the clamp fixing the yaw angle of the turbine had sprung loose, turning
it into a freely yawing wind turbine, thus altering the dynamics. Though the algorithm

8To be honest, a water break. I don’t drink coffee.

6

198 6. GAUSSIAN PROCESS OPTIMIZATION

subsequently did mostly converge to the new optimum, albeit with a rather strange DEL
approximation, this did defeat the purpose of the experiment and so the experiment was
aborted.

However, this does raise the question of whether the algorithm can adapt to such
changing circumstances. One of the main assumptions behind the algorithm is that the
objective function, albeit noisy, is at least constant in time. If it is not, we need to look
into ways of taking this into account. The final two suggestions of Section 4.5.2 may
provide a starting point for this.

6.5.8. LESSONS LEARNED FROM THE OPTIMIZATION EXPERIMENTS

There are various lessons that were learned from the optimization experiments. We will
discuss a few of them here.

A first lesson, not noted previously, was learned from actually implementing all the
optimization methods. It seems that implementing an acquisition function is easy, but
this is not always the case. Especially when implementing the PI and EI acquisition func-
tions, there were problems in the optimization algorithm.

These problems were initially caused because the acquisition function was so small
as to (numerically) be zero for most of the input space. This was solved by instead using
the logarithm of the acquisition function. But then still often only local optimums of the
acquisition function were found. This was in turn solved by optimizing the acquisition
function through a multi-start approach specifically tuned to this problem.

The lesson from this is that using any optimization method always requires some
actual fine-tuning of that method to the specific problem we are applying it to. And the
more we fine-tune our optimization method to the problem, the better it performs. It
is hence nearly impossible to conclude that one optimization method works better than
another, because it all depends on how much we fine-tune it to the problem.

We can learn the second lesson from comparing the one-dimensional experiment
of Section 6.5.1 to the two-dimensional experiment of Section 6.5.2. While Thompson
sampling performed worst in the first experiment, it performed best in the second ex-
periment. However, this was mainly caused by the function that was being optimized,
together with certain habits of the optimization method used. Sometimes an optimiza-
tion method appears to work well on a certain function and sometimes it does not. But
since the function that is optimized is in advance unknown, it is very hard to predict
which method will work best.

As a result, we can again conclude that it is impossible to say that one optimiza-
tion method is better than another. It all depends on the problem used. Although this
does provide an extra argument in favor of using the portfolio methods discussed in Sec-
tion 6.4.5. To be precise, it is always wise to keep track of how any optimization method
is doing while it is optimizing a function, and whether or not it might be wiser to use
another optimization method.

6.6. OVERVIEW OF LITERATURE AND CONTRIBUTIONS
As usual, we close this chapter off with a literature overview (Section 6.6.1) and some
suggestions for further research (Section 6.6.2) for people eager to expand on this excit-

6.6. OVERVIEW OF LITERATURE AND CONTRIBUTIONS

6

199

ing field.

6.6.1. LITERATURE OVERVIEW
In this chapter we considered two separate topics. The first is finding the maximum
distribution of a Gaussian process and the second is the Gaussian process optimization
problem.

THE MAXIMUM DISTRIBUTION

For the maximum distribution, relatively little literature is available. The idea of a maxi-
mum distribution was noted by Lizotte (2008), though he did not actually calculate it. It
was calculated by Villemonteix et al. (2009) through the same brute force method we also
applied in Figure 6.2. An expansion to this was developed by Hennig and Schuler (2012),
who used the expectation propagation method from Minka (2001) to approximate the
minimum distribution. Though their approximation method was reasonably accurate,
it had a runtime of O

(
n4

)
, making it infeasible to apply to most problems. An alternative

method was described by Hernández-Lobato et al. (2014a), with further elaborations in
the supplement Hernández-Lobato et al. (2014b), where function samples were approx-
imated through a finite number of basis functions and then optimized to find samples
from the maximum distribution. Other than that, I have not managed to find any men-
tions in literature of the maximum distribution of a Gaussian process.

GAUSSIAN PROCESS OPTIMIZATION

The second matter we discussed, Gaussian process optimization, has received a lot more
attention in literature. Naturally there is a lot of literature on function optimization in
general, but most methods assume that the function can be easily evaluated, that deriva-
tive data is known and/or that the function is concave (for maximization) or convex (for
minimization). A good overview of such optimization methods is given by Boyd and Van-
denberghe (2004). However, we considered the optimization of a function of which ev-
ery function evaluation is expensive. An overview of this problem is given by Jones et al.
(1998). In particular, we used a Bayesian approach to approximate the function during
the optimization process, resulting in the Gaussian process optimization problem.

We noted in Section 6.4.1 that there are two different set-ups for the GPO prob-
lem. Most of the literature focuses on the error minimization set-up. Proper intro-
ductions into this problem are given by Brochu et al. (2010), Shahriari et al. (2016). In
short, the PI acquisition function was first suggested by Kushner (1964) and later ex-
panded through contributions by Torn and Zilinskas (1989), Jones (2001), adding the ex-
ploration/exploitation parameter ξ. The EI acquisition function was suggested by Mockus
et al. (1978). Improvements were then made by Osborne (2010), who added multi-step
lookahead, Park and Law (2015), who added a trust region to ensure small changes to
the belief of the optimal input x̂∗, and Brochu et al. (2010), who introduced an addi-
tional exploration/exploitation parameter ξ similar to the one used in the PI acquisition
function. An analysis was performed by Vazquez and Bect (2010) who established con-
vergence bounds for certain specific cases.

There has been slightly less (though still a significant amount) of literature on the
regret minimization set-up. The problem itself has been analyzed by for instance Klein-
berg (2004), Grünewälder et al. (2010), de Freitas et al. (2012), deriving bounds on the

6

200 6. GAUSSIAN PROCESS OPTIMIZATION

regret for specific cases. The most well-known technique is the UCB algorithm, which
was proposed by Cox and John (1997) and analyzed by Srinivas et al. (2012).

A more advanced method for the error minimization set-up was entropy search.
The main idea was first developed by Villemonteix et al. (2009), although Hennig and
Schuler (2012) independently set up a similar method and introduced the name entropy
search. The method was subsequently developed further as predictive entropy search
by Hernández-Lobato et al. (2014a).

Portfolio methods were first introduced by Hoffman et al. (2011), who used results
from Auer et al. (1995), Chaudhuri et al. (2009). The idea of using a portfolio of acquisi-
tion functions was then expanded on by Shahriari et al. (2014), who suggested to use the
change in entropy as criterion to select recommendations.

Thompson sampling was first suggested by Thompson (1933), but it has been mostly
ignored afterwards. This changed in the late 1990s when it was independently rediscov-
ered several times within the machine learning community. It has been the subject of
a lot of analyses, with recent results given by Chapelle and Li (2011), Agrawal and Goyal
(2012). However, it has generally been applied to problems with a finite number of pos-
sible input points (the armed bandit problem) and not to a problem with infinitely many
different inputs. That is, until I wrote about it through Bijl et al. (2017b).

Finally, there is also an enormous list of applications of GPO methods. A few re-
cent examples include the work by Johan Dahlin (2015), Gutmann and Corander (2015),
Marco et al. (2016), but this list can pretty much be made as long as desired. If you want
to learn of more applications, then read some of the above references. They are bound
to mention several.

6.6.2. SUGGESTIONS FOR FURTHER RESEARCH

Gaussian process optimization is still a very active research field. There are plenty of
open problems which are worthwhile to look into. I will mention a few which I am per-
sonally very curious about.

• Using less particles for Thompson sampling
What is the effect of the number of particles used? When we want to approximate
the maximum distribution, using more particles will give us a more accurate approx-
imation. But if we are only using the maximum distribution to get samples to use in
Thompson sampling, then what happens when we use less particles? For instance,
if we only need ten samples from the maximum distribution, does it suffice to use
only ten champion particles? Are the samples still adequate then? What problems
occur when we really use too few particles? And at how many (or how few) particles
do these problems start to occur?

• Using varying hyperparameters during the optimization
So far we have assumed that the hyperparameters of the Gaussian process are known
and constant. In reality, as was also discussed in Section 3.1.2, the hyperparameters
are also random variables, with their own posterior distributions. And ideally we
need to take all possible hyperparameters into account. This should be possible to
implement within the MCMD algorithm. Now, every time we challenge a champion
particle through (6.8) (or through (6.19) if we use multiple challengers per cham-

6.6. OVERVIEW OF LITERATURE AND CONTRIBUTIONS

6

201

pion), we should also randomly pick our hyperparameters from the hyper-posterior
and use those during the challenge. This should then give us the maximum distribu-
tion of the Gaussian process taking into account all possible hyperparameters. But
how actually can we do this efficiently, so that we don’t have to wait hours for every
challenge round?

• A Gaussian process gradient ascent algorithm
We have learned in Section 2.5 that the derivative of a Gaussian process is also a
Gaussian process. This raises the question of whether it is possible to use Gaussian
process regression to implement some sort of gradient ascent algorithm. In particu-
lar, can we use our knowledge about the derivative of the Gaussian process to quickly
track down a local optimum of the function? And what role does the uncertainty (the
variance) of the derivative play in the step size that we use?

• Low-risk Gaussian process optimization
In wind turbine applications, and in many other applications, there may be regions
of the input space which we simply should never try out. That is, if we pick an input
x (a set of controller parameters) from such a region, the wind turbine becomes un-
stable and breaks down, with a large amount of damage as a result. Assuming that
the cost function f (x) we are approximating is continuous, and that we can poten-
tially see such no-go-regions coming, how do we prevent ourselves from entering
such parts of the input space?
In this problem, it is not only important what the upper bound µ(x)+κσ(x) – the po-
tential gain – of the GP is, but also what the lower bound µ(x)−κσ(x) – the potential
loss – of the GP is. As a result, we can only try input points xk close to earlier input
points we have tried, so that we are reasonably certain we do not accidentally enter
such a very-negative-value region.
Since finding the global optimum is in this case nearly impossible – we cannot risk
trying a fully unexplored part of the input space – we can be satisfied with a local
optimum for this problem. So possibly Gaussian gradient ascent algorithms (see the
previous suggestion) can also be used? Similar ideas have already been tried out,
after I first wrote this, by Sui et al. (2015), Berkenkamp et al. (2016).

7
CONCLUSION AND

RECOMMENDATIONS

At the start of this thesis, in Section 1.1.2, we asked ourselves four questions related to
Gaussian process regression. We will repeat them here one by one to see if we have found
an answer to them. In addition, we also consider the next questions that inevitably follow
from the answers that we found.

1. How can GP regression be applied to a big and constantly growing data set?
We looked into this in Chapter 4. Methods for Gaussian process regression to be
applied to large data sets already existed. They made use of inducing input points.
We have extended these methods so they can be applied in an online way. That is,
both new measurement data and new inducing input points can be added on the
fly. These methods are powerful enough that we are now able to deal with big and
constantly growing data sets.
Nevertheless, the number of inducing input points required still scales exponentially
with the dimension of the input space. As a result, when dealing with problems that
both have a large number of input parameters (say, 6 or more) and require a high
accuracy, we still run into computational problems because of too many (more than
a thousand) inducing input points. Apart from the multitude of small ways in which
the methods can be improved, I think this is the most important follow-up problem
to tackle. Can we devise a way such that not all inducing input points are required
when making predictions?

2. How can GP regression be applied subject to uncertainty in all measurements?
In Chapter 5 we developed the SONIG algorithm which allows Gaussian process re-
gression to be applied subject to noisy input points. This has solved the problem that
we were facing. The algorithm has shown to have better performance than related al-
gorithms and is computationally more efficient as well.
The next challenge for the development of the SONIG algorithm is to properly deal
with various special cases. For instance, for some measurements the algorithm is not

203

204 7. CONCLUSION AND RECOMMENDATIONS

capable of properly finding the posterior distribution of the measurement input. In
other cases measurements cannot be incorporated due to numerical problems. Cur-
rently such measurements are ignored. By detecting such measurements and deal-
ing with them in the proper way, an extra gain can still be obtained, both concerning
performance and concerning the user-friendliness of the SONIG toolbox.

3. How can Gaussian processes be optimized with respect to various parameters?
In Chapter 6 we looked at what the ‘optimum’ of a Gaussian process actually means.
It turns out to be a random variable with its own distribution. This distribution can-
not be calculated analytically, so we have developed the Monte Carlo Maximum Dis-
tribution (MCMD) algorithm to approximate it. Using this algorithm, it is possible to
set up a Thompson sampling optimization method which finds the optimum of an
unknown nonlinear function with little cost (regret). The performance of this Gaus-
sian process optimization method was comparable to or slightly better than other
optimization methods, depending on the exact function used.
The next step in the development of the MCMD algorithm is to see if any perfor-
mance bounds can be obtained. When applying Thompson sampling to problems
with a discrete input space, bounds on the cumulative regret can be derived. The
question now is whether such bounds also exist for the continuous-input problem.

4. How can other people apply GP regression algorithms to wind turbine problems?
Applying Gaussian process regression is not always as easy as we may like. Never-
theless, in this thesis I have tried to make it as easy as possible. The past six chap-
ters provide master students, or anyone with a similar background, with an intuitive
view on Gaussian processes. It also lists the equations through which people can
quickly set up their own Gaussian process regression methods. In addition, all the
corresponding mathematics is available in the appendices and all the source code is
online (see Bijl (2016a)). This allows people to easily find examples of working GP
regression applications; especially applications related to wind energy.
That does not mean that we are done. There is still a long way to go. One step in the
right direction has been made by developing the SONIG toolbox. (See Bijl (2016b).)
However, no toolbox is ever finished. If we want Gaussian process regression to be
applied more, then I believe the challenge is not to develop new advanced regression
tricks. Instead, I think we should focus on improving toolboxes like the SONIG tool-
box, making them more powerful and especially more user-friendly, so the power of
Gaussian process regression can be harnessed by nearly anyone.

Concluding, we have answered the questions posed in the introduction, but several more
new challenges have sprung up. There is still a long way to go before Gaussian process
regression can be easily applied to various applications, in wind energy and beyond.

A
MATRIX ALGEBRA

Summary — Matrices can be subject to a variety of operations. Of course it is possible to
add up and multiply matrices, but we can also take the trace of a matrix, the derivative,
the vectorization, or multiply matrices using the Kronecker product. All these operators
have various potentially useful properties.

We can also take the inverse of a matrix. This is usually a computationally demanding
process. But if we split the matrix up into blocks, and we already know the inverse of some
of these blocks, we might have an easier time finding the inverse of the full matrix.

Matrices play a fundamental role in Gaussian exponentials as well. When multiplying
Gaussian exponentials, we can often find the outcome in relatively easy way by evaluating
a few matrix expressions.

Finally we consider Lyapunov equations. Their solutions, which can be found analytically,
satisfy a variety of interesting properties. For instance, Lyapunov solutions generally equal
integrals over matrix exponentials. These integrals can also be solved by evaluating matrix
exponential expressions. Often this latter method is easier to apply. However, if the time
over which we integrate is large, then it will result in numerical inaccuracies, so then it
will still be better to solve the respective Lyapunov equations.

205

A

206 A. MATRIX ALGEBRA

This appendix covers a couple of important theorems related to matrix algebra. To follow
this appendix, it is important that you are familiar with matrices and their basic proper-
ties. So you should be able to do matrix multiplications, find inverses and determinants,
and know what eigenvalues are. No other prior knowledge is required.

We start by examining some basic matrix operations, like the derivative of a matrix,
the trace and the vectorization (Section A.1). Then we look at various ways of efficiently
calculating matrix inverses, based on what data we already have (Section A.2). We con-
tinue by studying Gaussian exponentials, which use covariance matrices in their expo-
nents (Section A.3). Afterwards we study Lyapunov equations and how we can also find
their solutions through infinite integrals over matrix exponentials (Section A.4). We also
look at an alternative way to solve integrals over matrix exponentials (Section A.5). Fi-
nally, we have some miscellaneous theorems which did not fit in anywhere else (Sec-
tion A.6).

A.1. MATRIX OPERATIONS
Various operations can be applied to matrices. Here we look at a few of them, and what
properties result from these operations. We start by examining the trace operator (Sec-
tion A.1.1), continue with matrix derivatives (Section A.1.2) and then consider both ma-
trix vectorization and the Kronecker product (Section A.1.3).

A.1.1. THE TRACE OPERATOR
The trace operator tr(P) is defined as the sum of the diagonal elements of the square
matrix P . In other words,

tr(P) = tr


P11 P12 · · ·

P21 P22 · · ·
...

...
. . .


= P11 +P22 + (A.1)

This trace operator has a couple of very convenient properties. First of all, it is a linear
operator. That is, tr(A+B) = tr(A)+ tr(B) and tr(c A) = ctr(A) for square matrices A and
B and scalar c. (You can proof this directly from the definition.) Secondly, we always have
tr(P) = tr

(
P T

)
, while for a scalar we even have tr(c) = c. And thirdly, the trace operator

has the cyclic property, as explained by the following theorem.

Theorem A.1. For any matrices A, B and C for which ABC is square, we have

tr (ABC) = tr (C AB) = tr (BC A) . (A.2)

Proof. We will first prove the relation tr(PQ) = tr(QP) for some m×n matrix P and n×m
matrix Q. Let’s denote the element of P in row i and column j as Pi j and similarly for Q
or any matrix [. . .]. The definition of matrix multiplication tells us that

[PQ]i j =
n∑

k=1
Pi kQk j . (A.3)

From this, it follows that

tr(PQ) =
m∑

i=1
[PQ]i i =

m∑
i=1

n∑
j=1

Pi j Q j i =
n∑

j=1

m∑
i=1

Q j i Pi j =
n∑

j=1
[QP] j j = tr(QP) . (A.4)

A.1. MATRIX OPERATIONS

A

207

This relation directly implies (A.2). To be precise, substituting P = AB and Q = C gives
the first relation, and substituting P =C A and Q = B gives the second.

Note that we can only cycle the elements within the trace function. We generally do
not have tr(ABC) = tr(C B A).

A.1.2. MATRIX DERIVATIVES

The matrix derivative is defined element-wise. So, if an m ×n matrix P depends on the
parameter x, then per definition

dP

d x
=


dP11

d x · · · dP1n
d x

...
. . .

...
dPm1

d x · · · dPmn
d x

 . (A.5)

If this is the derivative of a matrix, then what is the derivative of a matrix inverse?
That question is answered by the following theorem.

Theorem A.2. For any invertible matrix P and any parameter x, the derivative of P−1

with respect to x equals

dP−1

d x
=−P−1 dP

d x
P−1. (A.6)

Proof. Consider the relation PP−1 = I . If we take the derivative of both sides, applying
the chain rule, we get

dP

d x
P−1 +P

dP−1

d x
= 0. (A.7)

Solving for dP−1/d x directly proves the theorem.

Similarly, what is the derivative of a matrix determinant?

Theorem A.3. For any invertible matrix P, the derivative of |P | is given by

d |P |
d x

= |P |tr

(
P−1 dP

d x

)
. (A.8)

Proof. This proof is a bit too lengthy for this thesis. I will only note that this theorem
is a special case of Jacobi’s formula, and for details refer to the work by Bellman (1997)
or Magnus and Neudecker (1999).

A nice consequence of the above theorem is that

d log |P |
d x

= tr

(
P−1 dP

d x

)
, (A.9)

which somewhat surprisingly is an easier expression than A.8.

A

208 A. MATRIX ALGEBRA

A.1.3. VECTORIZATION AND THE KRONECKER PRODUCT

The vectorization vec(P) of some matrix P is defined as the concatenation of the columns
of P into one big vector. For instance,

vec

([
a b
c d

])
=


a
c
b
d

 . (A.10)

The Kronecker product P ⊗Q of an mP ×np matrix P and an mQ ×nQ matrix Q is defined
as the mP mQ ×nP nQ matrix

P ⊗Q =

 P11Q · · · P1nQ
...

. . .
...

Pm1Q · · · PmnQ

 . (A.11)

These two operators are often used together, mainly because of the following theorem.

Theorem A.4. For any matrices P of size k × l and Q of size l ×m, it holds that

vec(PQ) = (Im ⊗P)vec(Q) = (
QT ⊗ Ik

)
vec(P), (A.12)

where Ik denotes the identity matrix of size k.

Proof. This can be proven by expanding the matrix equations. Let’s write the matrix Q
as

Q = [
q1 q2 · · · qm

]=


q11 q12 · · · q1m

q21 q22 · · · q2m
...

...
. . .

...
qk1 qk2 · · · qkm

 . (A.13)

We can first note that vec(PQ) equals

vec(PQ) = vec
([

P q1 P q2 · · · P qm
])=


P q1

P q2
...

P qm

 . (A.14)

Next, consider (Im ⊗P)vec(Q). This equals

(Im ⊗P)vec(Q) =


P 0 · · · 0
0 P · · · 0
...

...
. . .

...
0 0 · · · P




q1

q2
...

qm

=


P q1

P q2
...

P qm

 . (A.15)

A.2. MATRIX INVERSES

A

209

So these two quantities are equal. Finally we examine
(
QT ⊗ Ik

)
vec(P). This equals

(
QT ⊗ Ik

)
vec(P) =


q11Ik q21Ik · · · ql1Ik

q12Ik q22Ik · · · ql2Ik
...

...
. . .

...
q1m Ik q2m Ik · · · qlm Ik




p1

p2
...

pl

 (A.16)

=


q11p1 +q21p2 + . . .+ql1pl

q12p1 +q22p2 + . . .+ql2pl
...

q1m p1 +q2m p2 + . . .+qlm pl

=


P q1

P q2
...

P qm

 .

So this quantity is also equal to the previous one.

It often occurs that we want to find the trace tr(PQ) of a product of matrices. In that
case, we could also use the following theorem.

Theorem A.5. Any matrices P of size n ×m and Q of size m ×n satisfy

tr (PQ) = vec
(
P T)T

vec (Q) (A.17)

Proof. Let’s define R = P T . We can write Q and R as

Q = [
q 1 q 2 · · · q n

]
, (A.18)

R = [
r 1 r 2 · · · r n

]
. (A.19)

It follows that

tr
(
RT Q

)= tr




r T
1

r T
2
...

r T
n

[
q 1 q 2 · · · q n

]
= tr




r T
1 q 1 r T

1 q 2 · · · r T
1 q n

r T
2 q 1 r T

2 q 2 · · · r T
2 q n

...
...

. . .
...

r T
n q 1 r T

n q 2 · · · r T
n q n


 (A.20)

= r T
1 q 1 + r T

2 q 2 + . . .+ r T
n q n =


r 1

r 2
...

r n


T 

q 1
q 2
...

q n

= vec(R)T vec(Q) .

Replacing R by P T will complete the proof.

A.2. MATRIX INVERSES
In this section we will consider various ways of inverting various matrices. We will often
use the notation ∆A and ∆D . These are Schur complements, defined respectively as

∆A =D −C A−1B , (A.21)

∆D =A−BD−1C . (A.22)

This notation will come in handy when we invert blockwise matrices (Section A.2.1) and
when we invert sums of matrices (Section A.2.2).

A

210 A. MATRIX ALGEBRA

A.2.1. BLOCKWISE MATRIX INVERSES
Our first theorem now shows how we can invert a blockwise matrix. The theory behind
this is far from new, with a good overview given by Hager (1989).

Theorem A.6. Assume that A, D, ∆A and ∆D are invertible. For a matrix P written in
blockwise form, we can find the inverse P−1 through one of two equations,

P−1 =
[

A B
C D

]−1

=
[

A−1 + A−1B∆−1
A C A−1 −A−1B∆−1

A
−∆−1

A C A−1 ∆−1
A

]
(A.23)

=
[

∆−1
D −∆−1

D BD−1

−D−1C∆−1
D D−1 +D−1C∆−1

D BD−1

]
.

Proof. The trick to prove this theorem is to transform the matrix P into something with
a diagonal form. To start, we can transform it into something with an upper triangular
form using a left-multiplication[

I 0
−C A−1 I

][
A B
C D

]
=

[
A B
0 D −C A−1B

]
. (A.24)

Alternatively, we can transform it into something with a lower triangular form using a
right-multiplication [

A B
C D

][
I −A−1B
0 I

]
=

[
A 0
C D −C A−1B

]
. (A.25)

If we apply both transformations, then we get a diagonal matrix[
I 0

−C A−1 I

][
A B
C D

][
I −A−1B
0 I

]
=

[
A 0
0 D −C A−1B

]
. (A.26)

If we instead find the inverse transformations, then we can write our matrix P as LDU ,
with L a lower (block-)triangular matrix, D a (block-)diagonal matrix and U an upper
(block-)triangular matrix. The resulting decomposition of P is hence called an LDU de-
composition. It is given by[

A B
C D

]
=

[
I 0

−C A−1 I

]−1 [
A 0
0 D −C A−1B

][
I −A−1B
0 I

]−1

. (A.27)

If we invert both sides, making use of (ABC)−1 =C−1B−1 A−1, we find that[
A B
C D

]−1

=
[

I −A−1B
0 I

][
A−1 0

0 (D −C A−1B)−1

][
I 0

−C A−1 I

]
. (A.28)

By expanding this, we find that P−1 equals

P−1 =
[

A B
C D

]−1

=
[

A−1 + A−1B(D −C A−1B)−1C A−1 −A−1B(D −C A−1B)−1

−(D −C A−1B)−1C A−1 (D −C A−1B)−1

]
. (A.29)

This proves the first half of the theorem.

A.2. MATRIX INVERSES

A

211

The proof of the second half is nearly identical, except for one small difference. Pre-
viously we used a left-multiplication to put the matrix in an upper triangular form, and
a right-multiplication to put it in a lower triangular form. Now we do the opposite. That
is, we use a left-multiplication to put the matrix in a lower triangular form, and a right-
multiplication to put it in an upper triangular form. This gives us[

A B
C D

]
=

[
I −BD−1

0 I

]−1 [
A−BD−1C 0

0 D

][
I 0

−D−1C I

]−1

. (A.30)

The rest of the steps are the same. So we find that[
A B
C D

]−1

=
[

I 0
−D−1C I

][
(A−BD−1C)−1 0

0 D−1

][
I −BD−1

0 I

]
(A.31)

=
[

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C (A−BD−1C)−1 D−1 +D−1C (A−BD−1C)−1BD−1

]
.

This also proves the second half of the theorem.

The next theorem we look at is the matrix inversion lemma, which is also known as
the Woodbury matrix identity or one of various other names. It is a familiar theorem,
found for instance in the work by Hager (1989) and Higham (2002), but we repeat it here
so we have a complete overview of important theorems.

Theorem A.7. Assume that A, D, ∆A and ∆D are invertible. Then we have

∆−1
D = (A−BD−1C)−1 (A.32)

= A−1 + A−1B(D −C A−1B)−1C A−1

= A−1 + A−1B∆−1
A C A−1.

Proof. This follows directly from Theorem A.6. If we look at the top left block of the
matrices in this theorem, we directly find that

(A−BD−1C)−1 = A−1 + A−1B(D −C A−1B)−1C A−1. (A.33)

Combining this with the definitions for ∆A and ∆D proves the theorem.

In literature the matrix inversion lemma has lots of different notations. Often U is
used instead of B , V is used instead of C and −C−1 is used instead of D . Sometimes B is
turned into −B , resulting in

(A+BD−1C)−1 = A−1 − A−1B(D +C A−1B)−1C A−1. (A.34)

The essence of the theorem remains the same though: to replace a possibly difficult ma-
trix inverse with one that is potentially a lot easier to compute.

A similar theorem to the matrix inversion lemma is the following one.

Theorem A.8. Assume that A, D, ∆A and ∆D are invertible. Then we have

A−1B(D −C A−1B)−1 = A−1B∆−1
A =∆−1

D BD−1 = (A−BD−1C)−1BD−1. (A.35)

A

212 A. MATRIX ALGEBRA

Proof. This theorem also follows directly from Theorem A.6. If we look at the top right
block of the matrices in this theorem, we directly find the equation above.

Finally, using the results so far, we can derive another related theorem. This one
concerns the determinant of a blockwise matrix.

Theorem A.9. The determinant of a blockwise matrix equals∣∣∣∣A B
C D

∣∣∣∣= |A||D −C A−1B | = |A||∆A | (A.36)

= |D||A−BD−1C | = |D||∆D |.

Proof. We should first note, from the definition of the determinant, that∣∣∣∣X 0
0 Y

∣∣∣∣= |X ||Y |, (A.37)∣∣∣∣ I 0
Z I

∣∣∣∣= 1, (A.38)

and |X Y Z | = |X ||Y ||Z | for any (appropriately sized) matrices X , Y and Z . Using this,
and using the LDU decomposition (A.27), the above theorem directly follows.

A.2.2. INVERTING SUMS OF MATRICES

It often occurs that we need to find the inverse of a sum of inverses. In that case the
following theorem can come in handy.

Theorem A.10. Assume that all matrices with inverses in the below equation are invert-
ible. Also define P and Q as in the equation below. We then have

(P−1 +Q−1)−1 =
([

A B
C D

]−1

+
[

E F
G H

]−1
)−1

(A.39)

=
[

A B
C D

][
Ã−1 + Ã−1B̃∆−1

Ã
C̃ Ã−1 −Ã−1B̃∆−1

Ã
−∆−1

Ã
C̃ Ã−1 ∆−1

Ã

][
E F
G H

]

=
[

A B
C D

][
∆−1

D̃
−∆−1

D̃
B̃D̃−1

−D̃−1C̃∆−1
D̃

D̃−1 + D̃−1C̃∆−1
D̃

B̃D̃−1

][
E F
G H

]
,

where we have defined[
Ã B̃
C̃ D̃

]
=

[
A+E B +F
C +G D +H

]
, (A.40)

∆Ã =D̃ − C̃ Ã−1B̃ = (D +H)− (C +G)(A+E)−1(B +F), (A.41)

∆D̃ =Ã− B̃D̃−1C̃ = (A+E)− (B +F)(D +H)−1(C +G). (A.42)

A.2. MATRIX INVERSES

A

213

Proof. The easiest way to prove the above theorem is through

(P−1 +Q−1)−1 =P (P +Q)−1Q (A.43)

=
[

A B
C D

][
A+E B +F
C +G D +H

]−1 [
E F
G H

]

=
[

A B
C D

][
Ã B̃
C̃ D̃

]−1 [
E F
G H

]
.

We can apply Theorem A.6 to this. Making use of definitions (A.21) and (A.22) for∆Ã and
∆D̃ , we now immediately find that

(P−1 +Q−1)−1 =
[

A B
C D

][
Ã−1 + Ã−1B̃∆−1

Ã
C̃ Ã−1 −Ã−1B̃∆−1

Ã
−∆−1

Ã
C̃ Ã−1 ∆−1

Ã

][
E F
G H

]
(A.44)

=
[

A B
C D

][
∆−1

D̃
−∆−1

D̃
B̃D̃−1

−D̃−1C̃∆−1
D̃

D̃−1 + D̃−1C̃∆−1
D̃

B̃D̃−1

][
E F
G H

]
.

This proves the theorem.

We can take the limit of H → ∞ for the above theorem. Having a matrix limit may
sound complicated, but what it basically means is that all eigenvalues of H go to infinity.
So one way of looking at this is as if H = hI with h →∞.

Theorem A.11. Consider Theorem A.10. Under the same assumptions and definitions, in
the limit of H →∞, this theorem reduces to([

A B
C D

]−1

+
[

E F
G H

]−1
)−1

=
[

A B
C D

]
−

[
A
C

]
(A+E)−1 [

A B
]

(A.45)

=
[

A(A+E)−1E E(A+E)−1B
C (A+E)−1E D −C (A+E)−1B

]
.

Proof. We could prove this by indeed considering Theorem A.10 as H →∞. A somewhat

faster approach would be to rewrite
(
P−1 +Q−1

)−1
into

P (P +Q)−1 Q = P (P +Q)−1 (P +Q)−P (P +Q)−1 Q = P −P (P +Q)−1 P. (A.46)

In this case we have

(P +Q)−1 =
[

A+E B +F
C +G D +H

]
=

[
A+E ∗
∗ ∞

]−1

=
[

(A+E)−1 0
0 0

]
, (A.47)

where a ∗ denotes an immaterial value: it will drop out of the equations anyway. From
this, we directly find that, as H →∞,([

A B
C D

]−1

+
[

E F
G H

]−1
)−1

=
[

A B
C D

]
−

[
A
C

]
(A+E)−1 [

A B
]

. (A.48)

A

214 A. MATRIX ALGEBRA

This proves the first part of (A.45). To prove the second part, we need to rewrite the
above. We can rewrite the top left term through

A− A (A+E)−1 A = A (A+E)−1 (A+E)− A (A+E)−1 A = A (A+E)−1 E . (A.49)

Rewriting the other terms goes in an identical way, after which we also prove the second
result of (A.45).

A.3. GAUSSIAN EXPONENTIALS
In this section we examine Gaussian exponentials and Gaussian exponential functions.
We start with the exponentials (Section A.3.1) which are exponential whose exponent
has the form − 1

2 (x −µ)Σ−1(x −µ). If we then also add a normalization constant 1p|2πΣ|
we wind up with Gaussian exponential functions, whose properties we also study (Sec-
tion A.3.2). Finally we also look at joint Gaussian exponential functions of multiple vari-
ables xa and xb (Section A.3.3).

A.3.1. MULTIPLYING GAUSSIAN EXPONENTIALS
The first property we examine concerns the product of Gaussian exponentials. It is a
familiar expression in literature, given for instance by Deisenroth (2010).

Theorem A.12. Assume that Σa > 0 and Σb > 0 are symmetric. The product of two Gaus-
sian exponentials (without multiplying constants) equals

exp

(
−1

2
(x −µa)TΣ−1

a (x −µa)

)
exp

(
−1

2
(x −µb)TΣ−1

b (x −µb)

)
(A.50)

= exp

(
−1

2
(µa −µb)T (Σa +Σb)−1(µa +µb)

)
exp

(
−1

2
(x −µ)T (Σ−1

a +Σ−1
b)(x −µ)

)
,

where we define
µ= (Σ−1

a +Σ−1
b)−1(Σ−1

a µa +Σ−1
b µb). (A.51)

Proof. To prove this, we start with merging the exponentials and expanding the brackets.

exp

(
−1

2
(x −µa)TΣ−1

a (x −µa)

)
exp

(
−1

2
(x −µb)TΣ−1

b (x −µb)

)
(A.52)

= exp

(
−1

2

(
xTΣ−1

a x −2xTΣ−1
a µa +µa

TΣ−1
a µa +xTΣ−1

b x −2xTΣ−1
b µb +µb

TΣ−1
b µb

))
.

We want to complete the squares with respect to x . That is, within the exponential we
want to find something of the form

− 1

2
(x −µ)TΣ−1(x −µ)+ c, (A.53)

for some parameters µ, Σ−1 and c. By looking at the exponential, and checking out all
the terms with xT (. . .)x , we can right away see that

Σ−1
a +Σ−1

b =Σ−1. (A.54)

A.3. GAUSSIAN EXPONENTIALS

A

215

Next, if we look at all the terms of the form xT (. . .)−1(. . .), we find that we should have

−2xTΣ−1
a µa −2xTΣ−1

b µb =−2xTΣ−1µ. (A.55)

This should hold for all x . We find that this is indeed the case when

µ=Σ(
Σ−1

a µa +Σ−1
b µb

)
. (A.56)

To find c, we look at all remaining terms. That is,

− 1

2

(
µa

TΣ−1
a µa +µb

TΣ−1
b µb

)=−1

2
µTΣ−1µ+ c. (A.57)

Working this out will require quite some steps. The initial steps are

−2c =µa
TΣ−1

a µa +µb
TΣ−1

b µb −µTΣ−1µ (A.58)

=µa
TΣ−1

a µa +µb
TΣ−1

b µb − (
µa

TΣ−1
a +µb

TΣ−1
b

)
ΣΣ−1Σ

(
Σ−1

a µa +Σ−1
b µb

)
=µa

T (
Σ−1

a −Σ−1
a ΣΣ−1

a

)
µa −2µa

T (Σ−1
a ΣΣ−1

b)µb +µb
T (
Σ−1

b −Σ−1
b ΣΣ−1

b

)
µb .

It is now interesting to note that the terms within brackets are all equal. Don’t believe
me? To see what they are all equal to, we consider

Σ−1
b −Σ−1

b ΣΣ−1
b =Σ−1ΣΣ−1

b −Σ−1
b ΣΣ−1

b (A.59)

=(Σ−1 −Σ−1
b)ΣΣ−1

b

=(Σ−1
a +Σ−1

b −Σ−1
b)(Σ−1

a +Σ−1
b)−1Σ−1

b

=Σ−1
a (Σ−1

a +Σ−1
b)−1Σ−1

b

=(Σa +Σb)−1.

We can show similarly that the other terms within brackets equal (Σa +Σb)−1. As a result,
we have

−2c =µa
T (Σa +Σb)−1µa −2µa

T (Σa +Σb)−1µb +µb
T (Σa +Σb)−1µb (A.60)

c =− 1

2
(µa −µb)T (Σa +Σb)−1(µa +µb). (A.61)

Now we know Σ, µ and c. By merging our results, we may write

exp

(
−1

2
(x −µa)TΣ−1

a (x −µa)

)
exp

(
−1

2
(x −µb)TΣ−1

b (x −µb)

)
(A.62)

= exp

(
−1

2
(µa −µb)T (Σa +Σb)−1(µa +µb)

)
exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
.

This proves what we wanted to prove.

A

216 A. MATRIX ALGEBRA

A.3.2. MULTIPLYING/DIVIDING GAUSSIAN EXPONENTIAL FUNCTIONS

From multiplying exponentials, it is only a small step further to multiplying Gaussian ex-
ponential functions N (. . .). We have defined the Gaussian exponential function N (x |µ,Σ)
(see (2.12)) as

N (x |µ,Σ) ≡ 1p|2πΣ| exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
. (A.63)

If we now multiply two Gaussian exponentials, then the result is again a Gaussian expo-
nential function N (. . .), multiplied by a constant.

Theorem A.13. The product N (x |µa ,Σa)N (x |µb ,Σb) equals

N (x |µa ,Σa)N (x |µb ,Σb) =CN (x |µ,Σ), (A.64)

where C , µ and Σ are defined through

Σ= (Σ−1
a +Σ−1

b)−1, (A.65)

µ=Σ(Σ−1
a µa +Σ−1

b µb), (A.66)

C =N (µa |µb ,Σa +Σb) =N (µb |µa ,Σa +Σb). (A.67)

Proof. Making use of Theorem A.12, we find that

N (x |µa ,Σa)N (x |µb ,Σb) (A.68)

= 1p|2πΣa |
exp

(
−1

2
(x −µa)TΣ−1

a (x −µa)

)
1√|2πΣb |

exp

(
−1

2
(x −µb)TΣ−1

b (x −µb)

)
= 1

(2π)dx

1√|Σa | |Σb |
exp

(
−1

2
(µa −µb)T (Σa +Σb)−1(µa +µb)

)
exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
.

Here we made use of the determinant property that |c A| = cd |A|, with d the dimension of
the square matrix A. We have the exponentials sorted out now, but we still need to fix the
constants, including the matrix determinants. We will make use of the rules |A||B | = |AB |
and |A−1| = |A|−1, which allow us to derive

1

(2π)dx

1√|Σa | |Σb |
= 1

(2π)dx

√√√√ |Σ−1
a +Σ−1

b |
|Σa ||Σ−1

a +Σ−1
b ||Σb |

(A.69)

= 1

(2π)dx

√
|Σ−1

a +Σ−1
b |

|Σa +Σb |
= 1√

(2π)dx |Σa +Σb |
1√

(2π)dx |(Σ−1
a +Σ−1

b)−1|
.

A.3. GAUSSIAN EXPONENTIALS

A

217

Using this result, we find that

N (x |µa ,Σa)N (x |µb ,Σb) (A.70)

= 1√|2π (Σa +Σb) |
exp

(
−1

2
(µa −µb)T (Σa +Σb)−1(µa +µb)

)
1√

|2π(Σ−1
a +Σ−1

b)−1|
exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
=N (µa |µb ,Σa +Σb)N (x |µ,Σ).

This completes the proof of this theorem.

Something similar happens when we divide Gaussian functions. The following theo-
rem shows how that works.

Theorem A.14. The division of N (x |µ,Σ) by N (x |µa ,Σa) equals

N (x |µ,Σ)

N (x |µa ,Σa)
= N (x |µb ,Σb)

N (µa |µb ,Σa +Σb)
, (A.71)

where µb and Σb are defined through

Σb = (Σ−1 −Σ−1
a)−1, (A.72)

µb =Σb(Σ−1µ−Σ−1
a µa). (A.73)

Proof. This theorem directly follows from Theorem A.13. In fact, this theorem states that

N (x |µa ,Σa)N (x |µb ,Σb) =N (µa |µb ,Σa +Σb)N (x |µ,Σ), (A.74)

where we have

Σ= (Σ−1
a +Σ−1

b)−1, (A.75)

µ=Σ(Σ−1
a µa +Σ−1

b µb). (A.76)

If we rewrite this to

Σb = (Σ−1 −Σ−1
a)−1, (A.77)

µb =Σb(Σ−1µ−Σ−1
a µa), (A.78)

then it directly follows that

N (x |µ,Σ)

N (x |µa ,Σa)
= N (x |µb ,Σb)

N (µa |µb ,Σa +Σb)
. (A.79)

A

218 A. MATRIX ALGEBRA

A.3.3. JOINT GAUSSIAN EXPONENTIAL FUNCTIONS
Suppose that we have a joint Gaussian exponential function

N

([
xa

xb

]∣∣∣∣[µa

µb

]
,

[
Σaa Σab

Σba Σbb

])
. (A.80)

It is actually possible to split this joint exponential function up into two separate Gaus-
sian exponential functions. How that works is explained by the following theorem.

Theorem A.15. The joint Gaussian exponential function can be rewritten to

N

([
xa

xb

]∣∣∣∣[µa

µb

]
,

[
Σaa Σab

Σba Σbb

])
(A.81)

=N (xa |µa ,Σaa)N
(
xb |µb +ΣbaΣ

−1
aa

(
xa −µa

)
,Σbb −ΣbaΣ

−1
aaΣab

)
=N (xb |µb ,Σbb)N

(
xa |µa +ΣabΣ

−1
bb

(
xb −µb

)
,Σaa −ΣabΣ

−1
bbΣba

)
.

Proof. Per definition, the joint Gaussian exponential function equals

1√∣∣∣∣2π[
Σaa Σab

Σba Σbb

]∣∣∣∣
exp

(
−1

2

([
xa

xb

]
−

[
µa

µb

])T [
Σaa Σab

Σba Σbb

]−1 ([
xa

xb

]
−

[
µa

µb

]))
. (A.82)

For the determinant we will apply Theorem A.9 and for the matrix inverse we will use
Theorem A.6. For simplicity of notation, we will also write ∆a = Σbb −ΣbaΣ

−1
aaΣab and

define ya = xa −µa and yb = xb −µb . We can now rewrite the above to

1p|2πΣaa | |2π∆a |
exp

(
−1

2

[
ya

yb

]T [
Σ−1

aa +Σ−1
aaΣab∆

−1
a ΣbaΣ

−1
aa Σ−1

aaΣab∆
−1
a

∆−1
a ΣbaΣ

−1
aa ∆−1

a

][
ya

yb

])
.

We can already split up the above into two separate exponents, through

N

([
xa

xb

]∣∣∣∣[µa

µb

]
,

[
Σaa Σab

Σba Σbb

])
= 1p|2πΣaa |

exp

(
−1

2
ya

TΣ−1
aa ya

)
(A.83)

1p|2π∆a |
exp

(
−1

2

[
ya

yb

]T [−Σ−1
aaΣab I

]
∆−1

a

[−ΣbaΣ
−1
aa

I

][
ya

yb

])
.

The left half already is in the form of the Gaussian exponential function N (ya |0,Σaa).
The right half still needs a bit of work. In particular, by noting that Σab = ΣT

ba , we can
find that the above equals

N (ya |0,Σaa)
1p|2π∆a |

exp

(
−1

2

(
yb −ΣbaΣ

−1
aa ya

)T
∆−1

a

(
yb −ΣbaΣ

−1
aa ya

))
. (A.84)

And if we then substitute the y parameters back to x −µ (with the corresponding sub-
script), and also fill in ∆a , then we wind up with

N (xa |µa ,Σaa)N
(
xb |µb +ΣbaΣ

−1
aa

(
xa −µa

)
,Σbb −ΣbaΣ

−1
aaΣab

)
. (A.85)

This proves the first half of (A.81). The second half is proven identically, but then by using
the Schur complements of Σbb instead of that of Σaa .

A.3. GAUSSIAN EXPONENTIALS

A

219

It is also possible to integrate over Gaussian exponential functions. We should first
note here that∫

X
N (x |µ,Σ)d x =

∫
X

1p|2πΣ| exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
d x = 1, (A.86)

because the above function is a probability density function. (Also see Section B.4.1.)
But what happens when we integrate over only a part of the vector x? That is explained
by the following theorem.

Theorem A.16. The joint Gaussian exponential function satisfies the integral∫
Xb

N

([
xa

xb

]∣∣∣∣[µa

µb

]
,

[
Σaa Σab

Σba Σbb

])
d xb =N

(
xa |µa ,Σaa

)
. (A.87)

Proof. If we use Theorem A.15, then we can immediately find that the above integral
equals∫

Xb

N (xa |µa ,Σaa)N
(
xb |µb +ΣbaΣ

−1
aa

(
xa −µa

)
,Σbb −ΣbaΣ

−1
aaΣab

)
d xb . (A.88)

The first term within this integral does not depend on xb . It is hence a constant and can
be taken out of the integral. We then remain with

N (xa |µa ,Σaa)
∫

Xb

N
(
xb |µb +ΣbaΣ

−1
aa

(
xa −µa

)
,Σbb −ΣbaΣ

−1
aaΣab

)
d xb . (A.89)

According to (A.86) this integral equals one, irrespective of the value of xa . This therefore
completes the proof.

A.3.4. OTHER GAUSSIAN EXPONENTIAL RELATIONS
There are many more products, integrals and such of Gaussian exponentials which could
be useful. In fact, we need the solutions to a few of them in the main text, and those
solutions are derived here.

We start by examining the product of two Gaussian exponential functions, where one
of them does not have x as its main parameter.

Theorem A.17. For known parameters a, b, Σa , µx and Σx , it holds that

N
(
a|bT x ,Σa

)
N

(
x |µx ,Σx

)= 1p|2πΣa ||2πΣx |
exp

(
−1

2

(
x −µ)T

Σ−1 (
x −µ))

(A.90)

exp

(
−1

2

(
aΣ−1

a a +µx
TΣ−1

x µx −µTΣµ
))

,

where we have defined

Σ= (
bΣ−1

a bT +Σ−1
x

)−1
, (A.91)

µ=Σ(
bΣ−1

a a +Σ−1
x µx

)=µx +ΣbΣ−1
a

(
a −bTµx

)
. (A.92)

A

220 A. MATRIX ALGEBRA

Proof. Expanding the Gaussian exponentials gives us

N
(
a|bT x ,Σa

)
N

(
x |µx ,Σx

)= 1p|2πΣa ||2πΣx |
exp

(
−1

2

(
a −bT x

)T
Σ−1

a

(
a −bT x

))
exp

(
−1

2

(
x −µx

)T
Σx

(
x −µx

))
. (A.93)

Our main focus will be on the exponentials. Currently, we can write them as

exp

(
−1

2

(
aΣ−1

a a −aΣ−1
a bT x −xT bΣ−1

a a +xT bΣ−1
a bT x (A.94)

+xTΣ−1
x x −xTΣ−1

x µx −µx
TΣ−1

x x +µx
TΣ−1

x µx
))

.

We would like to write them as

exp

(
−1

2

(
x −µ)T

Σ−1 (
x −µ)+ remaining terms

)
(A.95)

= exp

(
−1

2

(
xTΣ−1x −xTΣ−1µ−µTΣ−1x +µTΣ−1µ

)+ remaining terms

)
.

This tells us that we should use Σ−1 = bΣ−1
a bT +Σ−1

x . It follows that

xTΣ−1µ= xT (
bΣ−1

a a +Σ−1
x µx

)
, (A.96)

which gives us our first relation for µ. We can prove that the second relation for µ also
holds through

µ=Σ(
bΣ−1

a a +Σ−1
x µx

)
(A.97)

=Σ(
bΣ−1

a a −bΣ−1
a bTµx +bΣ−1

a bTµx +Σ−1
x µx

)
=Σ(

bΣ−1
a

(
a −bTµx

)+Σ−1µx
)

=µx +ΣbΣ−1
a

(
a −bTµx

)
.

Bringing all the remaining terms (the ones without x) together in one final exponential
will complete the proof.

It may also happen that we need to integrate over the product over a Gaussian expo-
nential and a Gaussian exponential function. Let’s see what that results in.

Theorem A.18. For known parameters xa ,Λ, µ and Σ, it holds that∫
X

exp

(
−1

2
(x −xa)T Λ−1 (x −xa)

)
N

(
x |µ,Σ

)
d x (A.98)

=
√

|Λ|
|Λ+Σ| exp

(
−1

2

(
xa −µ)T

(Λ+Σ)−1 (
xa −µ))

.

A.3. GAUSSIAN EXPONENTIALS

A

221

Proof. We will prove this using Theorem A.12. This theorem allows us to rewrite expo-
nents such that one of them does not depend on x anymore. Specifically, it tells us that∫

X
exp

(
−1

2
(x −xa)T Λ−1 (x −xa)

)
N

(
x |µ,Σ

)
d x (A.99)

=
∫

X

1p|2πΣ| exp

(
−1

2
(x −xa)T Λ−1 (x −xa)

)
exp

(
−1

2

(
x −µ)T

Σ−1 (
x −µ))

d x

=
∫

X

1p|2πΣ| exp

(
−1

2

(
xa −µ)T

(Λ+Σ)−1 (
xa −µ))

exp

(
−1

2

(
x −µ′)T (

Λ−1 +Σ−1)(x −µ′)) d x ,

where we have defined the totally irrelevant parameter µ′ as

µ′ = (
Λ−1 +Σ−1)−1 (

Λ−1xa +Σ−1µ
)

. (A.100)

In our integral, the first exponent does not depend on x anymore, so we can pull it out.
That leaves us with the second integral. Because the integral over a Gaussian exponential
equals one, as explained by (A.86), we know that∫

X
exp

(
−1

2

(
x −µ′)T (

Λ−1 +Σ−1)(x −µ′)) d x =
√
|2π(

Λ−1 +Σ−1
)−1 | (A.101)

=
√
|2πΣ (Λ+Σ)−1Λ|

=
√

|2πΣ||Λ|
|Λ+Σ| .

By using this result, we directly wind up with (A.98).

The next two theorems look at integrals over three Gaussian exponentials.

Theorem A.19. For known parameters xa , xb , Λ, µ and Σ, if we define x̄ ≡ 1
2 (xa +xb),

then it holds that∫
X

exp

(
−1

2
(x −xa)T Λ−1 (x −xa)

)
exp

(
−1

2
(x −xb)T Λ−1 (x −xb)

)
N

(
x |µ,Σ

)
d x (A.102)

=
√

|Λ|
|Λ+2Σ| exp

(
−1

2
(xa −xb)T (2Λ)−1 (xa −xb)

)
exp

(
−1

2

(
x̄ −µ)T

(
1

2
Λ+Σ

)−1 (
x̄ −µ))

.

Proof. We will prove this using Theorem A.12. This theorem allows us to rewrite the
three matrix exponentials that all depend on x into three matrix exponentials of which
only one depends on x .

First we rewrite the product of the first two exponentials. This equals

exp

(
−1

2
(x −xa)T Λ−1 (x −xa)

)
exp

(
−1

2
(x −xb)T Λ−1 (x −xb)

)
(A.103)

= exp

(
−1

2
(xa −xb)T (2Λ)−1 (xa −xb)

)
exp

(
−1

2
(x − x̄)T (

2Λ−1) (x − x̄)

)
.

A

222 A. MATRIX ALGEBRA

Note that the matrix inverse in the two above exponents is different. While the first be-

comes (2Λ)−1, the second becomes
(
2Λ−1

) = (1
2Λ

)−1
. The first of the two above expo-

nentials does not depend on x , so we can pull it out of the integral. We combine the
second exponential with N

(
x |µ,Σ

)
, again using Theorem A.12. It becomes

exp

(
−1

2
(x − x̄)T (

2Λ−1) (x − x̄)

)
N

(
x |µ,Σ

)
(A.104)

= exp

(
−1

2
(x − x̄)T

(
1

2
Λ

)−1

(x − x̄)

)
1p|2πΣ| exp

(
−1

2

(
x −µ)T

Σ−1 (
x −µ))

= 1p|2πΣ| exp

(
−1

2

(
x̄ −µ)T

(
1

2
Λ+Σ

)−1 (
x̄ −µ))

exp

(
−1

2

(
x − µ̄)T

((
1

2
Λ

)−1

+Σ−1
)(

x − µ̄))
,

where the value of µ̄ is totally irrelevant. Though if you’re interested, it equals

µ̄=
((

1

2
Λ

)−1

+Σ−1
)−1 ((

1

2
Λ

)−1

x̄ +Σ−1µ

)
. (A.105)

The most important realization here is that only the latter exponential depends on x ,
and hence we can evaluate the integral. Using (A.86), we can find that

∫
X

exp

(
−1

2

(
x − µ̄)T

((
1

2
Λ

)−1

+Σ−1
)(

x − µ̄))
d x =

√√√√∣∣∣∣∣2π
((

1

2
Λ

)−1

+Σ−1

)−1∣∣∣∣∣, (A.106)

which can be rewritten to√√√√∣∣∣∣∣2π
((

1

2
Λ

)−1

+Σ−1

)−1∣∣∣∣∣=
√∣∣∣∣2π(

1

2
Λ

)(
1

2
Λ+Σ

)−1

Σ

∣∣∣∣=
√√√√∣∣ 1

2Λ
∣∣ |2πΣ|∣∣ 1

2Λ+Σ∣∣ . (A.107)

Note that, because the matrices Σ andΛ are of equal size, we could have put the term 2π
in any determinant in the above expression. Though if we would have pulled 2π out of
the determinant, we would have had to write (2π)dx , with dx the dimension of the vector
x .

If we now put all the results that we have obtained together, we directly find (A.102).

Theorem A.20. For known parametersΛ, µa , Σa , µb and Σb , it holds that∫
X

∫
X

exp

(
−1

2
(xa −xb)T Λ−1 (xa −xb)

)
N

(
xa |µa ,Σa

)
N

(
xb |µb ,Σb

)
d xb d xa (A.108)

=
√

|Λ|
|Λ+Σa +Σb |

exp

(
−1

2

(
µa −µb

)T
(Λ+Σa +Σb)−1 (

µa −µb
))

.

Proof. We will once more prove this with the help of Theorem A.12. If we expand the
Gaussian exponential terms in the double integral, we can write the double integral as∫

X

∫
X

1√|2πΣa ||2πΣb |
exp

(
−1

2
(xa −xb)T Λ−1 (xa −xb)

)
(A.109)

exp

(
−1

2

(
xa −µa

)T
Σ−1

a

(
xa −µa

))
exp

(
−1

2

(
xb −µb

)T
Σ−1

b

(
xb −µb

))
d xb d xa .

A.4. LYAPUNOV EQUATIONS

A

223

There are now two exponentials containing xa and two exponentials containing xb . To
start, we want only one exponential to contain xb . To accomplish this, we will merge the
first and third exponential through Theorem A.12. This results in

exp

(
−1

2
(xb −xa)T Λ−1 (xb −xa)

)
exp

(
−1

2

(
xb −µb

)T
Σ−1

b

(
xb −µb

))
(A.110)

= exp

(
−1

2

(
xa −µb

)T
(Λ+Σb)−1 (

xa −µb
))

exp

(
−1

2

(
xb −µ)T (

Λ−1 +Σ−1
b

)(
xb −µ))

,

where we have defined the irrelevant parameter µ as
(
Λ−1 +Σ−1

b

)−1 (
Λ−1xa +Σ−1

b µb
)
.

Note that only the last exponential now depends on xb , which means we can integrate it
over xb . We find through (A.86) that∫

X
exp

(
−1

2

(
xb −µ)T (

Λ−1 +Σ−1
b

)(
xb −µ))

d xb =
√
|2π(

Λ−1 +Σ−1
b

)−1 | (A.111)

=
√

|2πΣb ||Λ|
|Λ+Σb |

.

We are left with the second exponential from (A.109) and the first exponential from the
result of (A.110). If we merge these together too, we find

exp

(
−1

2

(
xa −µa

)T
Σ−1

a

(
xa −µa

))
exp

(
−1

2

(
xa −µb

)T
(Λ+Σb)−1 (

xa −µb
))

(A.112)

= exp

(
−1

2

(
µa −µb

)T
(Λ+Σa +Σb)−1 (

µa −µb
))

exp

(
−1

2

(
xa −µ′)T (

(Λ+Σb)−1 +Σ−1
a

)(
xa −µ′)) ,

whereµ′ is again a totally irrelevant parameter which I will not even bother defining this
time. The more important part is that the last exponential from the above expression is
the only one depending on xa , so we can integrate over xa . That will turn this exponen-
tial into∫

X
exp

(
−1

2

(
xa −µ′)T (

(Λ+Σb)−1 +Σ−1
a

)(
xa −µ′)) d xa =

√
|2πΣa ||Λ+Σb |
|Λ+Σa +Σb |

. (A.113)

If we now put all our results together, then we directly find (A.108).

A.4. LYAPUNOV EQUATIONS
A Lyapunov equation is a matrix equation of the form AX + X AT +Q = 0. Its solution X
can be found analytically (through a process similar to matrix sweeping) and this solu-
tion can be useful for a variety of applications. The solutions to Lyapunov equations also
have interesting properties. In this section we look at various such properties.

There is a lot of literature available on solving Lyapunov equations. Methods to find
when a Lyapunov equation has a unique solution, as well as methods to find this unique
solution, are mentioned in a variety of publications, among which those by Bartels and

A

224 A. MATRIX ALGEBRA

Stewart (1972), Antoulas (2005). On the flip side, there is no literature available, as far as
I know, that specifically looks at the properties of the resulting solutions, apart from my
own publication Bijl et al. (2016). So that is what this chapter is mainly about.

We start this section off by looking at notations and definitions (Section A.4.1). Then
we examine when a Lyapunov equation has a unique solution and how to find it (Sec-
tion A.4.2). Afterwards, we look at some basic properties of Lyapunov solutions (Sec-
tion A.4.3) as well as how sums and products of Lyapunov solutions work (Section A.4.4).
Finally we challenge ourselves with a few difficult integrals which can also be solved us-
ing Lyapunov solutions (Section A.4.5).

A.4.1. NOTATIONS AND DEFINITIONS

Before we start, we should get our notations and definitions in order. These notations
and definitions may seem haphazard at first, but we will use every one of them.

We start with matrix terminology. Consider a square matrix A with its eigenvalues
written as λ1, . . . ,λn . This matrix may satisfy certain properties.

• A is called stable (or Hurwitz) if and only if it has no eigenvalue λi with a real part
equal to or larger than zero.

• A is called Sylvester if and only if it has no two eigenvalues λi and λ j (with possibly
i = j) satisfying λi =−λ j .

• A is called invertible if and only if it has no eigenvalue λi equal to zero.

While the first and third concepts are well-known in literature, the second one is new,
first posed by Bijl et al. (2016). It will prove crucial when dealing with Lyapunov solu-
tions though, as you will see at Theorem A.23. Also note that a stable matrix is always
a Sylvester matrix, and a Sylvester matrix is always invertible, but the converse does not
always hold.

Next, let’s define some notation conventions. We define the Lyapunov solution1 X Q

to be the solution of the Lyapunov equation

AX Q +X Q AT +Q ≡ 0, (A.114)

where A is known as the multiplication matrix and Q as the Lyapunov constant. They
both have to be square matrices of the appropriate size. So in our notation X Q we ex-
plicitly mention which Lyapunov constant we have used. The fact that the multiplication
matrix A was used is assumed default and is hence not included in the notation.

In a similar way do we define the alternate Lyapunov solution X̄ Q as the solution of
the alternate Lyapunov equation

AT X̄ Q + X̄ Q A+Q ≡ 0. (A.115)

Note that we have transposed A here.

1In this thesis we only work with the continuous Lyapunov equation AX +X AT +Q = 0. We do not consider the
discrete Lyapunov equation AX AT −X +Q = 0. Additionally, we do not consider complex-valued matrices. As
a result, we can take the regular transpose AT of matrices instead of the conjugate transpose AH .

A.4. LYAPUNOV EQUATIONS

A

225

Instead of A, we may sometimes also use a different matrix B . If we are not using A
within the Lyapunov equation, we specifically mention we are using B through a sub-
script. We hence have

B X Q
B +X Q

B B T +Q ≡ 0. (A.116)

We sometimes also use a matrix Aα, which is defined as Aα ≡ A +αI for some scalar
α. Similarly, we define Akα ≡ A + kαI , where k is often an integer. We can write the
corresponding Lyapunov solution as X Q

Akα
. However, we often shorten this notation to

X Q
kα. So we per definition have

AkαX Q
kα+X Q

kαAT
kα+Q ≡ 0 (A.117)

and similarly for X̄ Q
kα. Note that A0 = A and as a result also X Q

0 = X Q . Also note that,
though we have defined Aα = A +αI , we do not have Xα = X +αI . The notation only
holds for A.

Lyapunov solutions may also stack. As a result, X X Q
is the solution of the equation

AX X Q +X X Q
AT +X Q ≡ 0. (A.118)

So effectively X X Q
equals X

(
X Q)

.
Next, let’s look at a few integrals. We define the time-dependent parameters X Q

kα(t1, t2)

and X̄ Q
kα(t1, t2) as the respective integrals

X Q
kα(t1, t2) ≡

∫ t2

t1

e Akαt Qe AT
kαt d t , (A.119)

X̄ Q
kα(t1, t2) ≡

∫ t2

t1

e AT
kαt Qe Akαt d t . (A.120)

This notation may seem strange at first, but it will make sense later on at Theorem A.26.
Additionally, we often have t1 = 0. In that case we define the shorter notation X Q

kα(t) ≡
X Q

kα(0, t).

Finally, we define X̃ Q
kα(t) as the integral

X̃ Q
kα(t) ≡

∫ t

0
e Akα(t−s)Qe As d s = e−nαt

∫ t

0
e A(k+n)α(t−s)Qe Anαs d s, (A.121)

where the last parts holds for any n. Again we write X̃ Q
0 (t) as X̃ Q (t), omitting any zero

subscript.

A.4.2. FINDING THE LYAPUNOV SOLUTION
Before we look at how to solve the Lyapunov equation, we first look at a more general
case: how to solve the Sylvester equation

AX +X B =C . (A.122)

In particular, we start by looking at when this equation has a unique solution.

A

226 A. MATRIX ALGEBRA

Theorem A.21. The Sylvester equation (A.122) has a unique solution if and only if A and
−B do not have any common eigenvalues.

Proof. The proof of this can be found in the work of Bartels and Stewart (1972), Antoulas
(2005). It requires a few relatively advanced mathematical techniques, which I do not
want to study in-depth here, so you either have to trust me or look up the references.

The next question is, ‘If there is a unique solution, how do we find it?’

Theorem A.22. If the Sylvester equation (A.122) has a unique solution X , then this solu-
tion can be found through

vec(X) = (
I ⊗ A+B T ⊗ I

)−1
vec(C). (A.123)

Proof. Using Theorem A.4 we can rewrite the Sylvester equation to(
I ⊗ A+B T ⊗ I

)
vec(X) = vec(C). (A.124)

We have assumed that there is a unique solution for X . This is only the case when the
above matrix

(
I ⊗ A+B T ⊗ I

)
is invertible. As such, left-multiplying the above by the in-

verse of this matrix results in (A.123).

Now we know how to solve the Sylvester equation, we can use our results to solve the
Lyapunov equation.

Theorem A.23. The Lyapunov equation (A.114) has a unique solution X Q if and only if
the matrix A is Sylvester. In this case the solution can be found through

vec(X Q) = (I ⊗ A+ A⊗ I)−1 vec(Q). (A.125)

Proof. To prove the first claim, we will apply Theorem A.21 with B = AT . It follows that
the Lyapunov equation has a unique solution if and only if A and −AT do not have any
common eigenvalues.

Let’s denote the eigenvalues of A by λ1, . . . ,λn . The eigenvalues of −AT now equal
−λ1, . . . ,−λn . After all, transposing a (square) matrix does not alter its eigenvalues, and
if λ is an eigenvalue of A, then −λ is an eigenvalue of −A. We can hence see that A and
−AT have a common eigenvalue if and only if A has two eigenvalues λi and λ j (with
possibly i = j) which satisfy λi =−λ j . This is (per definition) the case if and only if A is
Sylvester. So we can conclude that the Lyapunov equation has a unique solution if and
only if A is Sylvester.

That proves the first claim of the theorem. To prove (A.125) we can apply Theo-
rem A.22 with again B = AT . This directly completes the proof.

A.4.3. BASIC PROPERTIES OF LYAPUNOV SOLUTIONS
Lyapunov solutions have many interesting properties. The following theorems will out-
line the most important ones. They all concern the Lyapunov solutions X Q and not the
alternate Lyapunov solutions X̄ Q . However, all theorems also hold for the alternate Lya-
punov solutions if we replace A by AT .

We start off by looking at when Lyapunov solutions are symmetric.

A.4. LYAPUNOV EQUATIONS

A

227

Theorem A.24. Assume that A is Sylvester. The Lyapunov solution X Q is symmetric if and
only if Q is symmetric.

Proof. We know from Theorem A.23 that X Q is the unique solution of the Lyapunov
equation

AX Q +X Q AT +Q = 0. (A.126)

If we transpose this equation, then we get

A(X Q)T + (X Q)T AT +QT = 0. (A.127)

Subtracting the two equations results in

A
(
X Q − (X Q)T)+ (

X Q − (X Q)T)
AT + (

Q −QT)= 0. (A.128)

This equation is actually a new Lyapunov equation. Because the multiplication matrix A
is Sylvester, there is a unique solution for

(
X Q − (X Q)T

)
(Theorem A.23). If Q is symmet-

ric, then Q −QT = 0 and this unique solution must equal X Q − (X Q)T = 0, implying that
X Q is symmetric. Similarly, if X Q is symmetric, then X Q − (X Q)T = 0 and we must also
have Q−QT = 0, meaning that Q is symmetric. This proves both sides of the theorem.

We know that if A is Sylvester, then there is a unique solution for X Q . But what hap-
pens when A is stable?

Theorem A.25. Assume that A is stable. Then the unique solution of the Lyapunov equa-
tion (A.114) equals the infinite integral

X Q =
∫ ∞

0
e At Qe AT t d t . (A.129)

Proof. Note that, because A is stable, it is also Sylvester, proving that there is a unique
solution X Q of the Lyapunov equation (Theorem A.23).

Next, we prove that X Q equals the infinite integral. Because A is stable, we know that

lim
t→∞e At = 0. (A.130)

As a result, we can write Q as

Q =−
[

e At Qe AT t
]∞

0
(A.131)

=−
∫ ∞

0

d

d t

(
e At Qe AT t

)
d t

=−
∫ ∞

0

(
Ae At Qe AT t +e At Qe AT t AT

)
d t

=−A

(∫ ∞

0
e At Qe AT t d t

)
−

(∫ ∞

0
e At Qe AT t d t

)
AT .

We see that the equation above is a Lyapunov equation, with the quantity within brackets
as the solution. Because the solution exists, is unique and equals X Q , the quantity within
brackets must equal X Q . So we see that (A.129) indeed holds.

A

228 A. MATRIX ALGEBRA

The nice part about the above theorem is that, if we want to find the infinite inte-
gral (A.129), we only have to solve a Lyapunov equation and not numerically simulate an
infinite integral. That will save a lot of computations.

Basically, the above theorem says that X Q (0,∞) = X Q when A is stable. You should
be careful with using this relation, because it does not hold when A is not stable. After
all, in this case the integral from (A.129) will not have a finite value, even though there
will still be a unique finite solution for X Q . For example, consider A = 1 and Q = 2. Now
X Q =−1, but the integral is infinite.

To prevent the integral from becoming infinitely large, we can give it finite bounds.
It is now per definition A.119 equal to X Q (t1, t2). This definition also holds for non-
Sylvester matrices A, but when A is Sylvester we can calculate X Q (t1, t2) using the fol-
lowing Theorem.

Theorem A.26. Assume that A is Sylvester. In this case X Q (t1, t2), defined through (A.119),
can either be found by solving the Lyapunov equation

AX Q (t1, t2)+X Q (t1, t2)AT +e At1Qe AT t1 −e At2Qe AT t2 = 0. (A.132)

or by first finding X Q and then using

X Q (t1, t2) = e At1 X Q e AT t1 −e At2 X Q e AT t2 . (A.133)

Proof. This theorem consists of two parts. To prove the first part, we consider the quan-

tity e At1Qe AT t1 −e At2Qe AT t2 . It equals

e At1Qe AT t1 −e At2Qe AT t2 =−
[

e At Qe AT t
]t2

t1
(A.134)

=−
∫ t2

t1

d

d t

(
e At Qe AT t

)
d t

=−A

(∫ t2

t1

e At Qe AT t d t

)
−

(∫ t2

t1

e At Qe AT t d t

)
AT

=−AX Q (t1, t2)−X Q (t1, t2)AT .

This shows that X Q (t1, t2) indeed satisfies Lyapunov equation (A.132), proving the first
part of the theorem.

To prove the second part too, we make use of the expression AX Q + X Q AT +Q = 0
and of the matrix property e At A = Ae At . This allows us to find

e At1Qe AT t1 −e At2Qe AT t2 =−e At1 (AX Q +X Q AT)e AT t1 +e At2 (AX Q +X Q AT)e AT t2

=−e At1 AX Q e AT t1 −e At1 X Q AT e AT t1 +e At2 AX Q e AT t2 +e At2 X Q AT e AT t2 (A.135)

=−Ae At1 X Q e AT t1 −e At1 X Q e AT t1 AT + Ae At2 X Q e AT t2 +e At2 X Q e AT t2 AT

=−A(e At1 X Q e AT t1 −e At2 X Q e AT t2)− (e At1 X Q e AT t1 −e At2 X Q e AT t2)AT .

The above expression is actually Lyapunov equation (A.132), in which the part between
brackets is replaced by X Q (t1, t2). Because A is Sylvester, the Lyapunov equation has a
unique solution, and hence (A.133) must hold. This also proves the second part of the
theorem.

A.4. LYAPUNOV EQUATIONS

A

229

It is interesting to note that, for stable matrices A and for t1 = 0 and t2 →∞, the above
Theorem A.26 directly implies Theorem A.25.

By the way, you might have noticed something odd about our definitions of X Q and
X Q (t1, t2). For Sylvester matrices A, we have defined X Q as the solution to a Lyapunov
equation, which in special cases (A being stable) also happened to equal an integral over
matrix exponentials. However, for any matrix A we have defined X Q (t1, t2) as an integral
over matrix exponentials, which in special cases (A being Sylvester) also happened to
equal the solution to a Lyapunov equation. By setting up the definitions in this way, we
have made them as broadly applicable as possible.

A.4.4. COMBINATIONS OF LYAPUNOV SOLUTIONS

Suppose we have two Lyapunov solutions X Q and X V . Is their sum then also a Lyapunov
solution? And what about linear products of Lyapunov solutions?

Theorem A.27. Assume that A is Sylvester. For any Q and V we then have

X Q+V = X Q +X V . (A.136)

Proof. To prove this claim, we note that we per definition have

AX Q +X Q AT +Q = 0, (A.137)

AX V +X V AT +V = 0. (A.138)

If we add up these expressions, we find that

A(X Q +X V)+ (X Q +X V)AT +Q +V = 0. (A.139)

This is a Lyapunov expression with respect to the part between brackets. Because it has
a unique solution (Theorem A.23), the part between brackets must equal the solution
X Q+V of the Lyapunov equation and hence we have X Q+V = X Q +X V .

Theorem A.28. Assume that A is Sylvester. If the matrices A and C commute (that is,
C A = AC) then

X CQ =C X Q . (A.140)

Proof. To prove this, we left-multiply the Lyapunov equation by C . This gives us

C AX Q +C X Q AT +CQ = 0. (A.141)

If we now apply the assumption that C A = AC , this becomes

A(C X Q)+ (C X Q)AT +CQ = 0. (A.142)

This is a Lyapunov expression again. As a result, the part between brackets equals X CQ =
C X Q .

When a Lyapunov solution is inside a trace function, it is sometimes possible to
transform one Lyapunov solution into another.

A

230 A. MATRIX ALGEBRA

Theorem A.29. Assume that A is Sylvester. For matrices F and G satisfying AF = F A and
AT G =G AT , and for any Q and V , we have

tr
(
QF X V G

)= tr
(
X̄ Q FV G

)
. (A.143)

Proof. We can prove the above by rewriting one into the other. That is,

tr
(
QF X V G

)= tr
(
(−AT X̄ Q − X̄ Q A)F X V G

)
(A.144)

= tr
(
(−AT X̄ Q F X V G − X̄ Q AF X V G)

)
= tr

(
(−G X̄ Q F X V AT −G X̄ Q F AX V)

)
= tr

(
G X̄ Q F (−X V AT − AX V)

)
= tr

(
X̄ Q FV G

)
.

This proves the statement. Do note that we have used the cyclic property tr(ABC) =
tr(C AB) = tr(BC A) of the trace function at various points in the above derivation. The
theorem does not hold without the trace function.

When applying the above theorem, typical values for F are I , e At and e Aαt , while
often G = F T .

Next to turning one Lyapunov solution into another, we can sometimes also turn a
difference in Lyapunov solutions into a Lyapunov solution.

Theorem A.30. Assume that both A and Aα are Sylvester. The Lyapunov solutions X Q ,

X Q
α , X X Q

α and X X Q
α now satisfy

X X Q

α = X X Q
α = X Q

α −X Q

2α
. (A.145)

Proof. Per definition we have

(A+αI)X Q
α +X Q

α (A+αI)T +Q = 0, (A.146)

AX Q +X Q AT +Q = 0. (A.147)

By subtracting the two equations, and by using Aα = A +αI , we can get either of two
results

A(X Q
α −X Q)+ (X Q

α −X Q)AT +2αX Q
α = 0, (A.148)

Aα(X Q
α −X Q)+ (X Q

α −X Q)AT
α +2αX Q = 0. (A.149)

Next, we divide the above equations by 2α, resulting in

A

(
X Q
α −X Q

2α

)
+

(
X Q
α −X Q

2α

)
AT +X Q

α = 0, (A.150)

Aα

(
X Q
α −X Q

2α

)
+

(
X Q
α −X Q

2α

)
AT
α +X Q = 0. (A.151)

A.4. LYAPUNOV EQUATIONS

A

231

These are Lyapunov equations with respect to the term in brackets. Because A and Aα

are Sylvester, they must have a unique solution, which equals

X X Q
α = X Q

α −X Q

2α
= X X Q

α . (A.152)

This completes the proof.

A.4.5. MORE INTEGRAL EXPRESSIONS

We know from Theorem A.25 that, for stable A, we can also write X Q as an infinite inte-
gral. Next, we will add an extra time factor t inside this integral. The following theorem
tells us what this will do with the outcome.

Theorem A.31. Assume that A is stable. Now we have

X X Q =
∫ ∞

0
te At X Q e AT t d t . (A.153)

Proof. According to definition (A.118) and Theorem A.25 we can write

X X Q =
∫ ∞

0
e At X Q e AT t d t =

∫ ∞

0
e At

(∫ ∞

0
e AτQe AT τdτ

)
e AT t d t . (A.154)

We can pull the integral signs outside, merging the integrands. This gives us

X X Q =
∫ ∞

0

∫ ∞

0
e A(t+τ)Qe AT (t+τ) dτd t . (A.155)

We can substitute τ for s − t . This turns dτ into d s, and because τ ranged from 0 to ∞,
we have s ranging from t to ∞. This turns the above equation into

X X Q =
∫ ∞

0

∫ ∞

t
e AsQe AT s d s d t . (A.156)

Next, we interchange the integrals. When doing so, we should keep the integration area
the same. The integration area, when plotted in the s-t-plane, is the triangle bound by
0 ≤ t ≤ s. When taking into account this inequality, we can rewrite the above to

X X Q =
∫ ∞

0

∫ s

0
e AsQe AT s d t d s. (A.157)

The inner integral is now with respect to t , but there is no t in the integrand. As a result,
we can write

X X Q =
∫ ∞

0

(∫ s

0
1d t

)
e AsQe AT s d s (A.158)

=
∫ ∞

0
se AsQe AT s d s.

This equals what we wanted to prove.

A

232 A. MATRIX ALGEBRA

Let’s challenge ourselves a bit more. Let’s consider what happens when we integrate
over four matrix exponents.

Theorem A.32. Assume that A is stable, and that P1, P2 and Q are symmetric. We then
have

tr

(∫ ∞

0
P1e At Qe AT t P2e At X Q e AT t d t

)
= 1

2
tr

(
P1X Q P2X Q)

. (A.159)

Proof. We will start with the right hand side of the expression. It equals

1

2
tr

(
P1X Q P2X Q)= 1

2
tr

(
P1

(∫ ∞

0
e At Qe AT t d t

)
P2

(∫ ∞

0
e AsQe AT s d s

))
(A.160)

= 1

2
tr

(∫ ∞

0

∫ ∞

0
P1e At Qe AT t P2e AsQe AT s d s d t

)
.

The above integrand is symmetric in t and s. That is, if we interchange t and s, it has
exactly the same value. To see why, transpose whatever is in the trace function. This is
allowed, since the trace of a matrix is equal to the trace of its transpose. After transposing,
you will find exactly the same expression.

Because the integrand is symmetric in t and s, we don’t have to integrate over all
values of t ≥ 0 and s ≥ 0. If we integrate over t ≥ 0 and s ≥ t , then we get exactly half of
what we otherwise would have gotten. Hence, we can rewrite the above to

1

2
tr

(
P1X Q P2X Q)= tr

(∫ ∞

0

∫ ∞

t
P1e At Qe AT t P2e AsQe AT s d s d t

)
. (A.161)

If we work this out further, substituting s by τ+ t , we get

1

2
tr

(
P1X Q P2X Q)= tr

(∫ ∞

0
P1e At Qe AT t P2

(∫ ∞

t
e AsQe AT s d s

)
d t

)
(A.162)

= tr

(∫ ∞

0
P1e At Qe AT t P2

(
e At

∫ ∞

0
e AτQe AT τdτe AT t

)
d t

)
= tr

(∫ ∞

0
P1e At Qe AT t P2e At X Q e AT t d t

)
.

And this was what we wanted to prove.

We have a similar theorem in case the integral does not run to infinity, but to a finite
time T .

Theorem A.33. Assume that A is Sylvester, and that P1, P2 and Q are symmetric. Then we
have

tr

(∫ T

0
P1e At Qe AT t P2e At X Q e AT t d t

)
= 1

2
tr

(
P1X Q P2X Q)

(A.163)

− 1

2
tr

(
P1e AT X Q e AT T P2e AT X Q e AT T

)
.

A.4. LYAPUNOV EQUATIONS

A

233

Proof. We cannot use the results of Theorem A.32, because now we have assumed A to
be Sylvester instead of stable. Instead, we will make repeated use of theorem A.26. First,
we will use

X Q =
∫ T

0
e AsQe AT s d s +e AT X Q e AT T . (A.164)

If we apply this to the term tr
(
P1X Q P2X Q

)
and expand the brackets, then we find that

1

2
tr

(
P1X Q P2X Q)

(A.165)

= 1

2
tr

(
P1

(∫ T

0
e AsQe AT s d s +e AT X Q e AT T

)
P2

(∫ T

0
e AsQe AT s d s +e AT X Q e AT T

))
= 1

2
tr

(∫ T

0

∫ T

0
P1e As1Qe AT s1 P2e As2Qe AT s2 d s1 d s2

)
+ 1

2
tr

(∫ T

0
P1e AsQe AT s P2e AT X Q e AT T d s

)
+ 1

2
tr

(∫ T

0
P1e AT X Q e AT T P2e AsQe AT s d s

)
+ 1

2
tr

(
P1e AT X Q e AT T P2e AT X Q e AT T

)
.

In the result, the second and third term are in fact equal. Whatever is in the trace function
is simply transposed. So we can merge them into one term and get rid of the factor 1

2 . In
addition the integrand of the first term is symmetric in s1 and s2, so we can get rid of the
factor 1

2 by simply integrating over half of the integration area. The result will be

1

2
tr

(
P1X Q P2X Q)= tr

(∫ T

0

∫ T

s2

P1e As1Qe AT s1 P2e As2Qe AT s2 d s1 d s2

)
(A.166)

+ tr

(∫ T

0
P1e AT X Q e AT T P2e AsQe AT s d s

)
+ 1

2
tr

(
P1e AT X Q e AT T P2e AT X Q e AT T

)
.

Theorem A.26 now also tells us that∫ T

s2

e As1Qe AT s1 d s1 = e As2 X Q e AT s2 −e AT X Q e AT T . (A.167)

If we apply this, we find that

1

2
tr

(
P1X Q P2X Q)= tr

(∫ T

0
P1

(
e As2 X Q e AT s2 −e AT X Q e AT T

)
P2e As2Qe AT s2 d s2

)
(A.168)

+ tr

(∫ T

0
P1e AT X Q e AT T P2e AsQe AT s d s

)
+ 1

2
tr

(
P1e AT X Q e AT T P2e AT X Q e AT T

)
.

Expanding the brackets will result in some terms cancelling out. We then wind up with

1

2
tr

(
P1X Q P2X Q)= tr

(∫ T

0
P1e AsQe AT s P2e As X Q e AT s d s

)
(A.169)

+ 1

2
tr

(
P1e AT X Q e AT T P2e AT X Q e AT T

)
,

and this is the equation which we needed to prove.

It is interesting to note that Theorem A.33 does directly turn into Theorem A.32 when
A is stable and T →∞.

A

234 A. MATRIX ALGEBRA

A.5. USING MATRIX EXPONENTIALS TO SOLVE INTEGRALS
We just saw that we can use Lyapunov solutions to solve certain matrix integrals. It is
also possible to solve such integrals using matrix exponentials, effectively resulting in
another way of finding Lyapunov solutions.

This interesting method was first outlined by van Loan (1978). We will repeat the
theorems from this reference, though discussed in a more step by step fashion (Sec-
tion A.5.1). Then we apply these theorems to solve Lyapunov equations (Section A.5.2).
Finally we compare this new method to our previous method of finding Lyapunov solu-
tions and set up a small experiment to find out which one works best (Section A.5.3).

A.5.1. INTEGRALS WITHIN MATRIX EXPONENTIALS
It turns out that within matrix exponentials there are also matrix integrals. How this
works is explained by the upcoming theorem.

Theorem A.34. If we define

C =
[

A1 B1

0 A2

]
, (A.170)

and write eC t as

eC t ≡
[

C e
11(t) C e

12(t)
C e

21(t) C e
22(t)

]
, (A.171)

then we have

C e
21(t) =0, (A.172)

C e
22(t) =e A2t , (A.173)

C e
11(t) =e A1t , (A.174)

C e
12(t) =

∫ t

0
e A1(t−s)B1e A2s d s. (A.175)

Proof. The key to proving this is to use the relation d
d t eC t =CeC t . That is[

Ċ e
11(t) Ċ e

12(t)
Ċ e

21(t) Ċ e
22(t)

]
=

[
A1 B1

0 A2

][
C e

11(t) C e
12(t)

C e
21(t) C e

22(t)

]
. (A.176)

We can now use the above relation to find several matrix differential equations. Starting
with the bottom row and working upward, we have

Ċ e
21(t) =A2C e

21(t), (A.177)

Ċ e
22(t) =A2C e

22(t), (A.178)

Ċ e
11(t) =A1C e

11(t)+B1C e
21(t), (A.179)

Ċ e
12(t) =A1C e

12(t)+B1C e
22(t). (A.180)

To solve these differential equations, we do need initial conditions. To obtain them, we
should note that eC t takes the value of I when t = 0. As a result, C e

11(0) = I , C e
12(0) = 0,

C e
21(0) = 0 and C e

22(0) = I . Using this, we can solve the differential equations.

A.5. USING MATRIX EXPONENTIALS TO SOLVE INTEGRALS

A

235

To do so, we use the method of the integrating factor. That is, for the first differential
equation (for C e

21(t)) we multiply both sides of the equation by e−A2t . This turns the
differential equation into

e−A2t Ċ e
21(t)−e−A2t A2C e

21(t) = 0. (A.181)

By doing this, we can write the term on the left as a derivative. That is,

d

d t

(
e−A2t C e

21(t)
)= 0. (A.182)

Next, we integrate the above expression from 0 to t . However, we are already using t in
the above expression, so to prevent duplicate variables we first replace t by s in the above
expression and the integrate up to t . The result is

[
e−A2sC e

21(s)
]t

0 =
∫ t

0
0d s. (A.183)

The integral on the right is zero. Hence we find that

e−A2t C e
21(t)−e−A20C e

21(0) = 0. (A.184)

We have e−A20 = I , but C e
21(0) = 0, so the second term drops out. If we also note that

e−A2t is nonsingular (a matrix exponential is always nonsingular) we find that

C e
21(t) = 0. (A.185)

That proves the first part of the theorem. Solving the other differential equations goes in
an identical way, so we will speed up the process a bit. For C e

22(t) we have

d

d t

(
e−A2t C e

22(t)
)=0, (A.186)

[
e−A2sC e

22(s)
]t

0 =
∫ t

0
0d s,

e−A2t C e
22(t)−e−A20C e

22(0) =0,

C e
22(t) =e A2t ,

where we have used C e
22(0) = I . For C e

11(t) we similarly find that

d

d t

(
e−A1t C e

11(t)
)=e−A1t B1C e

21(t), (A.187)

e−A1t C e
11(t)−e−A10C e

11(0) =0,

C e
11(t) =e A1t ,

where we have used our earlier result of C e
21(t) = 0. Finally there is C e

12(t). Now things

A

236 A. MATRIX ALGEBRA

don’t conveniently turn out to be zero on the right-hand side. In this case we get

d

d t

(
e−A1t C e

12(t)
)=e−A1t B1C e

22(t), (A.188)

[
e−A1sC e

12(s)
]t

0 =
∫ t

0
e−A1s B1C e

22(s)d s,

e−A1t C e
12(t)−e−A10C e

12(0) =
∫ t

0
e−A1s B1e A2s d s,

C e
12(t) =

∫ t

0
e A1(t−s)B1e A2s d s.

This completes the proof.

In practice we do not use the above theorem to find eC t . After all, calculating ma-
trix exponentials is relatively easy compared to evaluating matrix integrals. Instead, we
calculate eC t and use the result to find the difficult integral

∫ t
0 e A1(t−s)B1e A2s d s.

We can also expand the matrix C , granting us more complicated integrals. This is
done in the next few theorems.

Theorem A.35. If we define

C =
A1 B1 C1

0 A2 B2

0 0 A3

 , (A.189)

and write eC t as in theorem A.34, then C e
11(t), C e

12(t), C e
21(t) and C e

22(t) are equal to the
results of theorem A.34. Furthermore, we have

C e
31(t) =0, (A.190)

C e
32(t) =0, (A.191)

C e
33(t) =e A3t , (A.192)

C e
23(t) =

∫ t

0
e A2(t−s)B2e A3s d s, (A.193)

C e
13(t) =

∫ t

0
e A1(t−s)B1e A2(s−r)B2e A3r dr d s +

∫ t

0
e A1(t−s)C1e A3 s. (A.194)

Proof. The proof for this is pretty much identical to the proof of theorem A.34. We use
d

d t eC t =CeC t , which tells us thatĊ e
11(t) Ċ e

12(t) Ċ e
13(t)

Ċ e
21(t) Ċ e

22(t) Ċ e
23(t)

Ċ e
31(t) Ċ e

32(t) Ċ e
33(t)

=
A1 B1 C1

0 A2 B2

0 0 A3

C e
11(t) C e

12(t) C e
13(t)

C e
21(t) C e

22(t) C e
23(t)

C e
31(t) C e

32(t) C e
33(t)

 . (A.195)

We can solve for eC t by going bottom-up. For the bottom row we have

Ċ e
31(t) =A3C e

31(t), (A.196)

Ċ e
32(t) =A3C e

32(t), (A.197)

Ċ e
33(t) =A3C e

33(t), (A.198)

A.5. USING MATRIX EXPONENTIALS TO SOLVE INTEGRALS

A

237

which can be solved in the way we have seen in the proof of theorem A.34. We find that
C e

31(t) =C e
32(t) = 0 and C e

33(t) = e A3t .
For the second row, we have

Ċ e
21(t) =A2C e

21(t)+B2C e
31(t), (A.199)

Ċ e
22(t) =A2C e

22(t)+B2C e
32(t), (A.200)

Ċ e
23(t) =A2C e

23(t)+B2C e
33(t). (A.201)

Using our results for C e
31(t), C e

32(t) and C e
33(t), we find that C e

21(t) = 0 and C e
22(t) = e A2t .

For C e
23(t) we get, similarly to equation (A.188),

C e
23(t) =

∫ t

0
e A2(t−s)B2e A3s d s. (A.202)

Then there is the top row. Now we have

Ċ e
11(t) =A1C e

11(t)+B1C e
21(t)+C1C e

31(t), (A.203)

Ċ e
12(t) =A1C e

12(t)+B1C e
22(t)+C1C e

32(t), (A.204)

Ċ e
13(t) =A1C e

13(t)+B1C e
23(t)+C1C e

33(t). (A.205)

Again using our previous results, we immediately find that C e
11(t) = e A1t . Next, identi-

cally to equation (A.188), we have

C e
12(t) =

∫ t

0
e A1(t−s)B1e A2s d s. (A.206)

Finally there is the toughest term to deal with, which is C e
13(t). When applying the method

of the integrating factor, we find that

d

d t

(
e−A1t C e

13(t)
)= e−A1t B1C e

23(t)+e−A1t C1C e
33(t). (A.207)

Substituting for C e
23(t) and C e

33(t) will give us

d

d t

(
e−A1t C e

13(t)
)= e−A1t B1

∫ t

0
e A2(t−s)B2e A3s d s +e−A1t C1e A3t . (A.208)

Next, we will integrate from 0 to t . However, we already have a t in the above expression,
so in the above we will rename t to s. Except that we already have an s too, so we will
rename s to r . In this way, all parameter names are ‘moved down’ in the alphabet. Doing
so will result in[

e−A1sC e
13(s)

]t
0 =

∫ t

0

(
e−A1s B1

∫ s

0
e A2(s−r)B2e A3r dr +e−A1sC1e A3s

)
d s. (A.209)

Rewriting the result will give us

C e
13(t) =

∫ t

0

∫ s

0
e A1(t−s)B1e A2(s−r)B2e A3r dr d s +

∫ t

0
e A1(t−s)C1e A3s d s. (A.210)

This completes the proof.

A

238 A. MATRIX ALGEBRA

We have got the result for a 3×3 matrix now. We can expand this to a 4×4 matrix.

Theorem A.36. If we define

C =


A1 B1 C1 D1

0 A2 B2 C2

0 0 A3 B3

0 0 0 A4

 , (A.211)

and write eC t as in theorem A.34, then the results of C e
11(t) up to C e

33(t) can be found in
theorems A.34 and A.35. For the rest, we have

C e
41(t) =0, (A.212)

C e
42(t) =0, (A.213)

C e
43(t) =0, (A.214)

C e
44(t) =e A4t , (A.215)

C e
34(t) =

∫ t

0
e A3(t−s)B3e A4s d s, (A.216)

C e
24(t) =

∫ t

0
e A2(t−s)B2e A3(s−r)B3e A4r dr d s +

∫ t

0
e A2(t−s)C2e A4 s, (A.217)

C e
14(t) =

∫ t

0

∫ s

0

∫ r

0
e A1(t−s)B1e A2(s−r)B2e A3(r−q)B3e A4q d q dr d s +

∫ t

0
e A1(t−s)D1e A4s d s

+
∫ t

0

∫ s

0
e A1(t−s)B1e A2(s−r)C2e A4r dr d s +

∫ t

0

∫ s

0
e A1(t−s)C1e A3(s−r)B3e A4r dr d s. (A.218)

Proof. The proof for almost all terms is identical to what was done in theorems A.34 and
A.35, so we will not discuss that again. We will only look at the new term C e

14(t).
Our starting point will be the differential equation

Ċ e
14(t) = A1C e

14(t)+B1C e
24(t)+C1C e

34(t)+D1C e
44(t). (A.219)

Using the method of the integrating factor and working out the left hand side will give us

C e
14(t) = e A1t

∫ t

0

(
B1C e

24(s)+C1C e
34(s)+D1C e

44(s)
)

d s. (A.220)

If we insert earlier results for C e
24(s), C e

34(s) and C e
44(s), and if we again shift all parameters

down in the alphabet, we find our final result

C e
14(t) =

∫ t

0

∫ s

0

∫ r

0
e A1(t−s)B1e A2(s−r)B2e A3(r−q)B3e A4q d q dr d s +

∫ t

0
e A1(t−s)D1e A4s d s

+
∫ t

0

∫ s

0
e A1(t−s)B1e A2(s−r)C2e A4r dr d s +

∫ t

0

∫ s

0
e A1(t−s)C1e A3(s−r)B3e A4r dr d s. (A.221)

A.5. USING MATRIX EXPONENTIALS TO SOLVE INTEGRALS

A

239

The order of the matrices in the integrals of the above theorem might seem haphaz-
ard. However, they are most certainly not. There is an ‘intuitive’ way of looking at the
above equations, which make them more easy to recognize.

To see how it works, consider the matrix C as

C =


A1 B1 C1 D1

0 A2 B2 C2

0 0 A3 B3

0 0 0 A4

 . (A.222)

To find C e
14(t), we will start our ‘walk’ through the matrix at A1. From there, we may

‘jump’ to any matrix on the right. For instance, we may jump to B1. From there, we must
jump downward, back to the diagonal. For our case, that’s A2. From there the process
continues. For instance, we can jump to C2. From there, we have to jump down to A4.
Once we arrive at A4, we’re done.

Next, we will set up an expression for our walk. For that, we start with e A1t . Then we
look at each set of jumps which we did away from and back to the diagonal. If we jumped
away from Ai to some matrix Xi (where X can be B , C , D and so on) and then downward
to A j , then we should add e−Ai s Xi e A j s to our expression, or use r if we’ve already used
s, and so on. Furthermore, we should add an integral. Its limits should run from 0 to the
previous parameter (like s, r) which we added. If we do this for our walk, then we have

Result of walk:
∫ t

0

∫ s

0
e A1t (

e−A1s B1e A2s)(e−A2r C2e A4r)
d s dr. (A.223)

If we set up an expression for every possible walk like this through our matrix, and add
up all the results, then we arrive at the expression for C e

14(t). A similar trick also works
for any element C e

i j (t), except now we need to start our walk at Ai and end it at A j . So

this may make it easier to remember the results of the above theorems.

Finally, because we may need it, we also look at the result of a matrix C of 5 by 5
submatrices.

Theorem A.37. If we define

C =


A1 B1 C1 D1 E1

0 A2 B2 C2 D2

0 0 A3 B3 C3

0 0 0 A4 B4

0 0 0 0 A5

 , (A.224)

A

240 A. MATRIX ALGEBRA

and write eC t as in theorem A.34, then we have

C e
15(t) =

∫ t

0

∫ s

0

∫ r

0

∫ q

0
e A1(t−s)B1e A2(s−r)B2e A3(r−q)B3e A4(q−p)B4e A5p d p d q dr d s

+
∫ t

0

∫ s

0

∫ r

0
e A1(t−s)B1e A2(s−r)B2e A3(r−q)C3e A5q d q dr d s (A.225)

+
∫ t

0

∫ s

0

∫ r

0
e A1(t−s)B1e A2(s−r)C2e A4(r−q)B4e A5q d q dr d s

+
∫ t

0

∫ s

0

∫ r

0
e A1(t−s)C1e A3(s−r)B3e A4(r−q)B4e A5q d q dr d s

+
∫ t

0

∫ s

0
e A1(t−s)B1e A2(s−r)D2e A5r dr d s +

∫ t

0

∫ s

0
e A1(t−s)D1e A4(s−r)B4e A5r dr d s

+
∫ t

0

∫ s

0
e A1(t−s)C1e A3(s−r)C3e A5r dr d s +

∫ t

0
e A1(t−s)E1e A5s d s.

Proof. The proof for this is done identically as the proofs of the previous three theorems
(A.34, A.35 and A.36). After applying the method of the integrating factor, we will find

C e
15(t) = e A1t

∫ t

0

(
B1C e

25(s)+C1C e
35(s)+D1C e

45(s)+E1C e
55(s)

)
d s. (A.226)

If we work this out, keeping track of all the integrals, we will arrive at the above expression
for C e

15(t).

In this thesis, we will generally set all C , D and E matrices to zero. As a result, all
matrix terms (yes, even C e

15(t)) will consist of only one term. That term may contain
multiple integrals, but it is still an expression which will fit on one line.

A.5.2. USING MATRIX EXPONENTIALS TO SOLVE LYAPUNOV EQUATIONS
Usually Lyapunov equations are solved through matrix inversion (Theorem A.23). How-
ever, it is also possible to use matrix exponentials to find Lyapunov solutions. For this
subsection it is important to recall the notation described in subsection A.4.1.

We start with solving a Lyapunov equation using matrix exponentials.

Theorem A.38. For any k1 and k2 satisfying k1 +k2 = 2k, and for any matrix A, we have

X Q
kα(t1, t2) = e Ak1αt2

[
I 0

]
exp

([−Ak1α Q
0 AT

k2α

]
(t2 − t1)

)[
0
I

]
e

AT
k2α

t1 . (A.227)

Proof. From theorem A.34 we know that∫ t

0
e A1(t−s)B1e A2s d s = [

I 0
]

exp

([
A1 B1

0 A2

]
t

)[
0
I

]
. (A.228)

If we use A1 =−Ak1α, B1 =Q, A2 = AT
k2α

and t = t2 − t1, then we get

∫ t2−t1

0
e Ak1α(s−(t2−t1))Qe

AT
k2α

s
d s = [

I 0
]

exp

([−Ak1α Q
0 AT

k2α

]
(t2 − t1)

)[
0
I

]
. (A.229)

A.5. USING MATRIX EXPONENTIALS TO SOLVE INTEGRALS

A

241

If we now substitute s by s − t1, updating integral limits accordingly, and subsequently
pull terms not depending on s out of the integral, we directly find that

e−Ak1αt2

(∫ t2

t1

e Ak1αsQe
AT

k2α
s

d s

)
e
−AT

k2α
t1 = [

I 0
]

exp

([−Ak1α Q
0 AT

k2α

]
(t2 − t1)

)[
0
I

]
.

(A.230)
The part within brackets now equals X Q

kα(t1, t2), with k = k1+k2
2 . As a result, we have

X Q
kα(t1, t2) = e Ak1αt2

[
I 0

]
exp

([−Ak1α Q
0 AT

k2α

]
(t2 − t1)

)[
0
I

]
e

AT
k2α

t1 , (A.231)

which completes this proof.

It is interesting to note that the above theorem does not require A or any other matrix
to be Sylvester. It works for any matrix A.

Now that we know how to find X Q
kα(t1, t2) for each matrix A, we look at how to find

X̃ Q
kα(t), defined by A.121.

Theorem A.39. When X̃ Q
k1α,k2α

(t) is defined as in (A.121), then for any n we have

X̃ Q
kα(t) = [

I 0
]

exp

([
Akα Q

0 A

]
t

)[
0
I

]
(A.232)

= e−nαt [
I 0

]
exp

([
A(k+n)α Q

0 Anα

]
t

)[
0
I

]
.

Proof. From theorem A.34 we know that∫ t

0
e A1(t−s)B1e A2s d s = [

I 0
]

exp

([
A1 B1

0 A2

]
t

)[
0
I

]
. (A.233)

If we use A1 = A(k+n)α, B1 =Q and A2 = Anα and premultiply by e−nαt , then this becomes

e−nαt
∫ t

0
e A(k+n)α(t−s)Qe Anαs d s = e−nαt [

I 0
]

exp

([
A(k+n)α Q

0 AT
nα

]
t

)[
0
I

]
. (A.234)

Because the left hand side of the expression equals the definition of X̃ Q
kα(t), we have

proven (A.232) for any n.

So now we have two different yet effective methods of calculating Lyapunov solu-
tions X Q

kα(t1, t2). We will need these when we start solving Lyapunov equations in Ap-

pendix C.2. The term X̃ Q (T) will start to come in handy from Appendix C.4.2 onwards.

A.5.3. A COMPARISON BETWEEN THE TWO METHODS
The question remains which of the two methods we have of finding Lyapunov solutions
X Q (t) is better. Is it wiser to use the Lyapunov solution method (Theorem A.23) or the
matrix exponentials method (Theorem A.38)?

A

242 A. MATRIX ALGEBRA

There are a few cases in which the choice is obvious. If we need to find the infinite-
time solution X Q , then using matrix exponentials is impossible. Similarly, if we want
to find X Q (t) when A is not Sylvester, using matrix inversion is impossible. In practice
non-Sylvester matrices are quite rare though, so what do we do then?

In that case the determining factor is the numerical accuracy of both methods. Luck-
ily, this is something which we can investigate. We can find the parameter X Q (t) through
both methods, for various random matrices A and Q and for a given t . Then we test both
results for their numerical accuracy.

The tricky part is measuring the amount of numerical accuracies that take place. To
get some indication of this, we can calculate the quantity

AX Q (t)+X Q (t)AT +Q −e At Qe AT t (A.235)

for both calculated values of X Q (t). According to Theorem A.26 this quantity must equal
the zero matrix, so any discrepancy is caused by numerical inaccuracies. The more we
have, the more numerical inaccuracies there are.

If we add up the magnitude of all the elements of the resulting matrix, we get an
indication of the numerical accuracies that are present. To get rid of scale effects, we will
look at the ratio of these two errors. If we calculate this ratio for many different random
matrices A and Q, and do so for varying times t , then we get Figure A.1.

Figure A.1: The numerical error of the matrix exponential method compared to the Lyapunov solution method.
Each error bar is the result of 100 experiments with different random matrices A and Q. The horizontal axis
shows the time t in logarithmic scale. It ranges from 10−2.5 to 101.5. The vertical axis shows the numerical
error of the matrix exponential method divided by that of the Lyapunov solution method, also in logarithmic
scale.

From Figure A.1 we can see that for small t (up to t ≈ 100.5 ≈ 3s) the magnitude of the
numerical errors within the matrix exponential method is roughly 10−0.8 ≈ 1

6 times that

A.6. MISCELLANEOUS

A

243

of the Lyapunov solution method. So the matrix exponential method works better. For
larger times t the performance of the matrix exponential method quickly and severely
degrades though.

Very similar results were also found by Wahlström et al. (2014). This confirms that
the matrix exponential method is actually more accurate for small t , generally as long as
t < 1, though this of course depends on the magnitude of the matrix A. For t ≈ 1 it does
not matter much which method to use. For larger t it is not recommended to apply the
matrix exponential method in practice.

A.6. MISCELLANEOUS
We close this chapter off with a theorem which does not really fit in anywhere, so I just
put it here. It concerns the sum of sinusoids.

Theorem A.40. We can write any sinusoid with amplitude A, frequency f and phase dif-
ference φ as the sum of a sine and a cosine with the same frequency but without a phase
difference. That is,

A sin(2π f t +φ) = a sin(2π f t)+b cos(2π f t), (A.236)

where a and b can be found through

a = A cos(φ), (A.237)

b = A sin(φ), (A.238)

or conversely where A and φ can be found through

A =
√

a2 +b2, (A.239)

φ= tan−1(b, a). (A.240)

Proof. Our starting point is the trigonometric addition formula, sometimes also known
as the Prosthaphaeresis formula or Simpson’s formula,

sin(α+β) = sin(α)cos(β)+cos(α)sin(β). (A.241)

If we multiply this by the amplitude A and substitute α= 2π f t and β=φ, we can write

A sin(2π f t +φ) = A cos(φ)sin(2π f t)+ A sin(φ)cos(2π f t) (A.242)

= a sin(2π f t)+b cos(2π f t),

where a = A cos(φ) and b = A sin(φ). This proves the transformation one way. For the
other way, we can find A through

A =
√

A2
(
cos(φ)2 + sin(φ)2

)= a2 +b2. (A.243)

We can find φ either through sin(φ) = b
A or cos(φ) = a

A . Using tan(φ) = b
a does not always

work, because tan(φ) = b
a = −b

−a . So we may find the wrong phaseφ, unless we specifically
take the signs of a and b into account. Most programming languages have a function
atan2(b,a) which does exactly this. If we use this function, then we can directly find φ
without first having to calculate A.

B
PROBABILITY THEORY

Summary — A random variable is a variable which can take different values, based on
certain probabilities. The way in which it does this – its distribution – is described by its
probability density function. When we deal with multiple random variables, we need to
consider their joint distribution. As long as these random variables are not independent,
then learning more about one of these variables will mean we also learn more about the
others.

We can obtain the distribution of a random variable either based on prior data, or by per-
forming measurements. When multiple independent distributions of a random variable
are known, then these distributions can be merged together.

Important properties of random variables are their mean (their expected value) and their
variance. When dealing with multiple random variables, the covariance between these
variables is also important.

A very common type of random variable is the Gaussian random variable. Its distribution
is fully determined by the mean vector and the covariance matrix. Such random variables
have a variety of interesting properties. For instance, linear combinations of Gaussian
random variables will always result in yet another Gaussian random variable.

We can learn more about Gaussian random variables by performing measurements. It
is also possible to incorporate these measurements if we only measure linear combina-
tions of Gaussian random variables. In addition, when the Gaussian random variables
are conditionally independent, then there may be more (computationally) efficient ways
of incorporating the measurement data into the distributions of the random variables.

245

B

246 B. PROBABILITY THEORY

In this chapter we will recap some basic probability theories. As prior knowledge, you
should at least have a bit of a clue about what random variables, probability density
functions and Gaussian distributions are, even though we will repeat the most important
properties.

We will start by looking at the basics of probability density functions in Section B.1,
continue by examining the properties of the mean and covariance in Section B.2 and
then find out how probability density functions change when the corresponding ran-
dom variable is subjected to transformations (Section B.3). We then switch our focus
to Gaussian random variables, first studying their basic properties (Section B.4), then
considering methods of manipulating them (Section B.5) and finally figuring out what
happens when Gaussian distributions are conditionally independent (Section B.6).

B.1. INTRODUCING THE PROBABILITY DENSITY FUNCTION
A fundamental part in probability theory is the probability density function of a random
variable. In this section we will look at how it is defined, starting with the default defi-
nition (Section B.1.1), adding the joint definition (Section B.1.2) and finalizing with the
conditional definition (Section B.1.3). In the end we also look at a few special probability
density functions (Section B.1.4).

B.1.1. DEFINITION OF THE PROBABILITY DENSITY FUNCTION
Consider a scalar variable x. The underline indicates that it is a random variable, mean-
ing that it does not have a deterministic value but can have one of various values, each
with its own probability. These probabilities depend on the distribution of the random
variable, which is indicated by the Probability Density Function (PDF)1 fx (x). This func-
tion fx (x) is defined as2

fx (x) ≡ p(x ≤ x < x +d x)

d x
, (B.1)

with p(A) denoting the probability that the given event A occurs. As a result of the above,
any PDF fx (x) must satisfy∫ ∞

−∞
fx (x)d x =

∫ ∞

−∞
p(x ≤ x < x +d x) = p(−∞≤ x <∞) = 1. (B.2)

We can extend the above definition to random vectors x , where the vector size is denoted
by n. For the case where n = 2, we have

fx (x) ≡ p(x1 ≤ x1 < x1 +d x1, x2 ≤ x2 < x2 +d x2)

d x1d x2
= p(x ≤ x < x +d x)

d x
. (B.3)

1In most literature, the subscript x at PDFs is not written, because it is clear which random variable the PDF
belongs to. In addition, often the letter p is used instead of f . So p(x) then actually denotes a probability
density function.
In this appendix, we will stick with the notation fx (x) for PDFs, while p(. . .) is used to indicate probabilities of
events. However, in the main body of this thesis, we will most often stick with the notation commonly used
in the GP community, where p(x) denotes a PDF.

2For discrete random variables things work differently. In this thesis we will only consider continuous random
variables though.

B.1. INTRODUCING THE PROBABILITY DENSITY FUNCTION

B

247

Note that dividing by the vector differential d x actually means dividing by its (scalar)
‘volume’. That is, the product of all elements of the vector d x .

For such vector random variables, the PDF now must satisfy (for n = 2)∫ ∞

−∞

∫ ∞

−∞
fx (x)d x1 d x2 =

∫
X

fx (x)d x = 1. (B.4)

The set X in the above equation denotes the set of all possible values which x may take,
which is generally the full spaceRn .

All the above definitions and properties can be expanded identically for any n > 2.

B.1.2. JOINT DISTRIBUTIONS
Suppose that we have a random vector x , which consists of two separate random vectors

x a and xb . So x =
[

x a
xb

]
. Also suppose that we know the joint PDF fx (x) = fx a ,xb

(xa , xb).

How do we then find the PDF fx a
(xa) of x a ? (Or equivalently, that of xb ?) This is an-

swered by the following theorem, which shows us the process of marginalization.

Theorem B.1. When x a and xb have a joint PDF fx a ,xb
(xa , xb), then the PDF of x a is

fx a
(xa) =

∫
Xb

fx a ,xb
(xa , xb)d xb . (B.5)

Proof. We start with the definition of the joint PDF. It equals

fx a ,xb
(xa , xb) = p(xa ≤ x a < xa +d xa , xb ≤ xb < xb +d xb)

d xa d xb
. (B.6)

When we integrate over Xb , which is the set of all possible values of xb , we find that∫
Xb

fx a ,xb
(xa , xb)d xb =

∫
Xb

p(xa ≤ x a < xa +d xa , xb ≤ xb < xb +d xb)

d xa
(B.7)

= p(xa ≤ x a < xa +d xa ,−∞≤ xb <∞)

d xa

= p(xa ≤ x a < xa +d xa)

d xa

= fx a
(xa).

Note that, because the event ‘−∞≤ xb ≤∞ is obviously true, we have dropped it from
our probability function.

B.1.3. CONDITIONAL DISTRIBUTIONS
When we have two random variables x a and xb , then these variables may depend on
each other. That is, if we know that xb actually equals some measured value x̂b , then
we can say something more about the distribution of x a . In fact, we write the resulting
random variable as x a |xb = x̂b or shorter as x a |x̂b . The conditional probability bar | can
be read as ‘given that’. This parameter now has fx a |x̂b

(xa) as PDF. But what is this PDF?

B

248 B. PROBABILITY THEORY

Officially, the conditional probability of an event A given that an event B occurred, is
defined as

p(A|B) = p(A,B)

p(B)
. (B.8)

Using this definition, we can find the PDF of our conditional distribution.

Theorem B.2. Assume that the random variables x a and xb have a joint distribution
fx a ,xb

(xa , xb). When it is given that xb equals a value x̂b , then the PDF of x a becomes

fx a |x̂b
(xa) =

fx a ,xb
(xa , x̂b)

fxb
(x̂b)

. (B.9)

Proof. Before we start, we should note that, for infinitesimally small d x̂b , we have p(x̂b ≤
xb < x̂b +d x̂b) → p(xb = x̂b). With this knowledge, we can find that

fx a |x̂b
(xa) ≡ p(xa ≤ x a < xa +d xa |xb = x̂b)

d xa
(B.10)

= p(xa ≤ x a < xa +d xa , xb = x̂b)

d xa

1

p(xb = x̂b)

= p(xa ≤ x a < xa +d xa , x̂b ≤ xb < x̂b +d x̂b)

d xa d x̂b

d x̂b

p(x̂b ≤ xb < x̂b +d x̂b)

=
fx a ,xb

(xa , x̂b)

fxb
(x̂b)

.

This proves the theorem.

It may happen that x a and xb are independent. Theoretically, this is defined as hav-
ing

fx a ,xb
(xa , xb) = fx a

(xa) fxb
(xb). (B.11)

In practice, what it means is that, even if we know that xb equals some value x̂b , we still
cannot say anything extra about the distribution of x a . In other words, the random vari-
able x a (without any additional data) has the same distribution as the random variable
x a |x̂b . This means that

fx a |x̂b
(xa) = fx a

(xa). (B.12)

B.1.4. SPECIAL CASES OF THE PROBABILITY DENSITY FUNCTION
The PDF describes how much we know about a random variable x . There are two limit
cases: where we know everything about a random variable and where we know abso-
lutely nothing. What are the PDFs in these cases?

First, suppose that we know x deterministically. In other words, we know that x
equals a given number c . The PDF of x is now given by

fx (x) = δ(x −c), (B.13)

with δ(. . .) being the delta function. This PDF, called the delta distribution, is zero every-
where, except at the value c , where it has an infinitely large peak.

B.2. THE MEAN AND THE COVARIANCE

B

249

But what if we know absolutely nothing about x? When its value can literally be any-
where between −∞ and ∞, with equal probability? In this case the PDF is a constant
value γ. So,

fx (x) = γ, (B.14)

I call this distribution the null distribution. But what exactly is the value of γ? Well, we
know that the PDF must satisfy∫ ∞

−∞
fx (x)d x =

∫ ∞

−∞
γd x = 1. (B.15)

γ is hence defined as the number which satisfies the above equation. It is basically an
infinitely small number, which is not yet zero. (This distribution is a type of singular
distribution, but we will not go further into that here.)

B.2. THE MEAN AND THE COVARIANCE
Important properties of any random variable x are the mean and the covariance. We
can find them from the probability density function. In this section we will look at how
they are defined and what properties they have. We start with their definitions and fun-
damental properties (Section B.2.1), then look at how the mean and covariance are af-
fected when we linearly transform the corresponding random variables (Section B.2.2)
and finally we look at a few other important properties of the mean and the covariance
(Section B.2.3).

B.2.1. THE FUNDAMENTALS BEHIND THE MEAN AND THE COVARIANCE
The mean of a random variable x is defined as

E[x] =
∫ ∞

−∞
x fx (x)d x . (B.16)

The covariance matrix is then defined as

V[x] =E
[(

x −E[x]
)(

x −E[x]
)T

]
(B.17)

=
∫ ∞

−∞
(x −E[x])(x −E[x])T fx (x)d x .

Alternatively, we can define the covariance matrix of two different random variables as

V[x a , xb] =E
[(

x a −E[x a]
)(

xb −E[xb]
)T

]
(B.18)

=
∫ ∞

−∞

∫ ∞

−∞
(xa −E[x a])(xb −E[xb])T fx a ,xb

(xa , xb)d xa d xb .

So the notationV[x a] is just a shorthand forV[x a , x a].
The covariance matrixV

[
x
]

of a single random vector x always satisfies certain prop-
erties. First of all, it is symmetric. After all,E[(xi−µi)(x j−µ j)] equalsE[(x j−µ j)(xi−µi)].
Furthermore, it is always positive semidefinite and usually even positive definite. Why
exactly this is the case will become clear in Section B.4.5, and in Section B.5.1 we will
look at what a negative definite covariance matrix might mean.

B

250 B. PROBABILITY THEORY

B.2.2. LINEAR TRANSFORMATIONS OF RANDOM VARIABLES
Let’s take a random variable x , (left-)multiply it by a matrix P and add a constant deter-
ministic vector c . What effect will this then have on the mean and covariance matrix?

Theorem B.3. Consider the random variable x of size n, the p ×n matrix P and the (de-
terministic) vector c of size n. We have

E[P x +c] = PE[x]+c , (B.19)

V[P x +c] = PV[x]P T . (B.20)

Proof. This can be proven by applying the definition of the mean and covariance. For
the mean, we have

E
[
P x +c

]= ∫ ∞

−∞
(P x +c) fx (x)d x (B.21)

= P
∫ ∞

−∞
x fx (x)d x +

∫ ∞

−∞
c fx (x)d x

= PE[x]+c .

(Note that we have applied (B.2) in the last step.) This actually confirms that the expec-
tation operator is a linear operator, meaning that it satisfies (B.19).

To prove this theorem for the variance, we should already apply our result for the
mean. When we do, we find that

V[P x +c] =E[
(P x +c −E[P x +c])(P x +c −E[P x +c])T]

(B.22)

=E[
P (x −E[x])(x −E[x])T P T]

= PV[x]P T .

This completes the proof.

B.2.3. FURTHER PROPERTIES OF THE MEAN AND THE COVARIANCE
Now that we know how to deal with linear transformations of random variables, we can
look at a few other properties of random variables.

Theorem B.4. Consider the random variables x a and xb . We have

E[x a +xb] =E[x a]+E[xb], (B.23)

V[x a +xb] =V[x a]+V[xb]+V[x a , xb]+V[xb , x a]. (B.24)

Proof. Consider the vector x =
[

x a
xb

]
. We now (per definition) have

E
[

x
]=E[

x a
xb

]
=

[
E[x a]
E[xb]

]
, (B.25)

V
[

x
]=V[

x a
xb

]
=

[
V[x a , x a] V[x a , xb]
V[xb , x a] V[xb , xb]

]
. (B.26)

If we define P = [
I I

]
and c = 0 and apply Theorem B.3, then the desired result imme-

diately follows.

B.2. THE MEAN AND THE COVARIANCE

B

251

Theorem B.5. The covarianceV[x a , xb] of two random variables x a and xb equals

V
[

x a , xb

]=E[
x a xb

T]−E[
x a

]
E

[
xb

]T . (B.27)

Proof. We will start with our proof at the definition ofV[x a , xb]. We expand that expres-
sion until we arrive at our final result. So,

V
[

x a , xb

]=E[(
x a −E[

x a

])(
xb −E[

xb

])T
]

(B.28)

=E
[

x a xb
T −x aE

[
xb

]T −E[
x a

]
xb

T +E[
x a

]
E

[
xb

]T
]

=E[
x a xb

T]−E[
x aE

[
xb

]T
]
−E[

E
[

x a

]
xb

T]+E[
E

[
x a

]
E

[
xb

]T
]

=E[
x a xb

T]−E[
x a

]
E

[
xb

]T −E[
x a

]
E

[
xb

T]+E[
x a

]
E

[
xb

]T

=E[
x a xb

T]−E[
x a

]
E

[
xb

]T .

Note that we have applied Theorem B.3 a few times in the above derivations.

Theorem B.6. When two random variables x a and xb are independent, then

E
[

x a xb
T]=E[

x a

]
E

[
xb

]T , (B.29)

V
[

x a , xb

]= 0, (B.30)

V
[

x a +xb

]=V[
x a

]+V[
xb

]
. (B.31)

Proof. This theorem contains three expressions which need to be proven. To derive the
first, we should apply the definition (B.11) of independent random variables. We then
find that

E
[

x a xb
T]= ∫

Xa

∫
Xb

xa xb
T fx a ,xb

(x a , xb)d xa d xb (B.32)

=
∫

Xa

∫
Xb

xa xb
T fx a

(x a) fxb
(xb)d xa d xb

=
(∫

Xa

xa fx a
(x a)d xa

)(∫
Xb

xb fxb
(xb)d xa

)T

=E[
x a

]
E

[
xb

]T .

The second expression now directly follows from Theorem B.5. This theorem tells us that

V
[

x a , xb

]=E[
x a xb

T]−E[
x a

]
E

[
xb

]T =E[
x a

]
E

[
xb

]T −E[
x a

]
E

[
xb

]T = 0. (B.33)

Next, it also directly follows from Theorem B.4 that

V
[

x a +xb

]=V[
x a

]+V[
xb

]+V[
x a , xb

]+V[
xb , x a

]=V[
x a

]+V[
xb

]
. (B.34)

This completes the proof.

B

252 B. PROBABILITY THEORY

B.3. TRANSFORMATIONS OF PROBABILITY DENSITY FUNCTIONS
We know how probability density functions are defined. But when we transform a ran-
dom variable x , how will its probability density function fx (x) be affected? That is what
we will look at in this section. We start with linear transformations (Section B.3.1), con-
tinue with nonlinear transformations (Section B.3.2) and finally we look at how we can
merge multiple distributions together (Section B.3.3).

B.3.1. LINEAR TRANSFORMATIONS OF A RANDOM VARIABLE
Suppose that we have a random variable x . If we transform this to a new random variable
y = P x +c , what will the PDF of y be?

Theorem B.7. Consider the random variable x of size n, the invertible n×n matrix P and
the (deterministic) vector c of size n. If we define y = P x +c , then

fy (y) = 1

|P | fx
(
P−1 (

y −c
))

. (B.35)

Proof. Let’s denote the probability that x falls within the n-dimensional rectangle bounded
by x and x +d x as p(x ≤ x < x +d x). This inequality does not hold from the strict point
of view. (If d x has negative elements, the equality itself would not hold.) However, if we
stick with this new notation, then we have

p(x ≤ x < x +d x) = p(P x +c ≤ P x +c < P x +Pd x +c) (B.36)

= p(y ≤ y < y +d y),

where we have defined y = P x + c and d y = d (P x +c) = P d x . Here, you should again
read p(y ≤ y < y +d y) as the probability that y falls within the n-dimensional rectangle
bounded by y and y +d y , even though some elements of d y may be negative. It now
follows that

fy (y) =
p(y ≤ y < y +d y)

d y
(B.37)

= d x

d y

p(x ≤ x < x +d x)

d x

= d x

d y
fx (x).

We should remember that, in this relation, dividing by d y actually means dividing by
the volume of d y , and similarly for d x . As a result, the ratio d x

d y is the ratio between the
volumes of the blocks d x and d y . It is known in mathematics that, when applying a
transformation y = P x to a certain space, then all volumes are increased by a factor |P |.
And because P is (assumed) invertible, this determinant is nonzero. Hence, d x

d y = 1
|P | .

This results in

fy (y) = 1

|P | fx (x). (B.38)

Because P is invertible, we can substitute x by P−1
(

y −c
)
, which completes this proof.

B.3. TRANSFORMATIONS OF PROBABILITY DENSITY FUNCTIONS

B

253

B.3.2. NONLINEAR TRANSFORMATIONS OF RANDOM VARIABLES

Contrary to linear transformations, nonlinear transformations of random variables are
very tricky. Suppose we have a random variable x with PDF fx (x), and we define y = g (x)
for some function g (.). What is then the PDF of y?

There is no easy general solution for this problem. But for some specific functions
we can find solutions.

Theorem B.8. Consider the scalar random variables x > 0 and y satisfying y = log(x) and

equivalently x = e y . The PDFs of x and y are now related through

fx (x) = 1

e y fy (y), (B.39)

fy (y) = x fx (x). (B.40)

Proof. Per definition, the PDF of x is given by

fx (x) = p(x ≤ x < x +d x)

d x
. (B.41)

Let’s define y = log(x), meaning that x = e y . It follows that d x = e y d y . We now have

fx (x) = p(e y ≤ e y < e y +e y d y)

e y d y
= p(e y ≤ e y < e y (1+d y))

e y d y
. (B.42)

Next, we will take the logarithm of every term within the probability function. Because
the logarithm is a strictly ascending function, the inequality does not change. As a result,
we have

fx (x) =
p(y ≤ y < y + log(1+d y))

e y d y
. (B.43)

We can expand log(1+d y) according to its Taylor polynomial

log(1+d y) = d y − d y2

2
+ d y3

3
− d y4

4
+ (B.44)

In the limit of d y → 0, only the first term is relevant, and so then log(1+d y) = d y . As a
result, we have

fx (x) = 1

e y

p(y ≤ y < y +d y)

d y
= 1

e y fy (y). (B.45)

From the definition x = e y now also directly follows that

fy (y) = x fx (x). (B.46)

This completes the proof.

B

254 B. PROBABILITY THEORY

B.3.3. MERGING DISTRIBUTIONS

In practice, how do we find probability density functions? This usually happens through
external data. For instance, suppose that we want to estimate some parameter x . We do
not know what it is yet, so we write it as a random variable x .

Usually, we have some prior idea about what x may be. We can summarize this in the
prior distribution f pr

x (x) of x . In this distribution, we make probable values of x more
likely, and improbable values of x less likely. And in the extreme case that we really know
nothing about x , we give it the null distribution from Section B.1.4.

Only having prior data is pretty useless, but we can improve on this by performing a
measurement of x . This measurement usually does not give us the precise value of x , for
instance because of measurement noise. However, what it does give us is another PDF,
being the first measurement PDF f 1

x (x).

So basically, we now have two PDFs for x and both are true. How do we merge them?
There are various ways to do that based on how they have been obtained, as is also ex-
plained by Clemen and Winkler (2007). However, in this thesis we will use the following
theorem, which corresponds to the intuitive view described in Section 2.1.3.

Theorem B.9. Suppose that we have two PDFs f 1
x (x) and f 2

x (x) for the same random
variable x . When these two PDFs have been obtained independently, then the posterior
PDF of x is given by

f po
x (x) =

f 1
x (x) f 2

x (x)∫
X f 1

x (x ′) f 2
x (x ′)d x ′ . (B.47)

Proof. Let’s denote the random variable corresponding to the first measurement by x a
and the random variable corresponding to the second measurement by xb . We know
that x a and xb are equal, since they both equal x . Hence, the probability that x a equals
some vector x , given this data, is equal to

p(x = x a |x a = xb) = p(x = x a , x a = xb)

p(x a = xb)
(B.48)

= p(x = x a = xb)∫
X p(x ′ = x a = xb)

= p(x = x a , x = xb)∫
X p(x ′ = x a , x ′ = xb)

.

Because x a and xb have been obtained independently, we may split up the probability
operators to get

p(x = x a |x a = xb) = p(x = x a)p(x = xb)∫
X p(x ′ = x a)p(x ′ = xb)

. (B.49)

For infinitesimally small steps d x this can be rewritten to

p(x ≤ x a < x +d x |x a = xb) = p(x ≤ x a < x +d x)p(x ≤ xb < x +d x)∫
X p(x ′ ≤ x a < x ′+d x ′)p(x ′ ≤ xb < x ′+d x ′)

. (B.50)

B.3. TRANSFORMATIONS OF PROBABILITY DENSITY FUNCTIONS

B

255

If we then also divide both sides of the equation by this step d x (or an equally large step
d x ′), we find that

p(x ≤ x a < x +d x |x a = xb)

d x
=

p(x≤x a<x+d x)
d x

p(x≤xb<x+d x)
d x∫

X
p(x ′≤x a<x ′+d x ′)

d x ′
p(x ′≤xb<x ′+d x ′)

d x ′ d x ′
, (B.51)

fx a |x a=xb
(x) =

fx a
(x) fxb

(x)∫
X fx a

(x ′) fxb
(x ′)d x ′ . (B.52)

This proves that, given two independently obtained PDFs f 1
x (x) and f 2

x (x) of the same
random variable x , the posterior distribution of x equals (B.47).

When we have multiple measurements, we can also just merge them in a similar way,
as is shown by the next theorem.

Theorem B.10. Suppose that we have n PDFs f 1
x (x), . . . , f n

x (x) for the same random vari-
able x . When these PDFs have been obtained independently, then the posterior PDF of x
is given by

f po
x (x) =

f 1
x (x) . . . f n

x (x)∫
X f 1

x (x ′) . . . f n
x (x ′)d x ′ . (B.53)

Proof. This can be proven by mathematical induction. The case when n = 1 equals

f po
x (x) =

f 1
x (x)∫

X f 1
x (x ′)d x ′ = f 1

x (x). (B.54)

This is obviously true. If we only have one PDF, then the posterior PDF equals that PDF.
Now assume that this theorem holds up to n −1. We then have as posterior distribu-

tion f po,n−1
x (x) after n −1 measurements

f po,n−1
x (x) =

f 1
x (x) . . . f n−1

x (x)∫
X f 1

x (x ′) . . . f n−1
x (x ′)d x ′ . (B.55)

If we add a measurement n, giving us another PDF f n
x (x), we ought to add this to the

posterior distribution too. To do so, we merge the previous posterior distribution with
our new measurement using Theorem B.9. This gives us the new posterior distribution

f po,n
x (x) =

f po,n−1
x (x) f n

x (x)∫
X f po,n−1

x (x ′) f n
x (x ′)d x ′ (B.56)

=
f 1

x (x)... f n−1
x (x)∫

X f 1
x (x ′)... f n−1

x (x ′)d x ′ f n
x (x)

∫
X

f 1
x (x ′′)... f n−1

x (x ′′)∫
X f 1

x (x ′)... f n−1
x (x ′)d x ′ f n

x (x ′′)d x ′′
.

We should note here that the integral
∫

X f 1
x (x ′) . . . f n−1

x (x ′)d x ′ is a constant. That is, it
does not depend on x . Because it appears both in the numerator and the denominator,

B

256 B. PROBABILITY THEORY

it cancels out. We remain with

f po,n
x (x) =

f 1
x (x) . . . f n−1

x (x) f n
x (x)∫

X f 1
x (x ′′) . . . f n−1

x (x ′′) f n
x (x ′′)d x ′′ . (B.57)

So, assuming that the theorem holds for n−1, it also holds for n. Through induction, this
completes the proof.

We will use this idea of merging distributions a lot in this thesis, which is why we
introduce a special notation for it. (Also see Section 2.1.3.) We use the operator ⊕ and
say that the above is (per definition) equivalent to

f po,n
x (x) = f 1

x (x)⊕ f 2
x (x)⊕ . . .⊕ f n

x (x). (B.58)

It is worthwhile to note that, just like with regular addition and multiplication, the order
in which we merge distributions has no effect whatsoever.

You may be wondering, ‘What do we do if one measurement is more accurate than
another? Shouldn’t we take that into account in some way?’ The answer to this is, ‘We
already do.’

If some measurement i is very uncertain, then its PDF f i
x (x) will be very spread out,

with as ultimate situation the null distribution f i
x (x) = γ from Section B.1.4. Such a dis-

tribution does not have any effect on the posterior distribution f po
x (x) and might as well

be ignored.

Alternatively, if some measurement j is highly certain, then its PDF f j
x (x) will have a

strong peak, with as ultimate situation the delta PDF f j
x (x) = δ(x−c). Such a distribution

has a deciding effect on the posterior distribution f po
x (x), making it also equal to δ(x−c),

irrespective of other measurements.
A final interesting result is that, if f 1

x (x), . . . , f n
x (x) are all the same PDFs, then the pos-

terior distribution f po
x (x) generally does not equal this PDF. Instead, it is more peaked.

This may initially seem counterintuitive, but it actually does make sense. To see how,
we can consider an example. Suppose that one measurement tells us that some random
variable x probably has value 1, but maybe has value 2. At this point we are not very
convinced yet about the value of x. But if ten independent measurements all tell us the
same thing, we can be quite sure that x indeed is very likely to have value 1 and very
unlikely to have value 2. Naturally, things may be different when the measurements are
not independent, but that is a complicated case which we will not consider in this thesis.

B.4. THE GAUSSIAN DISTRIBUTION
In this section we will examine the (arguably) most well-known distribution, being the
Gaussian distribution. We start by looking at its probability density function (Section B.4.1)
and the special case of the standard Gaussian distribution (Section B.4.2). We then look
at how the distribution changes when we apply linear transformations to it (Section B.4.3)
or when we obtain more data (Section B.4.4). We continue by looking at a few special
cases of the Gaussian distribution, including what happens when the covariance ma-
trix is not positive definite anymore (Section B.4.5). Finally, we study the distribution of
power forms of Gaussian random variables (Section B.4.6).

B.4. THE GAUSSIAN DISTRIBUTION

B

257

B.4.1. THE GAUSSIAN PROBABILITY DENSITY FUNCTION
A random variable x has a Gaussian distribution, also known as a normal distribution, if
its PDF equals the Gaussian probability density function

fx (x) =N (x |µ,Σ) ≡ 1p|2πΣ| exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
. (B.59)

In this expression, µ is the mean vector and Σ is the covariance matrix. Once these are
known, the PDF of the Gaussian random variable is fully defined.

To indicate that a random variable x has a Gaussian distribution with mean µ and
covariance Σ, we usually write

x ∼N (x |µ,Σ). (B.60)

The symbol ‘∼’ here can be read as ‘has as probability density function’ or ‘is distributed
according to’. In addition, when it is clear or when it doesn’t matter which parameter x
is inserted in the Gaussian PDF, we may also simply omit it and write

x ∼N (µ,Σ). (B.61)

It is interesting to note that the Gaussian distribution is a probability density function
with mean µ and covariance Σ. As such, we must have

1 =
∫ ∞

−∞
1p|2πΣ| exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
d x , (B.62)

µ=
∫ ∞

−∞
x

1p|2πΣ| exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
d x , (B.63)

Σ=
∫ ∞

−∞
(x −µ)(x −µ)T 1p|2πΣ| exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
d x . (B.64)

These relations will be useful when we examine Gaussian exponentials more closely.

B.4.2. THE STANDARD GAUSSIAN DISTRIBUTION
The standard Gaussian distribution is the scalar Gaussian distribution with zero mean
and unit variance. That is, x has a standard Gaussian distribution if x ∼ N (x|0,1). The
PDF of such a distribution, called the standard probability density function, is often writ-
ten as

φ(x) ≡N (x|0,1) = 1p
2π

exp

(
−1

2
x2

)
. (B.65)

There is also a higher-dimensional equivalent, which equals

φ(x) ≡N (x |0, I) = 1√
(2π)n

exp

(
−1

2
xT x

)
, (B.66)

with n the size of the vector x .
It is possible to express any Gaussian PDF in that of the standard PDF. To do so, we

can use the following theorem.

B

258 B. PROBABILITY THEORY

Theorem B.11. We can express any Gaussian exponential function N
(
x |µ,Σ

)
in the stan-

dard PDF through

N
(
x |µ,Σ

)= 1p|Σ|φ
(
L−1 (

x −µ))
, (B.67)

where L is the (lower-triangular) Cholesky decomposition of Σ.

Proof. We know from our linear algebra course that we can write any positive definite
matrix Σ as LLT , where L is the lower triangular matrix known as the Cholesky decompo-
sition of Σ. In this case, we can rewrite N

(
x |µ,Σ

)
as

N
(
x |µ,Σ

)= 1p|2πΣ| exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
(B.68)

= 1p|2πI | |Σ| exp

(
−1

2
(x −µ)T L−T L−1(x −µ)

)
.

If we now define y = L−1
(
x −µ)

, then this turns into

N
(
x |µ,Σ

)= 1p|Σ|
1p|2πI | exp

(
−1

2
y T I−1 y

)
= 1p|Σ|N

(
y |0, I

)
, (B.69)

which is what we needed to prove.

In the above theorem, we always have
p|Σ| =

√
|L||LT | = |L|. Additionally, in the

scalar case we have Σ=σ2 = L2, with σ being the standard deviation of x.
When we integrate the PDF of the standard Gaussian distribution, we find the Cu-

mulative Density Function (CDF) of the standard Gaussian distribution. It is defined as

Φ(x) ≡
∫ x

−∞
φ(x ′)d x ′, (B.70)

or for higher-dimensional functions as

Φ(x) ≡
∫ x1

−∞
. . .

∫ xn

−∞
φ(x ′)d x ′

n . . .d x ′
1 =

∫ 0

−∞
φ(x ′)d x ′. (B.71)

When we integrate a non-standard Gaussian distribution, we can use the following the-
orem to compute the result.

Theorem B.12. The integral of the Gaussian exponential function x ∼N
(
x |µ,Σ

)
over the

region X equals ∫
X

N
(
x |µ,Σ

)
d x =

∫
Y
φ(y)d y , (B.72)

where y ≡ L−1
(
x −µ)

and Y is the region resulting from applying this transformation to
all points within X . In addition, L is the (lower-triangular) Cholesky decomposition of Σ.

Proof. To prove this, we will use Theorem B.11. This theorems expands the integrand
into ∫

X
N

(
x |µ,Σ

)
d x =

∫
X

1p|Σ|φ
(
L−1 (

x ′−µ))
d x . (B.73)

B.4. THE GAUSSIAN DISTRIBUTION

B

259

We will now substitute x as integration parameter for y = L−1
(
x −µ)

. Because L is a
triangular matrix, we have

d x = d x1 d x2 . . . d xn = L11d y1 L22d y2 . . . Lnnd yn = |L|d y . (B.74)

Also note that |L| =p|Σ|. If we then also adjust the integration area accordingly, replacing
X by Y , we directly find (B.72).

The hard part when applying the above theorem is that, even if X is a nice rectangular
reason, the region Y does not have to be rectangular, making the resulting integral hard
to solve.

If we however can solve the integral and find the corresponding CDF, then this will
be very useful for calculating probabilities. Suppose that x has a standard Gaussian dis-
tribution. In that case, we directly have

p(a ≤ x ≤ b) =
∫ b

a
φ(x) x =Φ(b)−Φ(a), (B.75)

where the inequality must hold for every element within the vector. A similar trick can
be performed for non-standard Gaussian random variables, if the corresponding CDF
can be found.

B.4.3. LINEAR TRANSFORMATIONS OF GAUSSIAN DISTRIBUTIONS
Gaussian random variables are useful for many reasons. First of all, we only need two
parameters (µ and Σ) to fully specify an entire distribution. Secondly, linear combina-
tions of Gaussian random variables are also Gaussian random variables. The following
theorem shows us why, as well as what the parameters of these distributions will be.

Theorem B.13. Consider a Gaussian random variable x ∼ N (x |µ,Σ) of size n and an
n ×n invertible matrix P. The random variable y = P x +c now has the distribution

y = P x +c ∼N (y |Pµ+c ,PΣP T). (B.76)

Proof. To prove this theorem, we look at the PDF of y . From Theorem B.7 we know that

fy (y) = 1

|P | fx
(
P−1 (

y −c
))

. (B.77)

If we use the definition of the Gaussian PDF (B.59), as well as apply the matrix determi-
nant rules |P | = |P T | and |A||B | = |AB |, we find that

fy (y) = 1

|P |
1p|2πΣ| exp

(
−1

2
(P−1 (

y −c
)−µ)TΣ−1(P−1 (

y −c
)−µ)

)
(B.78)

= 1√
|P | |2πΣ| |P T |

exp

(
−1

2
(y −c −Pµ)T P−TΣ−1P−1(y −c −Pµ)

)
= 1√

|2πPΣP T |
exp

(
−1

2

(
y − (

Pµ+c
))T (PΣP T)−1 (

y − (
Pµ+c

)))
=N (y |Pµ+c ,PΣP T).

B

260 B. PROBABILITY THEORY

This not only proves that y is Gaussian, but also that it has mean Pµ+c and covariance

matrix PΣP T , completing the proof.

It may be interesting to know (though we will not prove this here) that the above
theorem also holds for non-invertible matrices P . In that case we will wind up with a
covariance matrix PΣP T which is not positive definite. Later on, in Section B.4.5, we will
look at what exactly this means for the distribution.

B.4.4. MARGINALIZATION AND CONDITIONING OF GAUSSIAN DISTRIBUTIONS
In Section B.1.2 we looked at marginalization of distributions, and in Section B.1.3 we
examined conditional distributions. We can apply these ideas to Gaussian distributions
too.

Suppose that we have two Gaussian random variables x a and xb . A priori (before
doing any measurements) we know that they have a joint distribution[

x a
xb

]
∼N

([
xa

xb

]∣∣∣∣[ma

mb

]
,

[
Kaa Kab

Kba Kbb

])
. (B.79)

When we talk about prior distributions, we often use m to denote the mean and K the
covariance, while µ and Σ are used to indicate the posterior distribution (after incorpo-
rating measurements). This is a useful distinction to keep in mind.

If we apply marginalization to this, we find the following theorem.

Theorem B.14. When two Gaussian random variables are distributed according to (B.79),
then we have x a ∼N (xa |ma ,Kaa) and xb ∼N (xb |mb ,Kbb).

Proof. We can find the PDF of x a by applying marginalization (Theorem B.1). This
means that

fx a
(xa) =

∫
Xb

fx a ,xb
(xa , xb)d xb =

∫
Xb

N

([
xa

xb

]∣∣∣∣[ma

mb

]
,

[
Kaa Kab

Kba Kbb

])
d xb . (B.80)

If we now apply Theorem A.16, then it directly follows that x a ∼ N (xa |ma ,Kaa). And
identically, it follows that xb ∼N (xb |mb ,Kbb).

We can also find the conditional distribution of Gaussian variables. This follows from
the next theorem.

Theorem B.15. When two Gaussian random variables are distributed according to (B.79),
then the conditional distribution of xb , given that x a = x̂a , equals

fxb |x̂a (xb) =N
(
xb |µb ,Σbb

)=N
(
xb |mb +KbaK −1

aa (x̂a −ma) ,Kbb −KbaK −1
aa Kab

)
.

(B.81)

Proof. We can find the conditional distribution of xb |x a = x̂a through Theorem B.2. It
tells us that

fxb |x̂a (xb) =
fx a ,xb

(x̂a , xb)

fx a
(x̂a)

=
N

([
x̂a

xb

]∣∣∣∣[ma

mb

]
,

[
Kaa Kab

Kba Kbb

])
N (x̂a |ma ,Kbb)

. (B.82)

B.4. THE GAUSSIAN DISTRIBUTION

B

261

Note that we have applied Theorem B.14 here, which told us that fx a
(x̂a) =N (x̂a |ma ,Kaa).

Next, we only have to apply Theorem A.15. If we do, and work out the results, we imme-
diately find (B.81).

The previous theorem is useful when we have measured the value of x a in an exact
way. That is, we are fully confident it equals x̂a . And because x̂a is known precisely, we
do not even have to write it as a random variable.

But often there is some measurement noise ν added to our measurement. Here, we
assume that ν has a zero-mean Gaussian distribution ν∼N (ν|0, Σ̂). So we have

x̂ a = x a +ν. (B.83)

Note that in this case x̂ a actually is a random variable with a certain distribution. When
we take a measurement, we take a sample from this distribution. This measurement is
an actual number, and so we denote the measurement by x̂a .

The question now is, what is the posterior distribution of xb , after we have performed
our measurement?

Theorem B.16. When two Gaussian random variables are distributed according to (B.79),
then the conditional distribution of xb , given a noisy measurement x̂a sampled from (B.83),
equals

fxb |x̂a (xb) =N
(

xb |mb +Kba
(
Kaa + Σ̂

)−1
(x̂a −ma) ,Kbb −Kba

(
Kaa + Σ̂

)−1
Kab

)
. (B.84)

Proof. There are many ways in which we can prove this. Later on in Theorem B.22 we
will see a more powerful version of this theorem, with a prove which I personally find
more intuitive. (It involves merging distributions.) But here we will stick with the proof
given in most textbooks.

Consider (B.83). We will use Theorem B.4 to find the prior mean and covariance of
x̂ a . Here, we should realize that x a and ν are independent (and hence uncorrelated).
Prior to doing any measurement, we hence have

x̂ a = x a +ν∼N
(
x̂a |ma +0,Kaa + Σ̂

)
. (B.85)

We can expand this vector by adding xb . If we once more apply Theorem B.4 to calculate
the mean and covariance, noting that ν is also independent from xb , then we find that[

x̂ a
xb

]
=

[
x a
xb

]
+

[
ν

0

]
∼N

([
x̂a

xb

]∣∣∣∣[ma

mb

]
,

[
Kaa + Σ̂ Kab

Kba Kbb

])
. (B.86)

The key now is that, although we did not measure x a exactly, we do have an exact mea-
surement (sample) x̂a from x̂ a . Hence, we can apply Theorem B.15 to find that

xb |x̂ a = x̂a ∼N
(

xb |mb +Kba
(
Kaa + Σ̂

)−1
(x̂a −ma) ,Kbb −Kba

(
Kaa + Σ̂

)−1
Kab

)
. (B.87)

This proves (B.84). And it is interesting to note that, for Σ̂= 0, this theorem reduces back
to Theorem B.15.

B

262 B. PROBABILITY THEORY

B.4.5. SPECIAL CASES OF THE GAUSSIAN DISTRIBUTION
In most practical applications, the covariance matrix Σ is finite and positive definite.
That is, all its eigenvalues are finite and larger than zero. But we can also express the
special PDFs of Section B.1.4 using Gaussian distributions, and then we get a few inter-
esting cases.

For instance, the null distribution fx (x) = γ, for a fully unknown parameter x , can
also be described though a Gaussian random variable with infinite variance. The covari-
ance matrix hence equals Σ=∞I , which we often shorten to ∞. That is, all its eigenval-
ues are infinite. If this is the case, then the value of the meanµ does not matter anymore.
We write this as x ∼N (x |∗,∞), where the star ∗ denotes an immaterial value. If we now
insert the infinite covariance matrix into the Gaussian PDF (B.59), we find that the expo-
nent becomes 0 and hence exp(. . .) = 1. However, with |Σ| =∞, we still have a PDF with
a near-zero value γ.

Similarly, the delta distribution fx (x) = δ(x−c), for a fully known parameter x = c (of-
ficially called a degenerate distribution) can be described by a Gaussian random variable
with zero variance. The covariance matrix hence equals Σ= 0I , which we often shorten
to 0. That is, all its eigenvalues are zero. We write this as x ∼ N (x |c ,0). If we insert this
into (B.59), the exponent becomes minus infinity, and we hence have exp(−∞) = 0, with
the only exception when x = c . In this case, the exponential does have a finite value. And
because |Σ| = 0, we wind up with a PDF equal to δ(x −c).

The interesting thing is that combinations of these distributions are also possible.
For instance, if Σ = diag(∞,1,0), then x1 is fully unknown, x2 has a variance of 1 and is
hence a ‘regular’ random variable, and x3 is fully certain and therefore deterministic.

But what do we do when Σ is singular, but not diagonal? In that case, the following
theorem will provide some interesting insights.

Theorem B.17. When a random variable x has a Gaussian distribution x ∼ N (µ,Σ), in
which the covariance matrix Σ is symmetric and positive semidefinite, then the random
vector x −µ cannot have a value contained in the null space of Σ.

Proof. Because Σ is real and symmetric, it follows that it is diagonalizable by an orthog-
onal matrix P . To be precise, P is a matrix whose columns equal the eigenvectors (of unit
length) of Σ, it satisfies P−1 = P T , and we have Σ= PDP T , where D is a diagonal matrix
consisting of the corresponding eigenvalues λ1, . . . ,λn of Σ along its diagonal. Without
loss of generality, we can assume that these eigenvalues are ordered in decreasing order.
So, λ1 ≥ . . . ≥λn . Our assumption that Σ is positive semidefinite implies that λn ≥ 0.

Now define the parameter y = P T (x −µ). It follows from Theorem B.13 that y is
distributed according to

y ∼N (y |0,P TΣP) =N (y |0,D). (B.88)

Because D is a diagonal matrix, it is relatively easy to imagine what the distribution of
each individual parameter y

i
looks like. For example, if λ1 (and possibly λ2, λ3, and so

on) equals infinity, then y
1

is fully uncertain and can be any value with equal probability.

Similarly, if λn (and possibly λn−1, λn−2, and so on) equals zero, then y
n

is deterministic

and has value 0.

B.4. THE GAUSSIAN DISTRIBUTION

B

263

So we see that, when Σ has an eigenvalue λ equal to zero, with multiplicity k, then
the bottom k elements of y are equal to zero. As a result, (x −µ) = P y is constrained to
the span of all eigenvectors associated with eigenvalues that are not zero. The null space
of Σ (which is the span of all eigenvectors associated with eigenvalues that are zero) can
therefore not be reached by x −µ.

Conventionally Σ is symmetric and positive definite. The above proof has shown us
that Σ can also be positive semidefinite. In that case, it has one or more eigenvalues
equal to zero, causing the random variable x to have a deterministic part. That is, x is
constrained to a certain subspace.

Finally you may wonder, is it also possible for Σ to have an eigenvalue lower than
zero? The answer is ‘Not in the conventional way.’ After all, if a scalar random variable x
has a distribution x ∼ N (x|0,−1), it would mean that E[x2] = −1. This is only possible
when x takes complex values, although then we would enter a whole new realm of math-
ematics. (When using complex random variables x = a +bi , it is usually easier to define
a joint distribution for a and b, although the theory behind that is outside the scope of
this appendix.)

Later on however, right after Theorem B.23, we will see that the idea of a negative
(semi-)definite covariance matrix can be useful in some cases. In fact, while positive
(semi-)definite covariance matrices add information about x , negative (semi-)definite
matrices subtract information (or add disinformation) about x .

B.4.6. POWER FORMS OF GAUSSIAN RANDOM VARIABLES

Suppose that x ∼N
(
µ,Σ

)
is a Gaussian random variable. A power form of x is a polyno-

mial in the elements of x . An example is xT P x , for some matrix P , which is a quadratic
power form. What can we say about the properties of such power forms?

The first thing that we can notice is that these power forms are not Gaussian. As a
counterexample, let’s define x ∼N (0,1) and consider x2. We now obviously have x2 ≥ 0,
meaning that p(x2 < 0) = 0. However, any Gaussian distribution with finite variance can
be negative. Hence, x2 cannot be Gaussian.

So what distribution is it then? That depends. A squared Gaussian parameter with
zero mean and unit variance (or a sum of such parameters) results in a χ-squared dis-
tribution. In case we use a nonzero mean, we get a noncentral χ-squared distribution,
and if we also use other covariance matrices, we wind up with a generalized noncentral
χ-squared distribution. (For further details, see Muirhead (2005).) This is a distribution
which does not have an analytic expression for its PDF.

While there is no analytic expression for the PDF of quadratic power forms of Gaus-
sian variables, the distribution at least has a name. The same cannot be said for higher
powers of Gaussian variables though. In this case, the best we can do is find the mean
of the resulting variables. We will do that here, starting with the mean of the quadratic
power forms.

While doing so, we make use of the expected squared value

Ψ≡E[
x xT]

. (B.89)

B

264 B. PROBABILITY THEORY

For a Gaussian random variable x ∼N
(
µ,Σ

)
it also equals

Ψ=Σ+µµT . (B.90)

When examining power forms, this parameterΨ is often more useful than the covariance
matrix Σ, as we can already see when looking at the next theorem.

Theorem B.18. For a Gaussian random variable x ∼N
(
µ,Σ

)
and any matrix P it holds

that
E[xT P x] = tr(ΣP)+µT Pµ= tr (ΨP) . (B.91)

Proof. To prove this, we need the trace operator. Both the trace operator and the expec-
tation operator are linear operators, and so we may interchange the order in which they
are applied. If we also use the cyclic property of the trace operator (see Theorem A.1) we
find that

E[xT P x] =E[tr
(
xT P x

)
] = tr

(
E

[
x xT P

])= tr(ΨP) = tr(ΣP)+µT Pµ. (B.92)

This concludes our proof.

Next, we will look at the mean of quartic power forms of x .

Theorem B.19. For a Gaussian random variable x ∼N
(
µ,Σ

)
and any matrices P and Q

it holds that

E[xT P x xT Qx] = tr(ΨP)tr(ΨQ)+2tr(ΨPΨQ)−2µT PµµT Qµ. (B.93)

Proof. We are going to start halfway into our proof, by introducing a theorem given
by Kendrick (1981), Appendix F. Here, the theorem is stated and proven that, for a zero
mean process y = x −µ, with covariance matrix Σ, we have

E[y T P y y T Q y] = tr(ΣP)tr(ΣQ)+2tr(ΣPΣQ). (B.94)

However, we want to know what the above expression is for x . So we write

E[xT P x xT Qx] =E[(y +µ)T P (y +µ)(y +µ)T Q(y +µ)]. (B.95)

If we work out all the brackets, we will get sixteen terms. However, y is a zero-mean Gaus-
sian, so any term which has either one or three times ‘y ’ in it will have an expectation of
zero. This causes eight terms to drop out.

For the remaining eight terms, we can find out that some of them are equal. For
instance, (y T Pµ)(y T Qµ) equals (y T Pµ)(µT Q y). Here, we have transposed the right half,
which is allowed because it is a scalar. We could have also transposed the left half, finding
something else which is equal.

As a result, we can write

E[xT P x xT Qx] =E[y T P y y T Q y + y T P yµT Qµ+µT Pµy T Q y +µT PµµT Qµ (B.96)

+2µT P y y T Qµ+2y T PµµT Q y].

B.4. THE GAUSSIAN DISTRIBUTION

B

265

Now we will introduce the trace operator. We can take the trace of an entire term (which
is a scalar), like ‘tr(y T P yµT Qµ)’, or only of half of a term (which is also a scalar) like

‘tr(y T P y)tr(µT Qµ)’. One of the results we could get is

E[xT P x xT Qx] =E[y T P y y T Q y + tr(y T P y)tr(µT Qµ)+ tr(µT Pµ)tr(y T Q y) (B.97)

+ tr(µT Pµ)tr(µT Qµ)+2tr(µT P y y T Qµ)+2tr(y T PµµT Q y)].

Next, we are going to apply (B.94). Simultaneously, we are also going to work out the
expectation operator, usingE[y y T] =Σ. We then get

E[xT P x xT Qx] =tr(ΣP)tr(ΣQ)+ tr(ΣP)tr(µµT Q)+ tr(µµT P)tr(ΣQ)+ tr(µµT P)tr(µµT Q)

+2tr(ΣPΣQ)+2tr(µµT PΣQ)+2tr(ΣPµµT Q)]. (B.98)

If you look closely, you can already see some structure appearing in the above equation.
The next step is to bring terms between brackets. (Remember that the trace operator is
a linear operator.) Doing so will give us

E[xT P x xT Qx] = tr((Σ+µµT)P)tr((Σ+µµT)Q) (B.99)

+2tr((Σ+µµT)P (Σ+µµT)Q)−2tr(µµT PµµT Q)].

We know thatΨ=Σ+µµT . This allows us to simplify the above equation, directly giving
us our final result (B.93).

We can generalize the above theorem further to the case where there are multiple
Gaussian parameters.

Theorem B.20. Consider two Gaussian random variables x and y with joint distribution[
x
y

]
∼N (µ,Σ) =N

([
µx

µy

]
,

[
Σxx Σx y

Σy x Σy y

])
(B.100)

and squared expectationΨab as Σab +µaµb
T , where the subscripts a and b can be substi-

tuted by x and/or y. For any matrices P and Q it holds that

E[xT P x y T Q y] = tr(Ψxx P)tr(Ψy yQ)+2tr(Ψy x PΨx yQ)−2µx
T Pµxµy

T Qµy . (B.101)

Proof. This theorem follows directly from Theorem B.19 when we apply it to

x ′ =
[

x
y

]
, P ′ =

[
P 0
0 0

]
and Q ′ =

[
0 0
0 Q

]
. (B.102)

For these parameters, we have

E[x ′T P ′x ′x ′T Qx ′] =E[xT P x y T Q y], (B.103)

but because of Theorem B.19, the above also equals

E[x ′T P ′x ′x ′T Qx ′] = tr(ΨP ′)tr(ΨQ ′)+2tr(ΨP ′ΨQ ′)−2µT P ′µµT Q ′µ, (B.104)

whereΨ=Σ+µµT . If we expand the above matrix equation, we directly find (B.101).

B

266 B. PROBABILITY THEORY

B.5. MANIPULATING GAUSSIAN DISTRIBUTIONS
In this section we will look at ways of manipulating Gaussian distributions. We start by
expanding the idea of merging distributions to Gaussian distributions (Section B.5.1).
Then we look at what happens when we measure linear relations of Gaussian random
variables (Section B.5.2). Finally we examine linear functions whose weights have a
Gaussian prior distribution, and how function measurements affect the distribution of
those weights (Section B.5.3).

B.5.1. MERGING GAUSSIAN DISTRIBUTIONS
In Section B.3.3 we already looked at merging distributions. We can apply these theories
to Gaussian PDFs. Suppose that we have n independent measures of x , and each of
them tells us that x has some Gaussian distribution. The following theorem tells us how
we can combine those measurements into a single posterior distribution.

Theorem B.21. Consider the case where, through n independent measurements, we have
found that the random variable x satisfies x ∼ N (x |m1,K1), . . . , x ∼ N (x |mn ,Kn). The
posterior distribution for x is now given by

f 1:n
x (x) =N (x |µ1:n ,Σ1:n), (B.105)

where the mean µ1:n and the variance Σ1:n equal

Σ1:n = (K −1
1 + . . .+K −1

n)−1, (B.106)

µ1:n =Σ1:n(K −1
1 m1 + . . .+K −1

n mn). (B.107)

Proof. This theorem can be proven by mathematical induction. For n = 1 measurements
it is trivial that it holds: if we only know that x ∼ N (x |m1,K1), then this directly is the
posterior distribution of x . So now assume that this theorem holds for n − 1 measure-
ments. We hence have as posterior distribution for the first n −1 measurements

f 1:(n−1)
x (x) =N (x |µ1:(n−1),Σ1:(n−1)), (B.108)

where we have

Σ1:(n−1) = (K −1
1 + . . .+K −1

n−1)−1, (B.109)

µ1:(n−1) =Σ1:(n−1)(K −1
1 m1 + . . .+K −1

n−1mn−1). (B.110)

If we add measurement n, then Theorem B.9 tells us that the posterior distribution sat-
isfies

f 1:n
x (x) =

f 1:(n−1)
x (x) f n

x (x)∫
X f 1:(n−1)

x (x ′) f n
x (x ′)d x ′ (B.111)

= N (x |µ1:(n−1),Σ1:(n−1))N (x |mn ,Kn)∫
X N (x ′|µ1:(n−1),Σ1:(n−1))N (x ′|mn ,Kn)d x ′ .

Theorem A.13 now also tells us that

N
(
x |µ1:(n−1),Σ1:(n−1)

)
N (x |mn ,Kn) =CN (x |µ1:n ,Σ1:n), (B.112)

B.5. MANIPULATING GAUSSIAN DISTRIBUTIONS

B

267

where C is a constant not depending on x , while µ1:n and Σ1:n are given by

Σ1:n = (
Σ−1

1:(n−1) +K −1
n

)−1
(B.113)

= (
K −1

1 + . . .+K −1
n

)−1
,

µ1:n =Σ1:n
(
Σ−1

1:(n−1)µ1:(n−1) +K −1
n mn

)
(B.114)

=Σ1:n
(
Σ−1

1:(n−1)

(
Σ1:(n−1)

(
K −1

1 m1 + . . .+K −1
n−1mn−1

))+K −1
n mn

)
=Σ1:n

(
K −1

1 m1 + . . .+K −1
n mn

)
.

It follows that

f 1:n
x (x) = C∫

X CN (x ′|µ1:n ,Σ1:n)d x ′ N (x |µ1:n ,Σ1:n). (B.115)

We only still need to solve the integral. If we pull C out of the integral, then this integral
is an integral over a Gaussian PDF. According to (B.62) this equals 1 and hence drops out.
Therefore, the posterior distribution after combining n measurements is

f 1:n
x (x) =N (x |µ1:n ,Σ1:n), (B.116)

which proves this theorem by induction.

Note that, using the notation introduced in Section B.3.3, we can write

N
(
µ1:n ,Σ1:n

)=N (m1,K1)⊕N (m2,K2)⊕ . . .⊕N (mn ,Kn) . (B.117)

While the above theorem tells us what to do when we have multiple distributions for
the full vector x , we sometimes may measure only a part of the vector x . What happens
then? The following theorem explains it.

Theorem B.22. Consider two Gaussian random variables x a and xb with joint (prior)
distribution[

x a
xb

]
= x a,b ∼N (xa,b |µa,b ,Σa,b) =N

([
xa

xb

]∣∣∣[ma

mb

]
,

[
Kaa Kab

Kba Kbb

])
. (B.118)

If we, through some independently performed set of measurements, also find that x a has
as distribution x a ∼N (xa |µ̂, Σ̂), we have as posterior distribution for x a,b

x a,b ∼N (xa,b |µa,b ,Σa,b), (B.119)

Σa,b =
[
Σaa Σab

Σba Σbb

]
=

[
Kaa −Kaa(Kaa + Σ̂)−1Kaa Kab −Kaa(Kaa + Σ̂)−1Kab

Kba −Kba(Kaa + Σ̂)−1Kaa Σbb −Kba(Kaa + Σ̂)−1Kab

]
=

[
Kaa(Kaa + Σ̂)−1Σ̂ Σ̂(Kaa + Σ̂)−1Kab

Kba(Σaa + Σ̂)−1Σ̂ Kbb −Kba(Kaa + Σ̂)−1Kab

]
,

µa,b =
[
µa

µb

]
=

[
ma +Kaa(Kaa + Σ̂)−1

(
µ̂−ma

)
mb +Kba(Kaa + Σ̂)−1

(
µ̂−ma

)]
=

[
Σaa

(
K −1

aa ma + Σ̂−1µ̂
)

mb +Kba(Kaa + Σ̂)−1
(
µ̂−ma

)] .

B

268 B. PROBABILITY THEORY

Proof. We will prove this by merging distributions. We have two distributions for x a,b .
The first one is the prior distribution (B.118). The second one is the measured distribu-
tion x a ∼N (xa |µ̂, Σ̂). This second distribution tells us nothing about xb . As a result, we
can also write this second distribution as[

x a
xb

]
= x a,b ∼N (xa,b |µ̂a,b , Σ̂a,b) =N

([
xa

xb

]∣∣∣[µ̂∗
]

,

[
Σ̂ ∗
∗ ∞

])
. (B.120)

The ∗ in the above expression indicates a value which is immaterial, since it will drop
out of our equations anyway.

If we now merge the prior distribution with this measurement distribution using
Theorem B.21, we should in theory immediately find our desired result

x a,b ∼N (x |µa,b ,Σa,b), (B.121)

The idea behind the method is nice and intuitive. Now let’s look at the math.
We start with the posterior covariance matrix Σa,b . We can calculate it through

Σa,b =
(
K −1

a,b + Σ̂−1
a,b

)−1 =
([

Kaa Kab

Kba Kbb

]−1

+
[
Σ̂ ∗
∗ ∞

]−1
)−1

. (B.122)

Using either result of Theorem A.11, this directly turns into either of the two expressions
of Σa,b from (B.119).

Finding the posterior mean µa,b is a somewhat more involved process. We have

µa,b =
(
K −1

a,b + Σ̂−1
a,b

)−1 (
K −1

a,b ma,b + Σ̂−1
a,bµ̂a,b

)
(B.123)

=
(
K −1

a,b + Σ̂−1
a,b

)−1 ((
K −1

a,b + Σ̂−1
a,b

)
ma,b + Σ̂−1

a,bµ̂a,b − Σ̂−1
a,b ma,b

)
= ma,b +

(
K −1

a,b + Σ̂−1
a,b

)−1
Σ̂−1

a,b

(
µ̂a,b −ma,b

)
= ma,b +Ka,b

(
Ka,b + Σ̂a,b

)−1 (
µ̂a,b −ma,b

)
,

where in the last part we have used the matrix relation
(
P−1 +Q−1

)−1 = P (P +Q)−1 Q.
The above relation now directly proves the first expression of µa,b . To prove the second,
we rewrite the top term of the vector µa,b to

ma +Kaa
(
Kaa + Σ̂

)−1 (
µ̂−ma

)= (
Kaa + Σ̂

)(
Kaa + Σ̂

)−1
ma +Kaa(Kaa + Σ̂)−1 (

µ̂−ma
)

= Σ̂(
Kaa + Σ̂

)−1
ma +Kaa(Kaa + Σ̂)−1µ̂ (B.124)

= (
K −1

aa + Σ̂−1)−1 (
K −1

aa ma + Σ̂−1µ̂
)

,

which in turn equals the second expression of µa,b .

The result we have found here is actually not very surprising. First of all, we see
that the posterior distribution of x a is just the merged distribution of N (ma ,Kaa) and
N

(
µ̂, Σ̂

)
. It is equal to what it would have been if xb did not exist. This makes sense,

B.5. MANIPULATING GAUSSIAN DISTRIBUTIONS

B

269

because we did not get any additional information about xb . We have only done mea-
surements on x a . Secondly, the posterior distribution for xb equals what we already
found at Theorem B.16. The result we have found here is a bit more powerful though,
because it also gives us the joint posterior distribution of x a and xb .

Next, in addition to merging distributions, we can also unmerge distributions. Sup-
pose that we know the merged distribution of n distributions, but suddenly we find that
the last distribution n was actually incorrectly obtained. How do we take it out of the
resulting distribution? That’s what the following theorem states.

Theorem B.23. Consider the case where, after n independent measurements of x , we have
a posterior distribution of

x ∼N (x |µ1:n ,Σ1:n). (B.125)

If we want to take out the effects of measurement n, which claimed that x was distributed
according to x ∼N (x |mn ,Kn), then this can be done through

Σ1:(n−1) =
(
Σ−1

1:n −K −1
n

)−1
, (B.126)

µ1:(n−1) =Σ1:(n−1)
(
Σ−1

1:nµ1:n −K −1
n mn

)
. (B.127)

Proof. This can be proven directly by applying Theorem B.21. From this theorem, we
first of all know that the variance satisfies

Σ1:n = (Σ−1
1:(n−1) +K −1

n)−1, (B.128)

which directly implies that
Σ1:(n−1) = (Σ−1

1:n −K −1
n)−1. (B.129)

Theorem B.21 also tells us that the mean equals

µ1:n =Σ1:n(K −1
1 m1 + . . .+K −1

n mn) (B.130)

For n −1 distributions this can be written as

µ1:(n−1) =Σ1:(n−1)(K −1
1 m1 + . . .+K −1

n−1mn−1) (B.131)

=Σ1:(n−1)
(
Σ−1

1:nΣ1:n(K −1
1 m1 + . . .+K −1

n−1mn−1 +K −1
n mn)−K −1

n mn
)

=Σ1:(n−1)
(
Σ−1

1:nµ1:n −K −1
n mn

)
.

This completes the proof of this theorem.

For unmerging we use the symbol ª. Hence we have

N
(
µ1:(n−1),Σ1:(n−1)

)=N
(
µ1:n ,Σ1:n

)ªN (mn ,Kn) . (B.132)

The above theorem might not be very surprising, but it does tell us an interesting
fact if we compare it with Theorem B.21. The difference between these two theorems
is that, to add/merge a distribution, we need to use the covariance matrix Kn , while to
subtract/unmerge a distribution, we need to use the matrix −Kn . The minus sign is the
only difference! Hence, we have

N (ma ,Ka)ªN (mb ,Kb) =N (ma ,Ka)⊕N (mb ,−Kb) . (B.133)

B

270 B. PROBABILITY THEORY

From this, we can conclude that, while a positive (semi-)definite covariance matrix gives
additional information about the distribution, a negative (semi-)definite covariance ma-
trix gives disinformation/subtracts information. It basically gives us a distribution on
what x is not, although this is a rather abstract concept.

A final thing which we can wonder is ‘What does a covariance matrix with both pos-
itive and negative eigenvalues mean?’ In this case, the positive eigenvalues add infor-
mation about the distribution in some part of the input space, while the negative eigen-
values remove information in their respective parts of the input space. Even though I
do not directly see any sensible application of a covariance matrix like this, it is at least
fascinating to ponder about.

B.5.2. MEASURING LINEAR RELATIONS OF GAUSSIAN VARIABLES
Suppose that we have a random variable x with a certain prior Gaussian distribution
N (µ,Σ). If we would measure x directly, we already know how to process these mea-
surements.

But now suppose that we only measure a linear relation of the elements of x . That is,
our measurement tells us that M x = c for some matrix M . Here, we assume that M has
relatively few rows, but all rows are linearly independent. So M is of full row rank.

Next, we make the problem a bit more complicated. Let’s suppose that we do not
know c exactly because of measurement noise v ∼ N

(
0, Σ̂c

)
. So the measurement ĉ

which we get is not fully accurate. What does this measurement now tell us about the
posterior distribution of x?

The next theorem teaches us a trick with which we can solve this problem, and after-
wards in Theorem B.25 will we actually solve it.

Theorem B.24. Consider the equation M x = c , where the m ×n matrix M is of full row
rank. It is now possible to set up a matrix T = [

Ta Tb
]

such that

x ′ =
[

x ′
a

x ′
b

]
=

[
M
T T

b

]
x = T −1x , (B.134)

with x ′
a fully set as c and x ′

b subject to no constraints whatsoever.

Proof. The key here is to transform x into x ′ = T −1x , choosing T such that x ′
a = c and x ′

b
is free. So how do we do that?

We know that x = T x ′, so the equation M x = c tells us that MT x ′ = c . To get the
appropriate split of x ′, we want to have MT = [

I 0
]
. In other words, if we write T =[

Ta Tb
]
, then we should have MTa = I and MTb = 0.

Let’s take a closer look at these requirements. MTb = 0 requires the n −m columns
of Tb to be in the null space of M . (This is the space of all vectors z satisfying M z = 0.)
But within this requirement, there is still some freedom for us. Using this freedom, we
want to choose a set of n−m linearly independent orthogonal vectors of length 1, which
together span the null space of M , and set these as the columns of Tb . When we do, we
not only have MTb = 0, but also T T

b Tb = I .
We also have some freedom when choosing Ta . Because we have assumed that M is

of full row rank, some matrix Ta satisfying MTa = I must exist. If we now also make sure

B.5. MANIPULATING GAUSSIAN DISTRIBUTIONS

B

271

that the columns of Ta are orthogonal to the null space of M , then Ta satisfies T T
b Ta = 0

as well.
Next, we want to find T −1. This is (per definition) the matrix which satisfies T −1T = I .

We can directly see that

T −1 =
[

M
T T

b

]
(B.135)

satisfies this condition. So now we have confirmed every part of (B.134).

Theorem B.25. Consider a random variable x with prior distribution x ∼ N (m,K). If
additional measurements have told us that M x = c , where c ∼N

(
µc ,Σc

)
is independent

of x , then the posterior distribution of x is given by

x ∼N
(
µ,Σ

)
, (B.136)

Σ= K −K M T (
MK M T +Σc

)−1
MK ,

µ= m +K M T (
MK M T +Σc

)−1 (
µc −Mm

)
.

Proof. The key to proving this is to apply the transformation from Theorem B.24. That
is, we have x ′ = T −1x and will apply the merging of distributions for x ′.

Using Theorem B.13, we can find that the prior of x ′ equals

x ′ ∼N
(
T −1m,T −1K T −T)=N

([
Mm
T T

b m

]
,

[
MK M T MK Tb

T T
b K M T T T

b K Tb

])
. (B.137)

Our measurement has told us that x ′
a = M x = c , while x ′

b = T T
b x is still fully unknown.

In other words, the measurement has given us the distribution

x ′ ∼N

([
µc

∗
]

,

[
Σc ∗
∗ ∞

])
. (B.138)

We now want to merge these two distributions. We could do so using Theorem B.21,
although using Theorem B.22 gives us the outcome directly. Using the first expressions
for both the mean and the covariance, we find that

x ′ ∼N
(
µ′,Σ′) (B.139)

Σ′ =
[

MK M T −MK M T
(
MK M T +Σc

)−1
MK M T MK Tb −MK M T

(
MK M T +Σc

)−1
MK Tb

T T
b K M T −T T

b K M T
(
MK M T +Σc

)−1
MK M T T T

b K Tb −T T
b K M T

(
MK M T +Σc

)−1
MK Tb

]
= T −1

(
K −K M T (

MK M T +Σc
)−1

MK
)

T −T ,

µ′ =
[

Mm +MK M T
(
MK M T +Σc

)−1 (
µc −Mm

)
T T

b m +T T
b K M T

(
MK M T +Σc

)−1 (
µc −Mm

)]
= T −1

(
m +K M T (

MK M T +Σc
)−1 (

µc −Mm
))

.

This is the posterior distribution of x ′. Note that, because c = x ′
a , we now have actually

found the posterior distribution of c as well.

B

272 B. PROBABILITY THEORY

However, we do not want the posterior distribution of x ′. We want the posterior dis-
tribution of x . To find this, we apply the inverse transformation according to

x = T x ′ ∼N
(
Tµ′,TΣ′T T)=N

(
µ,Σ

)
, (B.140)

Σ= K −K M T (
MK M T +Σc

)−1
MK ,

µ= m +K M T (
MK M T +Σc

)−1 (
µc −Mm

)
.

Note that both Ta and Tb have dropped out of the equations entirely, meaning we do not
even have to find them. Knowing M is sufficient.

Next, suppose that we have two random vectors x a and xb with a joint distribution. If
we now know that M x a = c , can we then also say something about xb ? That is explained
by the next theorem.

Theorem B.26. Consider the two random variables x a and xb with joint Gaussian distri-
bution

x =
[

x a
xb

]
∼N

([
ma

mb

]
,

[
Kaa Kab

Kba Kbb

])
. (B.141)

If we know that M x a = c ∼N
(
µc ,Σc

)
, then the posterior distribution of x is given by

x ∼N
(
µ,Σ

)
, (B.142)

Σ=
[

Kaa Kab

Kba Kbb

]
−

[
Kaa

Kba

]
M T (

MKaa M T +Σc
)−1

M
[
Kaa Kab

]
,

µ=
[

ma

mb

]
+

[
Kaa

Kba

]
M T (

MKaa M T +Σc
)−1 (

µc −Mma
)

.

Proof. The key to proving this is to define N = [
M 0

]
. Now we have N x = c and we can

directly apply Theorem B.25. That is,

x ∼N
(
µ,Σ

)
, (B.143)

Σ=
[

Kaa Kab

Kba Kbb

]
−

[
Kaa Kab

Kba Kbb

][
M T

0

]([
M 0

][
Kaa Kab

Kba Kbb

][
M T

0

]
+Σc

)−1 [
M 0

][
Kaa Kab

Kba Kbb

]
,

µ=
[

ma

mb

]
+

[
Kaa Kab

Kba Kbb

][
M T

0

]([
M 0

][
Kaa Kab

Kba Kbb

][
M T

0

]
+Σc

)−1 (
µc −

[
M 0

][
ma

mb

])
.

By expanding the N matrices in the above expression, we directly get (B.142).

It is interesting to note here that (B.142) is a generalization of (B.119). Setting M to I
will directly reduce (B.142) back to (B.119).

B.5.3. LINEAR FUNCTIONS WITH GAUSSIAN WEIGHTS

Consider the linear function f (x) = w T x , where the weights are unknown. If we do mea-
surements of this function, we can learn more about the distribution of the weights w .
In fact, when the weights have a prior distribution which is Gaussian, their posterior
distribution will be Gaussian too. The following theorem tells us how we can find it.

B.5. MANIPULATING GAUSSIAN DISTRIBUTIONS

B

273

Theorem B.27. Consider the linear function f (x) = w T x = xT w , where the weights w
have as prior distribution w ∼ N (mw ,Kw). Suppose that, at the input points Xm =[

xm1 , . . . , xmnm

]
, the function values have been measured. After corruption by noise ν ∼

N (0, Σ̂ f), the measured function values were f̂m = [
f̂m1 . . . f̂mnm

]T
. The posterior dis-

tribution of w now equals

w ∼N
(
µw ,Σw

)
, (B.144)

Σw =
(

XmΣ̂
−1
f X T

m +K −1
w

)−1
,

µw =Σw

(
XmΣ̂

−1
f f̂m +K −1

w mw

)
.

Proof. According to Bayes’ theorem, we have

p(w | f̂m , Xm) = p(f̂m |w , Xm)p(w |Xm)

p(f̂m |Xm)
. (B.145)

The first probability p(f̂m |w , Xm) in the fraction represents the probability that, given
that the weights w actually equal w , we happened to wind up with the measurements

f̂m . To calculate it, we should keep in mind that, when the weights w are known deter-
ministically, then the output of the function f (x) is fully determined as f

m
= X T

m w . So

the output f̂m that we measure only varies due to noise. We hence have

p(f̂m |w , Xm) =N
(

f̂m |X T
m w , Σ̂ f

)
. (B.146)

The second probability p(w |Xm) is the probability that we got weights w , given the mea-
surement points Xm . However, the position of the measurement points alone does not
tell us anything about the weights w . As such, this probability equals p(w) =N (w |mw ,Kw).
It is the prior distribution of the weights.

Finally, the third probability p(f̂m |Xm) does not depend on w at all. It is hence a
constant.

Now it is time to dive into the mathematics. We know that p(w | f̂m , Xm) is the product
of two Gaussian PDFs. It is hence also a PDF. This means that we can ignore multiplying
constants. After all, the constant is only present to ensure that the integral over the PDF
equals one. As a result, we can write

p(w | f̂m , Xm) ∝ exp

(
−1

2

(
f̂m −X T

m w
)T
Σ̂−1

f

(
f̂m −X T

m w
))

exp

(
−1

2
(w −mw)T K −1

w (w −mw)

)
= exp

(
− 1

2

(
w T XmΣ̂

−1
f X T

m w −w T XmΣ̂
−1
f f̂m − f̂m

T
Σ̂−1

f X T
m w + f̂m

T
Σ̂−1

f f̂m (B.147)

+w T K −1
w w −w T K −1

w mw −mw
T K −1

w w +mw
T K −1

w mw
))

.

We want to write this as a single Gaussian PDF. So we want to have

p(w | f̂m , Xm) ∝ exp

(
−1

2

(
w −µw

)T
Σ−1

w

(
w −µw

))
(B.148)

= exp

(
−1

2

(
w TΣ−1

w w −w TΣ−1
w µw −µw

TΣ−1
w w +µw

TΣ−1
w µw

))

B

274 B. PROBABILITY THEORY

for some posterior mean µw and covariance Σw . We can now see right away that

Σw =
(

XmΣ̂
−1
f X T

m +K −1
w

)−1
. (B.149)

And because we have w TΣ−1
w µw = w T XmΣ̂

−1
f f̂m +w T K −1

w mw , we also have

µw =Σw

(
XmΣ̂

−1
f f̂m +K −1

w mw

)
. (B.150)

All the remaining terms from the exponential do not depend on w and are hence con-
stants which we can ignore. So we have completed the proof.

We can extend the above theorem by bringing in the ideas of Section B.5.2. That is,
we assume that we only measure a linear relation of the elements of x . In that case we
get the following theorem.

Theorem B.28. Consider the linear function f (x) = w T x , where the weights w have as
prior distribution w ∼ N (0,Kw). Denote the set of input points by Xm = [

xm1 , . . . , xmnm

]
and the corresponding function values by f

m
= f (Xm). Suppose that we have measured

c = M f
m

for some known matrix M. After corruption by noise v ∼ N
(
0, Σ̂c

)
, our mea-

surement gives us the vector ĉ . The posterior distribution of w now equals

w ∼N
(
µw ,Σw

)
, (B.151)

Σw =
(

Xm M T Σ̂−1
f M X T

m +K −1
w

)−1
,

µw =Σw
(
Xm M T Σ̂−1

c ĉm +K −1
w mw

)
.

Proof. The only difference with respect to Theorem B.27 is that we now do not measure
f

m
= X T

m w but c = M f
m

= M X T
m w . Hence, if we replace X T

m by M X T
m , f̂m by ĉ and

Σ̂ f by Σ̂c , then we get exactly the same problem. Making this substitution turns (B.144)
into (B.151).

B.6. CONDITIONALLY INDEPENDENT GAUSSIAN VARIABLES
In this section we will examine the concept of conditional independence. How is it de-
fined and what does it imply?

We will start with the basic ideas and implications of two conditionally independent
vectors (Section B.6.1). Then we examine what changes when elements within a vector
are also conditionally independent with respect to each other (Section B.6.2). We gener-
alize this idea to when parts of a vector (that is, small groups of elements) are condition-
ally independent with each other (Section B.6.3). Finally, we look into methods through
which we can update the posterior distribution of random vectors when we add a single
conditionally independent element or group of elements (Section B.6.4).

B.6.1. CONDITIONAL INDEPENDENCE OF RANDOM VECTORS
We know that two random variables x a and xb are independent if and only if they sat-
isfy (B.11). We also know from Theorem B.6 that the covariance V

[
x a , xb

]
of two inde-

pendent variables equals zero. Since Gaussian distributions are completely specified by

B.6. CONDITIONALLY INDEPENDENT GAUSSIAN VARIABLES

B

275

their mean and covariance, it follows that for Gaussian distributions the converse also
holds: ifV

[
x a , xb

]= 0, then x a and xb are independent.
Now we are going to introduce a concept which is similar. We say that two variables

x a and xc are conditionally independent given xb if and only if

fx a ,xc |xb=xb (xa , xc) = fx a |xb=xb (xa) fxc |xb=xb (xc). (B.152)

We will only apply this idea to Gaussian random variables, so let’s take a look at what this
conditional independence implies for the covarianceV

[
x a , xc

]
of Gaussian variables.

Theorem B.29. Consider the Gaussian random variables x a , xb and xc with joint distri-
bution

x a,b,c =
x a

xb
xc

∼N

ma

mb

mc

 ,

Kaa Kab Kac

Kba Kbb Kbc

Kca Kcb Kcc

 . (B.153)

The variables x a and xc are conditionally independent given xb if and only if Kac =
KabK −1

bb Kbc .

Proof. Our starting point is Theorem B.15. It tells us that

x a |xb = xb ∼N
(
xa |ma +KabK −1

bb (xb −mb) ,Kaa −KabK −1
bb Kba

)
, (B.154)

xc |xb = xb ∼N
(
xc |mc +KcbK −1

bb (xb −mb) ,Kcc −KcbK −1
bb Kbc

)
. (B.155)

Similarly, if we consider x a and xc together, we get[
x a
xc

]
|(xb = xb

)∼N

([
xa

xc

]∣∣∣∣[ma

mc

]
+

[
Kab

Kcb

]
K −1

bb (xb −mb) , (B.156)[
Kaa Kac

Kca Kcc

]
−

[
Kab

Kcb

]
K −1

bb

[
Kba Kbc

])
=N

([
xa

xc

]∣∣∣∣[ma −KabK −1
bb (xb −mb)

mc −KcbK −1
bb (xb −mb)

]
,

[
Kaa −KabK −1

bb Kba Kac −KabK −1
bb Kbc

Kca −KcbK −1
bb Kba Kcc −KcbK −1

bb Kbc

])
.

From this we can see that (B.152) holds for all xa and xc if and only if Kac = KabK −1
bb Kbc ,

completing the proof.

In other words, if we assume that x a and xc are conditionally independent given xb ,
we are effectively assuming that Kac = KabK −1

bb Kbc .
What does conditional independence mean from an intuitive point of view though?

We know that, if we have found xb deterministically, then x a and xc are independent.
Extra information about x a will not tell us anything about the distribution of xc and vice
versa.

If xb is not known yet, then extra information about x a can tell us something about
xc . These two random variables are not independent after all; only conditionally inde-
pendent. So let’s do a measurement of x a and see how this affects the posterior dis-
tribution of all the variables. Or in other words, how is Theorem B.22 affected by the
assumption of conditional independence?

B

276 B. PROBABILITY THEORY

Theorem B.30. Consider the Gaussian random variables x a , xb and xc with joint prior
distribution

x a,b,c =
x a

xb
xc

∼N

ma

mb

mc

 ,

Kaa Kab Kac

Kba Kbb Kbc

Kca Kcb Kcc

 . (B.157)

We assume that x a and xc are conditionally independent given xb . If we, through some
independently performed set of measurements, also find that x a has as distribution x a ∼
N

(
xa |µ̂, Σ̂

)
, we have as posterior distribution for x a,b

x a,b ∼N (xa,b |µa,b ,Σa,b), (B.158)

Σa,b =
[
Σaa Σab

Σba Σbb

]
=

[
Kaa(Kaa + Σ̂)−1Σ̂ Σ̂(Kaa + Σ̂)−1Kab

Kba(Kaa + Σ̂)−1Σ̂ Kbb −Kba(Kaa + Σ̂)−1Kab

]
,

µa,b =
[
µa

µb

]
=

[
Σaa

(
K −1

aa ma + Σ̂−1µ̂
)

mb +Kba(Kaa + Σ̂)−1
(
µ̂−ma

)] .

After this, the posterior distribution of xb,c can be derived using only the posterior distri-
bution of xb . It equals

xb,c ∼N
(
xb,c |µb,c ,Σb,c

)
, (B.159)

Σb,c =
[
Σbb Σbc

Σcb Σcc

]
=

[
Σbb ΣbbK −1

bb Kbc

KcbK −1
bb Σbb Kcc −KcbK −1

bb (Kbb −Σbb)K −1
bb Kbc

]
,

µb,c =
[
µb

µc

]
=

[
µb

mc +KcbK −1
bb

(
µb −mb

)] .

Proof. We should note that the first expression (B.158) directly follows from Theorem B.22.
In fact, it equals (B.119). The second expression (B.159) is a different story though.

We will start our proof of (B.159) with the covariance matrix. If we use Theorem B.22,
taking only the bottom right element of the covariance matrix from (B.119) but applying
it to xb,c , we find that[

Σbb Σbc

Σcb Σcc

]
=

[
Kbb Kbc

Kcb Kcc

]
−

[
Kba

Kca

](
Kaa + Σ̂

)−1 [
Kab Kac

]
(B.160)

=
[

Kbb −Kba
(
Kaa + Σ̂

)−1
Kab Kbc −Kba

(
Kaa + Σ̂

)−1
Kac

Kcb −Kca
(
Kaa + Σ̂

)−1
Kab Kcc −Kca

(
Kaa + Σ̂

)−1
Kac

]
.

We should keep in mind that (B.159) does not contain any term related to x a . To obtain
such a relation, we have to use the assumption of conditional independence and apply
Kac = KabK −1

bb Kbc from Theorem B.29.
We will do so for each term in the matrix individually. First of all, we note that the top

left term equals Σbb , which we already knew. The top right term becomes

Σbc = Kbc −Kba
(
Kaa + Σ̂

)−1
KabK −1

bb Kbc (B.161)

=
(
Kbb −Kba

(
Kaa + Σ̂

)−1
Kab

)
K −1

bb Kbc

=ΣbbK −1
bb Kbc .

B.6. CONDITIONALLY INDEPENDENT GAUSSIAN VARIABLES

B

277

The bottom left term Σcb is simply the transpose of Σbc . (Note that all involved matrices
are symmetric.) Finally, the bottom right term equals

Σcc = Kcc −KcbK −1
bb Kba

(
Kaa + Σ̂

)−1
KabK −1

bb Kbc (B.162)

= Kcc −KcbK −1
bb (Kbb −Σbb)K −1

bb Kbc .

That leaves us with the mean µb,c . Theorem B.22 tells us that it equals[
µb

µc

]
=

[
mb

mc

]
+

[
Kba

Kca

]
(Kaa + Σ̂)−1 (

µ̂−ma
)

. (B.163)

The top term now directly equals µb , which again confirms what we already knew. The
bottom term can be rewritten to

µc = mc +Kca(Kaa + Σ̂)−1 (
µ̂−ma

)
(B.164)

= mc +KcbK −1
bb Kba(Kaa + Σ̂)−1 (

µ̂−ma
)

= mc +KcbK −1
bb

(
µb −mb

)
.

And with this term we have completed the proof.

The above theorem is useful, because it allows us to calculate xc in steps. First we
use our measurement of x a to calculate the posterior distribution of xb . Then we can
discard all data concerning x a , because knowing the posterior distribution of xb is suf-
ficient to calculate the posterior distribution of xc . In fact, that is the whole idea behind
conditional independence. What it effectively comes down to, is that x a and xc can only
‘exchange information’ through xb .

There is also an alternative view on the above theorem. We can also derive it through
merging distributions. The following theorem explains how this works.

Theorem B.31. The following merging of the prior and measured distributions

N

([
ma

mb

]
,

[
Kaa Kab

Kba Kbb

])
⊕N

([
µ̂

∗
]

,

[
Σ̂ ∗
∗ ∞

])
(B.165)

results in (B.158), while the following merging of the prior distribution of xb,c and poste-
rior distribution of xb and unmerging of the prior distribution of xb

N

([
mb

mc

]
,

[
Kbb Kbc

Kcb Kcc

])
⊕N

([
µb

∗
]

,

[
Σbb ∗
∗ ∞

])
ªN

([
mb

∗
]

,

[
Kbb ∗
∗ ∞

])
(B.166)

results in (B.159).

Proof. The first of these two claims is trivial. The reason is that (B.158) followed from
Theorem B.22 which was proven by merging these exact distributions and working out
the results. So the proof is identical to the proof of Theorem B.22.

For the second claim, we need some more mathematics. It helps if we first resolve
the unmerge ª sign. Let’s define its resolution as

N
(
µ̄b , Σ̄bb

)≡N
(
µb ,Σbb

)ªN (mb ,Kbb) (B.167)

=N
((
Σ−1

bb −K −1
bb

)−1 (
Σ−1

bbµb −K −1
bb mb

)
,
(
Σ−1

bb −K −1
bb

)−1
)

.

B

278 B. PROBABILITY THEORY

Next, we merge this together with the prior distribution of xb,c , while applying Theo-
rem B.22. As covariance matrix, we now get[

Σbb Σbc

Σcb Σcc

]
=

[
Kbb

(
Kbb + Σ̄bb

)−1
Σ̄bb Σ̄bb

(
Kbb + Σ̄bb

)−1
Kbc

Kcb
(
Kbb + Σ̄bb

)−1
Σ̄bb Kcc −Kcb

(
Kbb + Σ̄bb

)−1
Kbc

]
. (B.168)

All of the terms in the matrix contain
(
Kbb + Σ̄bb

)−1
. So to rewrite this, it helps if we use

definition (B.167) of Σ̄bb to find that(
Kbb + Σ̄bb

)−1 = K −1
bb

(
K −1

bb + Σ̄−1
bb

)−1
Σ̄−1

bb (B.169)

= K −1
bb

(
K −1

bb +Σ−1
bb −K −1

bb

)−1
Σ̄−1

bb

= K −1
bb ΣbbΣ̄

−1
bb

= K −1
bb Σbb

(
Σ−1

bb −K −1
bb

)
= K −1

bb (Kbb −Σbb)K −1
bb .

By cleverly inserting the right lines from (B.169) (or their transposes) into (B.168), we can
turn it into[

Σbb Σbc

Σcb Σcc

]
=

[
Σbb ΣbbK −1

bb Kbc

KcbK −1
bb Σbb Kcc −KcbK −1

bb (Kbb −Σbb)K −1
bb Kbc

]
, (B.170)

which equals the covariance from (B.159). Evaluating the mean is done similarly. Theo-
rem B.22 tells us that [

µb

µc

]
=

[
mb +Kbb

(
Kbb + Σ̄bb

)−1 (
µ̄b −mb

)
mc +Kcb

(
Kbb + Σ̄bb

)−1 (
µ̄b −mb

)] . (B.171)

The common term in both of the above vector elements is
(
Kbb + Σ̄bb

)−1 (
µ̄b −mb

)
. By

using definition (B.167) of µ̄b and by using the third line of (B.169), we can write this as(
Kbb + Σ̄bb

)−1 (
µ̄b −mb

)= K −1
bb ΣbbΣ̄

−1
bb

(
Σ̄bb

(
Σ−1

bbµb −K −1
bb mb

)−mb
)

(B.172)

= K −1
bb

(
µb −Σbb

(
K −1

bb mb + Σ̄−1
bb mb

))
= K −1

bb

(
µb −mb

)
.

Using this result will turn (B.171) into[
µb

µc

]
=

[
µb

mc +KcbK −1
bb

(
µb −mb

)] , (B.173)

which equals the mean from (B.159). This shows that this merging of distributions gives
exactly the same result and is hence equivalent.

The above theorem tells us that, by merging the distributions according to the de-
scribed method, we silently also assume that x a and xc are conditionally independent
given xb . This happens when we only use the posterior distribution of xb (ignoring our
data about x a) to predict the posterior distribution of xc .

B.6. CONDITIONALLY INDEPENDENT GAUSSIAN VARIABLES

B

279

B.6.2. CONDITIONAL INDEPENDENCE BETWEEN VECTOR ELEMENTS
Previously we have assumed that x a and xc is conditionally independent given xb . We
can take that one step further by assuming that every element of x a is also conditionally
independent with respect to each other (and still with respect to xc) given xb . In other
words, we assume that

fx a ,xc |xb=xb (xa , xc) = fxa1
|xb=xb (xa1) . . . fxana

|xb=xb (xana
) fxc |xb=xb (xc), (B.174)

where xa1
, . . . , xan

are the elements of x a and na denotes the size of x a . According to
Theorem B.29, for Gaussian variables this assumption is equivalent to assuming that

Kai a j = Kai bK −1
bb Kba j (B.175)

for i 6= j . So the non-diagonal elements of Kaa are assumed to satisfy the above rela-
tion, while the non-diagonal elements of Kaa remain what they were. In other words, we
assume that Kaa equals

Kaa = KabK −1
bb Kba +diag

(
Kaa −KabK −1

bb Kba
)= KabK −1

bb Kba +Λaa , (B.176)

where we have defined the diagonal matrixΛaa as

Λaa ≡ diag
(
Kaa −KabK −1

bb Kba
)

. (B.177)

Note that the above is the formal definition, but our assumptions also imply that

Λaa = Kaa −KabK −1
bb Kba . (B.178)

As such, we use the notation thatΛpq = Kpq −KpbK −1
bb Kbq , for any sensible subscripts p

and q .
The matrix Λaa also has an intuitive meaning. We know that, if xb is known deter-

ministically, then the remaining variance of x a will equalΛaa = Kaa−KabK −1
bb Kba . In this

expression, Kaa can be seen as ‘The structure which a priori is present within x a ,’ while
the intuitive meaning of KabK −1

bb Kba is ‘The structure within x a which can be explained
using knowledge from xb .’ As such, Λaa can be seen as ‘The part within the distribu-
tion of x a which can never be explained using knowledge from xb .’ Normally the matrix
Kaa−KabK −1

bb Kba is not necessarily diagonal, but if we assume that all elements of x a are
conditionally independent given xb , thenΛaa does become diagonal.

Subject to these extra assumptions, we can rederive the previous couple of theorems
from Section B.6.1. We start with an equivalent version to Theorem B.30.

Theorem B.32. Consider the assumptions of Theorem B.30. When we additionally as-
sume that all elements of x a are conditionally independent given xb , the posterior distri-
bution of x a,b becomes

x a,b ∼N (xa,b |µa,b ,Σa,b), (B.179)[
Σaa Σab

Σba Σbb

]
=

[((
KabK −1

bb Kba +Λaa
)−1 + Σ̂−1

)−1
Σ̂

(
KabK −1

bb Kba +Λaa + Σ̂
)−1

Kab

Kba
(
KabK −1

bb Kba +Λaa + Σ̂
)−1

Σ̂ Kbb −Kba
(
KabK −1

bb Kba +Λaa + Σ̂
)−1

Kab

]
,

[
µa

µb

]
=

[
ma + (

KabK −1
bb Kba +Λaa

)(
KabK −1

bb Kba +Λaa + Σ̂
)−1 (

µ̂−ma
)

mb +Kba(KabK −1
bb Kba +Λaa + Σ̂)−1

(
µ̂−ma

)]
,

B

280 B. PROBABILITY THEORY

while the posterior distribution of xb,c remains (B.159).

Proof. The only difference between this theorem and Theorem B.30 is that we have as-
sumed that (B.176). This immediately turns (B.158) into (B.179), while it does not af-
fect (B.159) in any way.

The above theorem is not directly useful, because it does exactly the same as Theo-
rem B.30. However, it does offer extra possibilities. In many applications of this theorem
(see Section 4.1.4) the vector x a is much larger than the vector xb . As such, we would
be better off inverting a matrix of size nb ×nb than one of size na ×na . The following
theorem tells us how we can arrange that.

Theorem B.33. Expression (B.179) of Theorem B.32 can be rewritten to

x a,b ∼N (xa,b |µa,b ,Σa,b), (B.180)[
Σaa Σab

Σba Σbb

]
=

[(
Λ−1

aa + Σ̂−1
)−1 + Σ̂Λ̂−1

aaKab∆
−1
bb KbaΛ̂

−1
aaΣ̂ Σ̂Λ̂−1

aaKab∆
−1
bb Kbb

Kbb∆
−1
bb KbaΛ̂

−1
aaΣ̂ Kbb∆

−1
bb Kbb

]
,

[
µa

µb

]
=

[(
Λ−1

aa + Σ̂−1
)−1 (

Λ−1
aa ma + Σ̂−1µ̂

)+ Σ̂Λ̂−1
aaKab∆

−1
bb KbaΛ̂

−1
aa

(
µ̂−ma

)
mb +Kbb∆

−1
bb KbaΛ̂

−1
aa

(
µ̂−ma

)]
,

where we have defined Λ̂aa and ∆bb as

Λ̂aa ≡Λaa + Σ̂, (B.181)

∆bb ≡ Kbb +Kba
(
Λaa + Σ̂

)−1
Kab . (B.182)

Proof. To do this, we will rewrite each term of (B.179) separately. Starting with Σbb , we
find through the matrix inversion lemma (Theorem A.7) that it equals

Σbb = Kbb

(
K −1

bb −K −1
bb Kba

(
KabK −1

bb Kba +Λaa + Σ̂
)−1

KabK −1
bb

)
Kbb (B.183)

= Kbb

(
Kbb +Kba

(
Λaa + Σ̂

)−1
Kab

)−1
Kbb ,

which equals Kbb∆
−1
bb Kbb , as we wanted to prove. We continue with Σab which (through

Theorem A.8) can be rewritten to

Σab = Σ̂(
KabK −1

bb Kba +Λaa + Σ̂
)−1

KabK −1
bb Kbb (B.184)

= Σ̂(
Λaa + Σ̂

)−1
Kab∆

−1
bb Kbb .

Identically,Σba equalsΣT
ab . That leavesΣaa . We can write this as Kaa−Kaa

(
Kaa + Σ̂

)−1
Kaa ,

but identically we can also write it as

Σaa = Σ̂− Σ̂(
KabK −1

bb Kba +Λaa + Σ̂
)−1

Σ̂ (B.185)

= (
Λaa + Σ̂

)(
Λaa + Σ̂

)−1
Σ̂− Σ̂

((
Λaa + Σ̂

)−1 − (
Λaa + Σ̂

)−1
Kab∆

−1
bb Kba

(
Λaa + Σ̂

)−1
)
Σ̂

=Λaa
(
Λaa + Σ̂

)−1
Σ̂+ Σ̂(

Λaa + Σ̂
)−1

Kab∆
−1
bb Kba

(
Λaa + Σ̂

)−1
Σ̂,

B.6. CONDITIONALLY INDEPENDENT GAUSSIAN VARIABLES

B

281

which equals the result from (B.180). That completes our proof for the covariance matrix
and leaves us with the mean vector. The good news is that we can reuse some of our
earlier results. For instance, for µb we have

µb = mb +ΣbaΣ̂
−1 (

µ̂−ma
)

(B.186)

= mb +Kbb∆
−1
bb Kba

(
Λaa + Σ̂

)−1 (
µ̂−ma

)
.

Similarly, for µa we have

µa = ma +ΣaaΣ̂
−1 (

µ̂−ma
)

(B.187)

= (
Λaa + Σ̂

)(
Λaa + Σ̂

)−1
ma

+
(
Λaa

(
Λaa + Σ̂

)−1 + Σ̂(
Λaa + Σ̂

)−1
Kab∆

−1
bb Kba

(
Λaa + Σ̂

)−1
)(
µ̂−ma

)
= Σ̂(

Λaa + Σ̂
)−1

ma +Λaa
(
Λaa + Σ̂

)−1
µ̂+ Σ̂(

Λaa + Σ̂
)−1

Kab∆
−1
bb Kba

(
Λaa + Σ̂

)−1 (
µ̂−ma

)
,

which equals the result from (B.180), completing the proof.

In the above theorem, the expressions for the distribution of xb are surprisingly com-
pact. But that’s not their only upside. Their main advantage is that, to calculate the pos-
terior distribution of xb , we only have to invert the diagonal matrices Λaa and Σ̂ (and
sums of them) and the relatively small matrix ∆bb . This requires much less computa-
tional time than what we needed to do before.

The expressions describing the distribution of x a are more complicated though, but
as such also more interesting. The expression for the mean µa consists of two parts.

The first part
(
Λ−1

aa + Σ̂−1
)−1 (

Λ−1
aa ma + Σ̂−1µ̂

)
can be seen as the merger of the measure-

ment N
(
µ̂, Σ̂

)
and the part N (ma ,Λaa) of the prior distribution of each element xai

of
x a for which xb can never provide information. The other part then is the information
corresponding to x a which is passed through xb .

There is also a more intuitive view of the above theorem. What it basically comes
down to, is that we first use the first measurement N

(
µ̂1, Σ̂1,1

)
to predict the distribution

of xb . Then we use the second measurement N
(
µ̂2, Σ̂2,2

)
to predict xb all over again. We

keep doing this, until we have na separate distributions of xb . We then merge all these
distributions together and unmerge (na −1) times the prior distribution (which we have
used na times; once in each of the na predictions) to get out final result. This process
has been visualized in Figure 4.2. The result which we get is exactly the same as the
result from Theorems B.32 and B.33. The following theorem proves this.

B

282 B. PROBABILITY THEORY

Theorem B.34. The following merging of distributions

N




ma1

∗
...

mb

 ,


Ka1a1 ∗ ·· · Ka1b

∗ ∞ ·· · ∗
...

...
. . .

...
Kba1 ∗ ·· · Kbb


⊕N



µ̂1

∗
...
∗

 ,


Σ̂1,1 ∗ ·· · ∗
∗ ∞ ·· · ∗
...

...
. . .

...
∗ ∗ ·· · ∞


⊕ . . .

⊕N




∗
...

mana

mb

 ,


∞ ··· ∗ ∗
...

. . .
...

...
∗ ·· · Kana ana

Kana b

∗ ·· · Kbana
Kbb


⊕N




∗
...

µ̂na

∗

 ,


∞ ··· ∗ ∗
...

. . .
...

...
∗ ·· · Σ̂na ,na ∗
∗ ·· · ∗ ∞




ªN




∗
...
∗

mb

 ,


∞ ··· ∗ ∗
...

. . .
...

...
∗ ·· · ∞ ∗
∗ ·· · ∗ Kbb




︸ ︷︷ ︸
(na −1) times

, (B.188)

which uses individual measurements of N
(
µ̂, Σ̂

)
, gives the same result as Theorems B.32

and B.33.

Proof. The key to proving this is to separately merge all prior distributions together and
to merge all measured distributions together. If we merge the measured distributions
(the rightmost distributions of (B.188)) we get, according to Theorem B.21, the distribu-
tion

N

([
µ̂

∗
]

,

[
Σ̂ ∗
∗ ∞

])
. (B.189)

Now let’s look at what happens when we merge all the other (leftmost) distributions
together. We start with the covariance matrix of this merger. When finding it, we will
use Theorem A.6 to invert a blockwise matrix. We also note that per definition Λai ai =
Kai ai −Kai bK −1

bb Kbai . Theorem B.21 now implies that the covariance matrix of the merger

B.6. CONDITIONALLY INDEPENDENT GAUSSIAN VARIABLES

B

283

equals


Λ−1
a1a1

0 · · · −Λ−1
a1a1

Ka1bK −1
bb

0 0 · · · 0
...

...
. . .

...
−K −1

bb Kba1Λ
−1
a1a1

0 · · · K −1
bb +K −1

bb Kba1Λ
−1
a1a1

Ka1bK −1
bb

+ . . . (B.190)

+


0 · · · 0 0
...

. . .
...

...
0 · · · Λ−1

ana ana
−Λ−1

ana ana
Kana bK −1

bb
0 · · · −K −1

bb Kbana
Λ−1

ana ana
K −1

bb +K −1
bb Kbana

Λ−1
ana ana

Kana bK −1
bb



− (na −1)


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 K −1

bb



−1

=
[

Λ−1
aa −Λ−1

aaKabK −1
bb

−K −1
bb KbaΛ

−1
aa K −1

bb +K −1
bb KbaΛ

−1
aaKabK −1

bb

]
.

If we replaceΛaa in the above expression by

Λaa =Λaa +KabK −1
bb Kba −KabK −1

bb Kba = Kaa −KabK −1
bb Kba , (B.191)

then Theorem A.6 directly turns the above into[
Kaa Kab

Kba Kbb

]
, (B.192)

subject to the assumption that the elements of x a are conditionally independent given
xb . If we subsequently also apply Theorem B.21 to find the mean vector of the merger,

we identically find that it will equal

[
ma

mb

]
. So the merging of the leftmost matrices

from (B.188) gives us the prior distribution of x a,b , while the merging of the rightmost
matrices gives us the measured distribution. In other words, (B.188) is effectively the
merging of the prior distribution of x a,b together with the measured distribution. And
it is this exact merger which is the starting point of Theorem B.22 through which The-
orem B.32 is proven. This means that the outcome must also be the same, proving
that (B.188) will result in (B.179) and equivalently also in (B.180).

B.6.3. CONDITIONAL INDEPENDENCE OF PARTS OF A VECTOR
So far we have studied conditional independence for x a as full vector (with respect to
xc given xb) as well as conditional independence for the individual elements of x a . We
can step in-between these ideas and split x a up into vector parts x a1

, . . . , x anp
, where np

denotes the number of parts. These parts can be of equal size or of different size, as long
as all parts together form x a without overlap.

We now assume that each of these parts x a1
, . . . , x anp

as well as xc are conditionally

independent given xb . How does this new assumption affect our theorems? The next
theorem argues that it does not really affect anything at all, except for one minor defini-
tion change.

B

284 B. PROBABILITY THEORY

Theorem B.35. If we redefineΛaa to

Λaa = blkdiag
(
Kaa −KabK −1

bb Kba
)

, (B.193)

then Theorems B.32 through B.34 still hold in exactly the same form.

Proof. The proofs of the given theorems are almost not affected by our new assump-
tion. The only difference is that, instead of using individual elements xa1

, xa2
, . . ., we now

use individual vector parts x a1
, x a2

, As a result, Λaa will not be diagonal but block-
diagonal. Taking into account this difference, the proofs remain the same, implying that
the theorems also hold in the same form.

B.6.4. ONLINE UPDATING OF DISTRIBUTIONS
Let’s take a small step back. Suppose that all the elements of x a are conditionally inde-
pendent, given xb , just like in Section B.6.2. Also suppose that we know the posterior
distribution N

(
µb ,Σbb

)
of xb , after having done the measurement N

(
µ̂, Σ̂

)
.

What we will do now is add an extra point to x a . We write this extra point as x+. It
has x+ ∼ N (m+,K++) as prior distribution, and its prior covariance with xb is known
to be K+b . It is also assumed to be conditionally independent with respect to all the
other elements of x a , and just like all other elements, we have also measured it, giving
us a measured distribution of x+ ∼ N

(
µ̂+, Σ̂++

)
. The question now is ‘What is the new

posterior distribution of xb , given this new measurement?’
We could of course solve this by replacing

x a ∼N (ma ,Kaa) →
[

x a
x+

]
∼N

([
ma

m+

]
,

[
Kaa KabK −1

bb Kb+
K+bK −1

bb Kba K++

])
, (B.194)

N
(
µ̂, Σ̂

)→N

([
µ̂

µ̂+

]
,

[
Σ̂ 0
0 Σ̂++

])
,

and then redo all our calculations using Theorem B.32. However, given that all elements
of x a are conditionally independent, given xb , we can do something more efficient;
something that does not even require knowledge about the other elements of x a . We
can update the distribution of xb directly! The following theorem tells us how.

Theorem B.36. Assume that all elements of x a and x+ are conditionally independent
given xb . Also assume that the measurement x a ∼ N

(
µ̂, Σ̂

)
has given us a posterior dis-

tribution xb ∼ N
(
µb ,Σbb

)
, according to Theorem B.32. If we now also incorporate the

measurement x+ ∼N
(
µ̂+, Σ̂++

)
, then the posterior distribution of xb will equal

xb ∼N
(
µ+

b ,Σ+
bb

)
, (B.195)

Σ+
bb =Σbb −ΣbbK −1

bb Kb+Σ−1
++K+bK −1

bb Σbb ,

µ+
b =µb +ΣbbK −1

bb Kb+Σ−1
++

(
µ̂+− (

m++K+bK −1
bb

(
µb −mb

)))
,

where we have defined

Σ++ ≡Λ+++ Σ̂+++K+bK −1
bb ΣbbK −1

bb Kb+ (B.196)

= K+++ Σ̂++−K+bK −1
bb (Kbb −Σbb)K −1

bb Kb+. (B.197)

B.6. CONDITIONALLY INDEPENDENT GAUSSIAN VARIABLES

B

285

Proof. We will prove this using the relations for µb and Σbb from Theorem B.33. Let’s
start with the covariance matrix. Its old value was

Σbb = Kbb

(
Kbb +Kba

(
Λaa + Σ̂

)−1
Kab

)−1
Kbb . (B.198)

Personally, I’m kind of tired of writing Σ̂ everywhere, so let’s set up a new notation to
prevent having to do that all the time. Let’s define

K̂aa ≡ Kaa + Σ̂, (B.199)

Λ̂aa ≡Λaa + Σ̂= Kaa + Σ̂−KabK −1
bb Kba , (B.200)

K̂++ ≡ K+++ Σ̂++, (B.201)

Λ̂++ ≡Λ+++ Σ̂++ = K+++ Σ̂++−K+bK −1
bb Kb+. (B.202)

So a hat-symbol in this case means that the term Σ̂ or Σ̂++ has been pulled in. Using this
new notation, we can see that the new value of Σbb (written as Σ+

bb) equals

Σ+
bb = Kbb

(
Kbb +

[
Kba Kb+

][
Λ̂aa 0

0 Λ̂++

][
Kab

K+b

])−1

Kbb (B.203)

= (
K −1

bb +K −1
bb KbaΛ̂

−1
aaKabK −1

bb +K −1
bb Kb+Λ̂−1

++K+bK −1
bb

)−1

= (
Σ−1

bb +K −1
bb Kb+Λ̂−1

++K+bK −1
bb

)
.

We can rewrite it through the matrix inversion lemma (Theorem A.7). When we do, we
directly find that

Σ+
bb =Σbb −ΣbbK −1

bb Kb+
(
Λ̂+++K+bK −1

bb ΣbbK −1
bb Kb+

)−1
K+bK −1

bb Σbb (B.204)

=Σbb −ΣbbK −1
bb Kb+Σ−1

++K+bK −1
bb Σbb ,

where we have used (B.196). The above now equals the result from (B.195).
Next, we will prove the relation for the new mean µ+

b . We know from Theorem B.33
that the old value of µb was

µb = mb +Kbb
(
Kbb +KbaΛ̂

−1
aaKab

)−1
KbaΛ̂

−1
aa

(
µ̂−ma

)
(B.205)

= mb +ΣbbK −1
bb KbaΛ̂

−1
aa

(
µ̂−ma

)
.

The new mean µ+
b now equals

µ+
b = mb +Kbb

(
Kbb +KbaΛ̂

−1
aaKab +Kb+Λ̂−1

++K+b
)−1 (

KbaΛ̂
−1
aa

(
µ̂−ma

)+Kb+Λ̂−1
++

(
µ̂+−m+

))
= mb +Σ+

bbK −1
bb

(
KbbΣ

−1
bb

(
µb −mb

)+Kb+Λ̂−1
++

(
µ̂+−m+

))
. (B.206)

Note that we have used the new covarianceΣ+
bb . If we insert the result that we just found,

the above reduces to

µ+
b = mb + (

Σbb −ΣbbK −1
bb Kb+Σ−1

++K+bK −1
bb Σbb

)
Σ−1

bb

(
µb −mb

)
(B.207)

+ (
Σbb −ΣbbK −1

bb Kb+Σ−1
++K+bK −1

bb Σbb
)

K −1
bb Kb+Λ̂−1

++
(
µ̂+−m+

)
=µb −ΣbbK −1

bb Kb+Σ−1
++K+bK −1

bb

(
µb −mb

)
+ΣbbK −1

bb Kb+Σ−1
++

(
Σ++−K+bK −1

bb ΣbbK −1
bb Kb+

)
Λ̂−1
++

(
µ̂+−m+

)
.

B

286 B. PROBABILITY THEORY

We can simplify this by applying (B.196). The above then reduces to

µ+
b =µb +ΣbbK −1

bb Kb+Σ−1
++

(
µ̂+−m+−K+bK −1

bb

(
µb −mb

))
, (B.208)

which equals the result we wanted to obtain.

We have derived the above theorem in the setting of Section B.6.2: we have assumed
conditional independence between all elements of x a as well as the new element x+. We
can also derive the theorem in the setting of Section B.6.3. That is, we assume condi-
tional independence between the vector parts x a1

, . . . , x anp
as well as the new vector x+

which we will add. If this new vector has a prior distribution of x+ ∼N (m+,K++) and a
measured distribution of x+ ∼N

(
µ̂+, Σ̂++

)
, then we can incorporate this in an identical

way as we would incorporate a single point. We get the update law

xb ∼N
(
µ+

b ,Σ+
bb

)
, (B.209)

Σ+
bb =Σbb −ΣbbK −1

bb Kb+Σ−1
++K+bK −1

bb Σbb ,

µ+
b =µb +ΣbbK −1

bb Kb+Σ−1
++

(
µ̂+− (

m++K+bK −1
bb

(
µb −mb

)))
.

This can be proven similarly to the proof of Theorem B.36. We just need to make a few
adjustments because some previously scalar terms are not scalar anymore. These ad-
justments don’t convey much any insight though, so I will omit them here.

Instead, I want to look at something else. We know it is possible to add a whole new
vector part x+ to x a . But what do we do if we have a new point x+ ∼N (m+,K++) which
we want to add to an already existing part x ai

of x a ? That is, we do not assume that x a is
conditionally independent given xb with respect to the other elements within x ai

. (We
do assume that it is conditionally independent given xb with respect to the other parts
of x a .) In this case, we do need to take into account the other elements of x ai

. How that
works is explained by the following theorem.

Theorem B.37. Assume that the parts x a1
, . . . , x anp

of x a are conditionally independent

given xb . Also assume that the measurement x a ∼ N
(
µ̂, Σ̂

)
has given us a posterior dis-

tribution xb ∼ N
(
µb ,Σbb

)
, according to Theorem B.35. If we now add an element x+

to the vector part x a1
, such that x+ is conditionally independent given xb with respect

to other parts of x a but not with respect to x a1
, and if we incorporate the measurement

x+ ∼N
(
µ̂+, Σ̂++

)
, then the posterior distribution of xb will equal

xb ∼N
(
µ+

b ,Σ+
bb

)
, (B.210)

Σ+
bb =Σbb −ΣbbK −1

bb K̃b+Σ̃−1
++K̃+bK −1

bb Σbb ,

µ+
b =µb +ΣbbK −1

bb K̃b+Σ̃−1
++

(
µ̂+− (

m̃++ K̃+bK −1
bb

(
µb −mb

)))
,

where we have adjusted the definitions ofΛ++, Kb+, K+b , Σ++ and m+ according to

Λ̃++ ≡Λ+++ Σ̂++−Λ+a1

(
Λa1a1 + Σ̂a1a1

)−1
Λa1+, (B.211)

K̃b+ ≡ Kb+−Kba1

(
Λa1a1 + Σ̂a1a1

)−1
Λa1+ ≡ K̃ T

+b , (B.212)

Σ̃++ ≡ Λ̃+++ K̃+bK −1
bb ΣbbK −1

bb K̃b+, (B.213)

m̃+ ≡ m++Λ+a1

(
Λa1a1 + Σ̂a1a1

)−1 (
µ̂a1 −ma1

)
, (B.214)

B.6. CONDITIONALLY INDEPENDENT GAUSSIAN VARIABLES

B

287

and where the subscript a1 refers to the part x a1
and not the element xa1

.

Proof. The proof of this is very similar to the proof of Theorem B.36. In fact, we will
again use the hat-notation from (B.199) to (B.202). Nevertheless, there are a few notable
differences between the proofs.

These differences mainly concern the term Kbb +KbaΛ̂
−1
aaKab within the expression

forΣbb . Earlier, when the elements of x a were all conditionally independent with respect
to each other, we could write this as

Kbb +KbaΛ̂
−1
aaKab = Kbb +

nm∑
i=1

Kbai Λ̂ai ai Kai b , (B.215)

where we have
Λ̂ai ai = K̂ai ai −Kai bK −1

bb Kbai . (B.216)

The main difference lies in that we are now not adding over individual elements, but over
parts of x a . That is, we now have

Kbb +KbaΛ̂
−1
aaKab = Kbb +

np∑
i=1

Kbai Λ̂ai ai Kai b , (B.217)

where the subscript ai now does not relate the the element xai
but to the part x a1

. This

means that Λ̂ai ai still satisfies (B.216), but is now a matrix instead of a scalar. In this case,
if we add a single point x+ to x a1

, the above becomes

Kbb +KbaΛ̂
−1
aaKab → Kbb +

[
Kba1 Kb+

][
Λ̂a1a1 Λa1+
Λ+a1 Λ̂++

]−1 [
Ka1b

K+b

]
+

(
np∑
i=2

Kbai Λ̂ai ai Kai b

)
,

= Kbb +
(

np∑
i=1

Kbai Λ̂ai ai Kai b

)
+ [

Kba1 Kb+
][
Λ̂a1a1 Λa1+
Λ+a1 Λ̂++

]−1 [
Ka1b

K+b

]
−Kba1Λ̂

−1
a1a1

Ka1b .

In the expression forΣbb , we used to have only the first two terms. To be precise, together
they equaled KbbΣ

−1
bb Kbb . The last two terms are new though, so let’s focus on those. We

will rewrite them, first using Theorem A.6 to expand the matrix inverse and then using
definition B.211 of Λ̃++ for easy notation. This will turn these last two terms into

[
Kba1 Kb+

][
Λ̂−1

a1a1
+ Λ̂−1

a1a1
Λa1+Λ̃−1++Λ+a1Λ̂

−1
a1a1

−Λ̂−1
a1a1

Λa1+Λ̃−1++
−Λ̃−1++Λ+a1Λ̂

−1
a1a1

Λ̃−1++

][
Ka1b

K+b

]
−Kba1Λ̂

−1
a1a1

Ka1b

= [
Kba1 Kb+

][−Λ̂−1
a1a1

Λa1+
1

]
Λ̃−1
++

[−Λ+a1Λ̂
−1
a1a1

1
][

Ka1b

K+b

]
(B.218)

= (
Kb+−Kba1Λ̂

−1
a1a1

Λa1+
)
Λ̃−1
++

(
K+b −Λ+a1Λ̂

−1
a1a1

Ka1b
)

= K̃b+Λ̃−1
++K̃+b .

It follows that the new covariance matrix Σ+
bb is given by

Σ+
bb = Kbb

(
Kbb +KbaΛ̂

−1
aaKab + K̃b+Λ̃−1

++K̃+b
)−1

Kbb . (B.219)

B

288 B. PROBABILITY THEORY

We have already seen this expression before, in the proof of Theorem B.36, albeit without
the tilde. As such, the result will also be the same, equaling the result from (B.210).

We can do something similar for the mean. The new mean µ+
b can be written as

µ+
b = mb +Σ+

bbK −1
bb

(
KbaΛ̂

−1
aa

(
µ̂−ma

)
(B.220)

+ [
Kba1 Kb+

][
Λ̂a1a1 Λa1+
Λ+a1 Λ̂++

]−1 ([
µ̂a1

µ̂+

]
−

[
ma1

m+

])
−Kba1Λ̂

−1
a1a1

(
µ̂a1 −ma1

))
= mb +Σ+

bbK −1
bb

(
KbbΣ

−1
bb

(
µb −mb

)
+ [

Kba1 Kb+
][−Λ̂−1

a1a1
Λa1+

1

]
Λ̃−1
++

[−Λ+a1Λ̂
−1
a1a1

1
][
µ̂a1 −ma1

µ̂+−m+

])
= mb +Σ+

bbK −1
bb

(
KbbΣ

−1
bb

(
µb −mb

)+ K̃b+Λ̃−1
++

(
µ̂+−m̃+

))
.

we have seen this relation before at (B.206). Because of this, the result must also be the
same, equaling the result from (B.210).

The adjustments we have made to Λ++, Kb+, K+b , Σ++ and m+ can be seen as com-
pensations to take into account the fact that x a1

and x+ are not conditionally indepen-
dent given xb . If they are, then we will have Λ+a1 = Λa1+ = 0 and the above Theorem
reduces to Theorem B.36.

We should note here that it is not only possible to add new elements x+ to the part
x a1

, but also to any other parts x ai
. I just picked x a1

to make our notation a bit easier.
We should also keep in mind though, that the bigger x ai

is, the longer the update will

take. It does help if we keep track of the matrix
(
Λai ai + Σ̂ai ai

)−1
as it grows, but still we

should make sure that the parts x ai
do not grow too large or our algorithm will become

slow.

C
LINEAR SYSTEMS THEORY

Summary — A linear system is a system in which the state derivative linearly depends on
the state itself and possibly on the input and on process noise. When no noise is present, the
state evolution can be calculated analytically. When Gaussian white noise is present, the
state will be a Gaussian random variable, whose mean and covariance can be calculated
analytically at every point in time.

For such systems, we can define a quadratic cost function, completing the Linear Quadratic
Gaussian (LQG) set-up. This cost function can optionally also be discounted over time.
The resulting cost will not have a Gaussian distribution but a generalized noncentral χ2-
distribution. It is possible to calculate the expected value as well as the cost variance ana-
lytically.

When an input is present, it is also possible to find the optimal control law minimizing
the expected cost. This optimal control law will be linear and can be calculated analyti-
cally as well. In addition, when a measurement equation including measurement noise is
present, an observer can be set up for the system to approximate the system state. When
this observer is optimal – minimizing the steady-state error covariance – then the separa-
tion principle can be applied. We can feed this state estimate to the optimal control law
and optimally control the system in this way.

‘Optimal’ here still means minimizing the expected cost. When the goal is not to minimize
the expected cost, but to minimize the chance that the cost exceeds a given threshold, a
different control strategy may need to be applied. It may then be better to for instance
reduce the cost variance.

289

C

290 C. LINEAR SYSTEMS THEORY

In this appendix we look at linear systems. Specifically, we look at linear systems subject
to Gaussian process/measurement noise and with a quadratic cost function that needs
to be minimized. The resulting subject is known as Linear Quadratic Gaussian (LQG)
control.

We start by looking at how the state evolves over time for such systems (Section C.1).
We then look at how we can calculate the expected value of the cost (Section C.2). Sub-
sequently we add input, which allows us to minimize this cost (Section C.3). Eventually
we further study the cost function, mostly examining expressions for its variance (Sec-
tion C.4). At the end we set up a few applications of the derived methods (Section C.5)
and look at the state of the literature (Section C.6).

C.1. LINEAR SYSTEMS AND THEIR EVOLUTION
We will first examine the definition of a linear system, as we will use it here (Section C.1.1).
Then we look at how the distribution of the system state evolves over time (Section C.1.2).
These ideas are far from novel and can for instance be found in Anderson and Moore
(1990), Skogestad and Postlethwaite (2005), Bosgra et al. (2008).

C.1.1. SYSTEM DEFINITION
In this appendix we study continuous-time linear systems subject to process noise. There
are multiple ways to write such a system and we start by examining two different such
methods.

We first look at the most common notation in control theory applications. It is used
by for instance Skogestad and Postlethwaite (2005). Here we write our system as

ẋ(t) = Ax(t)+v (t), (C.1)

where x(t) is the state and A is the system matrix. Additionally, v (t) is the process noise,
where the underline means it is a random variable. (Appendix B can tell you more about
random variables.)

We assume that v (t) is zero-mean Gaussian white noise with intensity V . The ‘Gaus-
sian’ part implies that v (t) is a time-dependent Gaussian process, the ‘zero-mean’ part
implies that the mean function m(t) = 0 equals zero and the ‘white noise’ part implies
that v (t) and v (t ′) are uncorrelated. In other words, the covariance function of v (t) is
k(t , t ′) =V δ(t − t ′), with δ(.) the (Dirac) Delta function.

The problem which many mathematicians have with this formulation is that the sig-
nal v (t) cannot exist. It is not measurable with nonzero probability, because effectively
the variance k(t , t) is infinite. In addition, it is not continuous because v (t) and v (t ′) are
not correlated, even when t and t ′ are nearly equal.

The issues behind this are well outlined in Øksendal (1985). This book also suggests
a more formal way of writing linear systems. While many control engineers prefer the
above notation, most formal mathematicians would rather write a linear system as

d x(t) = Ax(t)d t +d w (t), (C.2)

where w (t) is a vector of Brownian motions. The above can subsequently be evaluated
using Itô integrals. You can learn more about those in the book by Øksendal (1985), or if
you are enthusiastic in the original work by Itô (1951).

C.1. LINEAR SYSTEMS AND THEIR EVOLUTION

C

291

But what is a Brownian motion? I do not want to go into depth on the details here –
for a full treatise, see Mörters and Peres (2010) – but I will give a short summary. You can
intuitively see a Brownian motion w (t) as a ‘random walk’. At t = 0 we start at w (t) = 0.
Then, at every point in time, we take a small step. The size of this step is related to the
motion parameter W , but the direction is random. We may happen to walk in the same
direction as previously, or go back. As a result, the meanE[w (t)] of our position remains
zero. However, as time passes, the distance we are likely to be from our starting position
increases, causing the varianceE[w (t)w T (t)] to increase linearly as W t .

If we compare (C.1) with (C.2), we see that v (t) actually equals
d w (t)

d t . And if we inte-
grate the Gaussian process v (t) using the techniques from Section 2.5.4 to get w (t), we
find that w (t) actually is a Gaussian process with mean function

m(t) =
∫ t

0
0d s = 0 (C.3)

and covariance function

k(t , t ′) =
∫ t

0

∫ t ′

0
V δ(s − s′)d s′ d s =

∫ min(t ,t ′)

0
V d s =V min(t , t ′), (C.4)

which happens to be the covariance function of a Brownian motion. (Note that k(t , t) =
V t , like we saw earlier.) So if we brush complaints from formal mathematicians aside,
both methods come down to exactly the same.

Which method will we use then? Evaluating (C.2) requires the application of Itô in-
tegrals, which requires some complicated mathematics. Evaluating (C.1) can be done in
a more straightforward manner. As such, we will stick with the linear system (C.1), as is
used by most control engineers.

C.1.2. EVOLUTION OF THE SYSTEM STATE
Consider system (C.1). Suppose that we put the system in an initial state x(0) ≡ x0. If
we know the process noise v (t) deterministically at each point in time, how will the state
x(t) then evolve? That is outlined by the following theorem.

Theorem C.1. Consider the linear differential equation (C.1), with v (t) known. Its solu-
tion x(t) is given by

x(t) = e At x0 +
∫ t

0
e A(t−s)v (s)d s. (C.5)

Proof. We solve this using the method of the integrating factor. We multiply both sides
of the system equation by e−At . This turns it into

e−At ẋ(t)−e−At Ax(t) = e−At v (t). (C.6)

The left side can be rewritten as a derivative, according to

d

d t

(
e−At x(t)

)= e−At v (t). (C.7)

C

292 C. LINEAR SYSTEMS THEORY

Let’s replace t by s. If we subsequently integrate over s, from 0 to t , we find that

[
e−As x(s)

]t
0 =

∫ t

0
e−As v (s)d s. (C.8)

This can be extended into

e−At x(t)−x(0) =
∫ t

0
e−As v (s)d s. (C.9)

Solving for x(t) by left-multiplying by e At will result in (C.5).

Now let’s suppose that we do not know the initial state x0 exactly. Instead, we will
treat it as a random variable x0, which we assume to be Gaussian. We also do not know
the process noise v (t), except for its general properties. In this case the state x(t) also
becomes a random variable x(t) at each point in time. What can we now say about its
properties?

Theorem C.2. Consider the linear differential equation (C.1). If the initial state satisfies
x0 ∼ N

(
µ0,Σ0

)
and v (t) is zero-mean Gaussian white noise with intensity V , then x(t)

has a Gaussian distribution N
(
µ(t),Σ(t)

)
at each point in time, with

µ(t) = e Atµ0, (C.10)

Σ(t) = e At (
Σ0 −X V)

e AT t +X V , (C.11)

and where X V is the solution to the Lyapunov equation AX V +X V AT +V = 0. (For further
details on X V , see Appendix A.4.)

Proof. Our starting point here is Theorem C.1. We know that both x0 and v (t) are Gaus-
sian parameters. Since adding up Gaussian parameters will result in a new Gaussian
parameter (this follows from Theorem B.13), x(t) will be Gaussian at each point in time.
And to fully specify x(t), we only need to find the mean vector and the covariance matrix
for each time t .

To find the mean, we take the expectation of (C.5). This results in

µ(t) =E[
x(t)

]=E[
e At x0 +

∫ t

0
e A(t−s)v (s)d s

]
. (C.12)

The expectation operator is a linear operator. (See for instance Theorems B.3 and B.4.)
As such, we can apply it separately to both of the above terms, as well as pull it within
the integral. This gives us

µ(t) = e AtE
[

x0

]+∫ t

0
e A(t−s)E

[
v (s)

]
d s = e Atµ0, (C.13)

where we have usedE[v (t)] = 0.
To find the covariance, we apply similar steps. We start with

Σ(t) =E
[(

x(t)−E[
x(t)

])(
x(t)−E[

x(t)
])T

]
. (C.14)

C.1. LINEAR SYSTEMS AND THEIR EVOLUTION

C

293

Next, from (C.5) and (C.10) it follows that

x(t)−E[
x(t)

]= e At (
x(0)−µ(0)

)+∫ t

0
e A(t−s)v (s)d s. (C.15)

We should keep in mind here that v (s) is white noise. This means that it is not correlated
with any past states x(t) with t ≤ s. (If t > s, then x(t) will of course directly depend on

v (s).) Hence,E
[

v (t)
(
x(0)−µ(0)

)T
]
= 0. Using this, we can turn (C.14) into

Σ(t) =E
[

e At (
x(0)−µ(0)

)(
x(0)−µ(0)

)T e AT t
]
+

(∫ t

0
e A(t−s)v (s)d s

)(∫ t

0
e A(t−s)v (s)d s

)T

= e AtE
[(

x(0)−µ(0)
)(

x(0)−µ(0)
)T

]
e AT t (C.16)

+
∫ t

0

∫ t

0
e A(t−s1)E

[
v (s1)v T (s2)

]
e AT (t−s2) d s2 d s1.

We can immediately note that the first of these expectations equals the initial state co-
variance matrixΣ0. The second expectationE

[
v (s1)v T (s2)

]
per definition equals V δ(s1−

s2). This term only has a value whenever s1 = s2, and in this case the integral over
δ(s1 − s2) equals one. As such, we can rewrite the above to

Σ(t) = e AtΣ0e AT t +
∫ t

0
e A(t−s1)V e AT (t−s1) d s1. (C.17)

For the mathematicians: this reduction of E
[

v (s1)v T (s2)
]

to V δ(s1 − s2) is formally an
application of the Itô isometry, as explained in Øksendal (1985).

Within the above integral we can substitute s1 for t − s. This means that d s1 = −d s
which adds a minus sign to the integral. However, while s1 ranges from 0 to t , we have
s ranging from t to 0. So the integral limits are reversed. Reversing the integral limits is
equivalent to adding a minus sign to the integral, which tells us that∫ t

0
e A(t−s1)V e AT (t−s1) d s1 =

∫ 0

t
−e AsV e AT s d s =

∫ t

0
e AsV e AT s d s. (C.18)

This integral per definition equals X V (t) (see definition (A.119)) and Theorem A.26 claims

that this in turn equals X V −e At X V e AT t . As a result, we have

Σ(t) = e AtΣ0e AT t +X V −e At X V e AT t . (C.19)

Rewriting this would immediately turn it into (C.11), completing the proof.

The above theorem tells us something interesting. If the system is stable, then as t →
∞ we have e At → 0. In other words, Σ(t) → X V . The Lyapunov solution X V is therefore
known as the steady-state state covariance matrix. Given process noise with intensity V ,
the state of a stable system will eventually have a covariance of X V .

The time-dependent matrix Σ(t) itself also satisfies an interesting differential equa-
tion, as shown by the next theorem.

C

294 C. LINEAR SYSTEMS THEORY

Theorem C.3. The state covariance Σ(t) satisfies

Σ̇(t) = AΣ(t)+Σ(t)AT +V. (C.20)

Proof. We prove this by taking the derivative of (C.11). If we apply the relation d
d t e At =

Ae At = e At A, then

Σ̇(t) = Ae At (
Σ0 −X V)

e AT t +e At (
Σ0 −X V)

e AT t AT . (C.21)

The term e At
(
Σ0 −X V

)
e AT t equals Σ(t)−X V . Applying this gives us

Σ̇(t) = A
(
Σ(t)−X V)+ (

Σ(t)−X V)
AT (C.22)

= AΣ(t)+Σ(t)AT − (
AX V +X V AT)

.

If we then note that, per definition, AX V +X V AT +V = 0, we directly find (C.20).

Finally, we can also define the covariance between x(t1) and x(t2) as

Σ(t1, t2) ≡E
[(

x(t1)−E[
x(t1)

])(
x(t2)−E[

x(t2)
])T

]
. (C.23)

How to calculate this covariance is explained by the following theorem.

Theorem C.4. For t1 ≤ t2, the state covariance Σ(t1, t2) defined by (C.23) satisfies

Σ(t1, t2) = e At1
(
Σ0 −X V)

e AT t2 +X V e AT (t2−t1). (C.24)

In addition, we have Σ(t1, t2) =ΣT (t2, t1) and Σ(t , t) =Σ(t).

Proof. The proof of this is nearly identical to that of Theorem C.2. That is, we can find in
an identical way that

Σ(t1, t2) = e At1Σ0e AT t2 +
∫ t1

0

∫ t2

0
e A(t1−s1)V δ(s1 − s2)e AT (t2−s2) d s2 d s1. (C.25)

We know that δ(s1 − s2) only has a nonzero value when s1 = s2. And because 0 ≤ s1 ≤ t1

and 0 ≤ s2 ≤ t2, this only occurs whenever s1 = s2 ≤ min(t1, t2). We have assumed that
t1 ≤ t2, so min(t1, t2) = t1. This means that we do not need to consider values of s1 = s2

larger than t1 in either of our integrals. If we then also solve the inner integral, we find

Σ(t1, t2) = e At1Σ0e AT t2 +
∫ t1

0
e A(t1−s1)V e AT (t2−s1) d s1. (C.26)

Similarly to (C.18), we can rewrite the integral in the above expression to∫ t1

0
e A(t1−s1)V e AT (t2−s1) d s1 =

(∫ t1

0
e A(t1−s1)V e AT (t1−s1) d s1

)
e A(t2−t1) (C.27)

=
(∫ t1

0
e AsV e AT s d s

)
e A(t2−t1) = X V (t1)e A(t2−t1).

C.1. LINEAR SYSTEMS AND THEIR EVOLUTION

C

295

Applying Theorem A.26 once more to rewrite X V (t1) as X V − e At1 X V e AT t1 will turn the
expression for Σ(t1, t2) into

Σ(t1, t2) = e At1Σ0e AT t2 +X V e A(t2−t1) −e At1 X V e AT t2 . (C.28)

Rewriting this further will give us (C.24), proving the first claim of this theorem.
The two other claims from the theorem, Σ(t1, t2) = ΣT (t2, t1) and Σ(t , t) = Σ(t), both

follow directly from definition (C.23). The first of these two claims does tell us what to
do when t1 ≥ t2. In that case, we can find Σ(t2, t1) and transpose the result. Hence, for
t2 ≥ t1, we have

Σ(t1, t2) = e At1
(
Σ0 −X V)

e AT t2 +e A(t1−t2)X V . (C.29)

Although we could have also derived this in the same way as how we found (C.28).

Finally, there is another quantity which we will often see. It is the expected squared
state, defined through

Ψ(t) ≡E[
x(t)xT (t)

]=Σ(t)+µ(t)µT (t), (C.30)

Ψ(t1, t2) ≡E[
x(t1)xT (t2)

]=Σ(t1, t2)+µ(t1)µT (t2). (C.31)

It satisfies many of the expressions which the covariance matrix Σ(t) also satisfies.

Theorem C.5. The expected squared stateΨ(t), defined by (C.30), satisfies

Ψ(t) = e At (
Ψ0 −X V)

e AT t +X V , (C.32)

Ψ̇(t) = AΨ(t)+Ψ(t)AT +V , (C.33)

Ψ(t1, t2) = e At1
(
Ψ0 −X V)

e AT t2 +X V e AT (t2−t1). (C.34)

where the last expression only holds when t1 ≤ t2. For t1 ≥ t2, we haveΨ(t1, t2) =ΨT (t2, t1).

Proof. We will start with the last of the three expressions in the theorem. Using defini-
tion (C.31) and Theorem C.4, we discover that for t1 ≤ t2 we have

Ψ(t1, t2) =Σ(t1, t2)+µ(t1)µT (t2) (C.35)

= e At1
(
Σ0 −X V)

e AT t2 +X V e AT (t2−t1) +e At1µ0µ
T
0 e AT t2

= e At1
(
Σ0 +µ0µ

T
0 −X V)

e AT t2 +X V e AT (t2−t1),

which equals (C.34). When t1 ≥ t2 we can useΨ(t1, t2) =ΨT (t2, t1), which follows directly
from definition (C.31). To prove (C.32) we can insert t1 = t2 = t into the above expression
and apply Ψ(t , t) =Ψ(t). Finally, we can prove (C.33) in an identical way as we proved
Theorem C.3, except with Σ replaced byΨ.

Now that we know everything about how the state evolves, it is time to add a cost
function and then add input to the system allowing us to minimize this cost function.

C

296 C. LINEAR SYSTEMS THEORY

C.2. THE EXPECTED COST
In the section after this one we will add control to our linear system. We then want to
find the optimal controller. But what makes a controller optimal?

The answer is that it minimizes a cost function, and that is why we study cost func-
tions first. In this function we will look at various cost functions and find expressions for
the mean values.

We first do so for the infinite-time cost function (Section C.2.1). We will then see
that the noise causes this cost to become infinitely large. We work around this by either
looking at a system without noise (Section C.2.2), looking at a finite-time cost function
(Section C.2.3) or looking at a discounted cost function (Section C.2.4).

C.2.1. THE INFINITE-TIME COST FUNCTION
In this thesis we will always use a quadratic cost function. That is,

J =
∫ ∞

0
xT (t)Qx(t)d t . (C.36)

Here J is the cost and Q is the state penalty matrix. It is a positive semi-definite matrix,
ensuring that J cannot be negative.

It is important to note that the state x(t) is a random variable. After all, its initial state
x0 ∼ N

(
µ0,Σ0

)
has a Gaussian distribution, and it is continually disturbed by noise.

This means that J is a random variable too. Its value is not set in stone based on initial
conditions but depends on what initial state and what noise we actually get. We can
calculate its expected valueE

[
J
]

though.
To do so, we will use the trace operator. (For background on the trace operator, see

Appendix A.1.1.) Note that, because J is a scalar, we have J = tr
(

J
)
. Also note that the

trace operator, the expectation operator and the integration operator are linear opera-
tors, meaning we can interchange the order in which they are applied. This tells us that

E
[

J
]=E[∫ ∞

0
tr

(
xT (t)Qx(t)

)
d t

]
(C.37)

=
∫ ∞

0
E

[
tr

(
x(t)xT (t)Q

)]
d t

=
∫ ∞

0
tr

(
E

[
x(t)xT (t)

]
Q

)
d t

=
∫ ∞

0
tr(Ψ(t)Q) d t .

Applying Theorem C.5 will turn this into

E
[

J
]= ∫ ∞

0
tr

((
e At (

Ψ0 −X V)
e AT t +X V

)
Q

)
d t (C.38)

=
∫ ∞

0

(
tr

(
X V Q

)+ tr
((
Ψ0 −X V)

e AT t Qe At
))

d t .

There is one problem in this expression. The first term within the above integral is con-
stant. And when we integrate over a constant term, for an infinitely long duration, we
get an infinite cost. What is going on here?

C.2. THE EXPECTED COST

C

297

The idea is that the state x is perpetually disturbed by the noise v . It does not con-
verge to zero, but it will wind up with a steady-state covariance matrix Σ(t) → X V . It
hence perpetually contributes to the cost.

Optimizing a cost which is infinite does not work, so we need to fix this issue. There
are multiple ways to do so. We could assume that there is no noise (V = 0), we could look
at the finite-time cost or we could introduce a discount exponent. We will look at each
of these cases one by one.

C.2.2. THE COST OF A SYSTEM WITHOUT NOISE

When there is no noise, the only randomness is caused by the initial state x0 ∼N
(
µ0,Σ0

)
.

The resulting expected cost is then given by the following theorem.

Theorem C.6. Assume that A is stable and that there is no noise (V = 0). The expected
infinite-time cost (C.36) is given by

E
[

J
]= tr

(
Ψ0 X̄ Q)

. (C.39)

Proof. Our starting point is (C.38). When V = 0 we also have X V = 0 and as a result we
find that

E
[

J
]= ∫ ∞

0
tr

(
Ψ0e AT t Qe At

)
d t = tr

(
Ψ0

∫ ∞

0
e AT t Qe At d t

)
= tr

(
Ψ0 X̄ Q)

, (C.40)

where in the last step we have applied Theorem A.25. Note that X̄ Q per definition is the
solution to the alternate Lyapunov equation AT X̄ Q + X̄ Q A+Q = 0. (See (A.115).)

We can also rewrite (C.39) into

E
[

J
]= tr

(
Σ0 X̄ Q)+µT

0 X̄ Qµ0. (C.41)

This shows how the initial state mean µ0 and the initial state covariance Σ0 separately
contribute to the expected costE

[
J
]
.

C.2.3. THE FINITE-TIME COST FUNCTION

Instead of letting the cost integral run up to t = ∞, we can also let it run up to a finite
time T . In that case we get the finite-time cost function

J
T
=

∫ T

0
xT (t)Qx(t)d t . (C.42)

The expected cost is now given by the following theorem.

Theorem C.7. Assume that A is Sylvester. The expected finite-time cost (C.42) is given by

E
[

J
T

]
= tr

(
(Ψ0 −Ψ(T)+T V) X̄ Q)

. (C.43)

C

298 C. LINEAR SYSTEMS THEORY

Proof. Our starting point again is (C.38). With the finite-time integral, it now equals

E
[

J
T

]
=

∫ T

0
tr

(
X V Q

)
d t + tr

((
Ψ0 −X V)(∫ T

0
e AT t Qe At d t

))
(C.44)

= tr
(
X V Q

)
T + tr

((
Ψ0 −X V)

X̄ Q (T)
)

,

where we have applied definition (A.120) to turn the integral into X̄ Q (T). We can expand
X̄ Q (T) using Theorem A.26. If we also use Theorem A.29 to rewrite the first term, the
above turns into

E
[

J
T

]
= tr

(
V X̄ Q)

T + tr
((
Ψ0 −X V)(

X̄ Q −e AT T X̄ Q e AT
))

(C.45)

= tr
(
T V X̄ Q)+ tr

((
Ψ0 −X V −e AT (

Ψ0 −X V)
e AT T

)
X̄ Q

)
= tr

(
T V X̄ Q)+ tr

(
(Ψ0 −Ψ(T)) X̄ Q)

,

which equals (C.43).

It is interesting to see the effect of both Ψ0 and V . If we start in the steady-state
distribution, withΨ0 = X V , thenΨ(T) will also remain equal to X V . (Keep in mind that
Ψ(T) → X V as T →∞.) The result will be a cost of tr

(
T V X̄ Q

)
. This is the direct cost due

to the noise.
If we start in a different initial state, this effectively changes the cost by an amount of

tr
(
(Ψ0 −Ψ(T)) X̄ Q

)
. This change can increase the cost (when Ψ0 > X V) or decrease the

cost (whenΨ0 < X V).

Also note that, as T → ∞, we have E
[

J
T

]
→ ∞ as well. The cost becomes infinite.

An interesting topic here is the rate at which it becomes infinite, especially after the first
transients of x have disappeared. This steady-state cost rate is defined as

lim
T→∞

d J
T

dT
= lim

T→∞
d

dT

∫ T

0
x(t)Qx(t)d t = lim

T→∞
x(T)Qx(T). (C.46)

We can now see, both from the above expression and from (C.43), that the expected
steady-state cost rate equals

E

[
lim

T→∞
d J

T

dT

]
= lim

T→∞

dE
[

J
T

]
dT

= lim
T→∞

tr(Ψ(T)Q) = tr
(
V X̄ Q)= tr

(
X V Q

)
, (C.47)

where in the last step we have applied Theorem A.29.

C.2.4. THE DISCOUNTED COST FUNCTION
Another way to ensure that we get a finite cost is to add a discount exponent. This results
in the discounted cost function

J =
∫ ∞

0
e2αt xT (t)Qx(t)d t , (C.48)

J
T
=

∫ T

0
e2αt xT (t)Qx(t)d t . (C.49)

C.2. THE EXPECTED COST

C

299

The parameterα can be positive or negative. If it is negative, like in many applications re-
lated to reinforcement learning in which future costs/rewards are discounted, it is known
as the discount exponent. (See for instance Sutton and Barto (1998), Bertsekas and Tsit-
siklis (1996).) If it is positive, like in various linear systems theory applications, it is called
the prescribed degree of stability. (For more background on this, see Anderson and Moore
(1990), Bosgra et al. (2008).) Why it is called the prescribed degree of stability will become
clear later, after Theorem C.13.

It is important to note that the discounted cost function is actually a generalization
of the regular cost function. After all, when we set α = 0, we wind up with the regular
one. In the rest of this appendix, we will always indicate which cost function we work
with and under what assumptions.

So given this new cost function, what can we say about the expected cost? That is
explained by the following two theorems, the first for the finite-time cost and the second
for the infinite-time cost.

Theorem C.8. Assume that α 6= 0 and that A and Aα are both Sylvester. The expected
discounted finite-time cost (C.49) is given by

E
[

J
]= tr

((
Ψ0 −e2αTΨ(T)+ (

1−e2αT)(−V

2α

))
X̄ Q
α

)
. (C.50)

Proof. We can prove this theorem in the same way as Theorem C.7, albeit with more
bookkeeping. However, for fun we will prove it in a very different and slightly more ele-
gant way.

Our starting point now is (C.37), which we adjust by taking into account the factor
e2αt and the upper integral limit T . We will write it as

E
[

J
T

]
= tr

((∫ T

0
e2αtΨ(t)d t

)
Q

)
= tr(Y Q) , (C.51)

where we have defined the integral as Y . The key now is to find Y . We do so by us-
ing (C.33) from Theorem C.5. We multiply it by e2αt and integrate it to find∫ T

0
e2αt Ψ̇(t)d t = A

(∫ T

0
e2αtΨ(t)d t

)
+

(∫ T

0
e2αtΨ(t)d t

)
AT +

∫ T

0
e2αt V d t (C.52)

= AY +Y AT + (
1−e2αt)(−V

2α

)
.

The left part of the above equation can also be solved through integration by parts. This
turns it into∫ T

0
e2αt Ψ̇(t)d t = [

e2αtΨ(t)
]T

0 −2α
∫ T

0
e2αtΨ(t)d t = e2αTΨ(T)−Ψ0 −2αY . (C.53)

By merging the above two expressions, using Aα ≡ A+αI , we wind up with

AαY +Y AT
α +Ψ0 −e2αTΨ(T)+ (

1−e2αt)(−V

2α

)
= 0. (C.54)

C

300 C. LINEAR SYSTEMS THEORY

This is a Lyapunov equation which we can solve for Y . It follows that Y equals the Lya-

punov solution X
Ψ0−e2αTΨ(T)+(1−e2αt)

(−V
2α

)
α . Since this term is a nightmare to write, we

rewrite it using Theorems A.27 and A.28 into

Y = X
Ψ0−e2αTΨ(T)+(1−e2αt)

(−V
2α

)
α = XΨ0

α −e2αT XΨ(T)
α + (

1−e2αt) −X V
α

2α
. (C.55)

Through Theorem A.29 we can now write our solution forE
[

J
]

as

E
[

J
]= tr

((
XΨ0
α −e2αT XΨ(T)

α + (
1−e2αt) −X V

α

2α

)
Q

)
(C.56)

= tr

((
Ψ0 −e2αTΨ(T)+ (

1−e2αT)(−V

2α

))
X̄ Q
α

)
,

which completes our proof.

We have actually solved the more difficult problem of the finite-time cost first. This
allows us to treat the more simple infinite-time cost as a special case of the finite-time
cost.

Theorem C.9. Assume that α< 0 and that Aα is stable. The expected discounted infinite-
time cost (C.48) is given by

E
[

J
]= tr

((
Ψ0 − V

2α

)
X̄ Q
α

)
. (C.57)

Proof. We consider Theorem C.8 as T →∞. Because α < 0 we have e2αT → 0. In addi-
tion, for stable Aα it also holds that

e2αTΨ(T) = e AαT (
Ψ0 −X V)

e AT
αT +e2αT X V → 0. (C.58)

This implies that (C.50) directly turns into (C.57), completing the proof.

It is interesting to note that Theorem C.8 also turns into Theorem C.7 when α→ 0.
To see why, we should realize that, according to l’Hôpital’s rule, we have

lim
α→0

1−e2αT

2α
= lim
α→0

d
dα

(
1−e2αT

)
d

dα (2α)
= lim
α→0

−2Te2αT

2
=−T. (C.59)

It is also fun to insert the steady-state state distribution Ψ0 = X V into Theorem C.9 and
see what happens. In this case, using V =−AX V −X V AT , we find that

E
[

J
]= tr

((
X V − V

2α

)
X̄ Q
α

)
(C.60)

= 1

2α
tr

((
2αX V + AX V +X V AT)

X̄ Q
α

)
= 1

2α
tr

((
AαX V +X V AT

α

)
X̄ Q
α

)
= 1

2α
tr

(
X V

(
AT
α X̄ Q

α + X̄ Q
α Aα

))
=− 1

2α
tr

(
X V Q

)
,

C.3. LINEAR QUADRATIC GAUSSIAN CONTROL

C

301

which is what we can expect whenΨ(t) = X V for any t .
So now we know how to find the mean of the cost for various different cost functions.

It is also possible to find the variance of the cost, which we will look at in Section C.4.
But first we will add an input to the system and see how we can use it to minimize the
(expected) cost.

C.3. LINEAR QUADRATIC GAUSSIAN CONTROL
It is time to add an input to the system. This requires us to come up with a control law
too. The fundamental question is ‘Which control law can minimize the (expected) cost?’

To investigate this, we start by examining a system without any process noise. We first
do this for the non-discounted cost function (Section C.3.1) and then extend the ideas to
the discounted cost function (Section C.3.2). Then we reintroduce the process noise, as
well as an uncertain initial state, and look at how this affects the situation (Section C.3.3).
Finally we add measurement noise as well. We look at how we can then estimate the state
(Section C.3.4) and then use this estimate to optimally control the system (Section C.3.5).

C.3.1. THE INPUT THAT OPTIMIZES THE COST FUNCTION
We start off by considering a relatively simple case. Consider the linear system with a
system input u(t) but without process noise

ẋ(t) = Ax(t)+Bu(t). (C.61)

We also assume that we know the initial state x0. We want to control this system in
some optimal way, with optimal meaning it minimizes the cost J . Here, we also want to
penalize excessive inputs, and so we use the cost function

J =
∫ ∞

0

(
xT (t)Qx(t)+uT (t)Ru(t)

)
d t . (C.62)

We have already seen the positive semi-definite state penalty matrix Q. Now we also
have a positive definite input penalty matrix R. Both matrices are symmetric.

To optimally control the system, we now need to find a control law u(t) = π∗(x(t))
which always results in a cost that is lower or equal to the cost resulting from any other
control law π(x(t)), irrespective of which initial state x0 the system starts from. What
would such an optimal control law look like? The following theorem tells us that it at
least must be linear in the state.

Theorem C.10. Consider the linear system (C.61). Assume that there is a control law
u(t) =π(x(t)) which can stabilize the system. Then there exists at least one optimal con-
trol law u(t) = π∗(x(t)) which minimizes the quadratic cost function (C.62). Further-
more, of all the optimal control laws, there is always at least one which is linear in x(t); so
of the form π∗(x(t)) =−F x(t). The resulting optimal cost function J∗ is quadratic in the
initial state x0; so of the form J∗(x0) = xT

0 X̄ x0.

Proof. The first part of the theorem claims that, for a stabilizable system, there is an
optimal control law. The reason for this is that, for a stabilizing control law π(x(t)), the
cost J (x0) is finite but positive. As such, it must have a minimum, and the corresponding

C

302 C. LINEAR SYSTEMS THEORY

control law π∗(x(t)) resulting in this minimum is the optimal control law. Of course
it may happen that there are multiple control laws resulting in the same optimal cost
function J∗(x0).

To prove that the cost is quadratic in the initial state, we are going to do a thought
experiment. This thought experiment actually consists of three simulation runs, which
are visualized in the left part of figure C.1.

Figure C.1: A graphical illustration of the thought experiment which proves the cost function is quadratic in
the initial state.

1. Suppose that we know some optimal control law u(t) =π∗(x(t)), which is not neces-
sarily linear. For our first simulation run, we put the system in some initial state x0

and run this control lawπ∗. We keep track of the state and denote the resulting state
progression by x1(t), with x1(0) = x0. We also remember exactly which input u1(t)
we applied at each time t . At the end of our experiment, we have accumulated the
(optimal) cost J1 = J∗(x0).

2. For our second experiment, we are going to scale the previous experiment. That is,
we are going to start in an initial state x2(0) = kx0, with k a nonzero number. We
then apply the control input u2(t) = ku1(t). Now something interesting happens.
Because the system is linear, we will have x2(t) = kx1(t) for all future times t . In other
words, everything is k times as large! As a result, we know that the cost J2 which we
accumulate will equal k2 J1 = k2 J (x0).

3. For our third experiment, we again start in x3(0) = kx0, yet this time we simply apply
our optimal control law u =π∗(x). The resulting cost will necessarily be optimal and
will equal J3 = J∗(kx0).

Now compare experiments 2 and 3. Both experiments had the same initial state, and
in experiment 3 the cost was optimal. This means that we must have J2 ≥ J3, or

k2 J∗(x0) ≥ J∗(kx0). (C.63)

Next, we can do another set of three experiments, but now with the set-up as shown in
the right part of figure C.1. That is, we first start in x1(0) = kx0 and apply u1(t) =π∗(x(t)).

C.3. LINEAR QUADRATIC GAUSSIAN CONTROL

C

303

Then we start in x2(0) = x0 and apply u2(t) = 1
k u1(t). Finally we start in x3(0) = x0 and

apply u(t) =π∗(x(t)). This set of experiments tells us that

1

k2 J∗(kx0) ≥ J∗(x0). (C.64)

If we combine the above two equations, then we find that equality must hold. That is,

k2 J∗(x0) = J∗(kx0). (C.65)

From this we can conclude that, when the initial state x0 becomes k times as large, then
the optimal cost J∗ becomes k2 as large. In other words, the cost function is quadratic
in x0. (Technically, for the multivariate case, there is an extra condition which must be
met. For details on this, see Anderson and Moore (1990), section 2.3.)

In addition, we have seen that when we take linear combinations of an optimal con-
trol law, we still wind up with an optimal control law. We can use this to show that when
there is an optimal control law, there is also at least one optimal control law which is
linear. To do that, we can actually take an optimal control law π∗(x(t)) and construct a
linear optimal control law from it. First, we define the unit vectors e1,e2, . . . as

e1 =

1
0
...

 ,e2 =

0
1
...

 , (C.66)

We then define the matrix F as

F =−[
π∗(e1) π∗(e2) · · · π∗(en)

]
, (C.67)

and use the linear control lawπ(x(t)) =−F x(t). Because linear combinations of optimal
control laws also result in optimal control laws, this control law must be optimal. This
proves that there is an optimal control law which is linear.

The above theorem has told us that, to find the optimal control law, it is enough to
focus on control laws of the form u(t) =−F x(t), with F the feedback matrix. But what is
the optimal feedback matrix F̌ , minimizing the cost function?

Theorem C.11. Consider the linear system ẋ(t) = Ax(t)+Bu(t) with feedback law u(t) =
−F x(t). Assume that it is stabilizable: there is a matrix F for which A −BF is stable. The
optimal feedback matrix F̌ minimizing the cost function (C.62) is given by

F̌ ≡ R−1B T X̌ , (C.68)

where the optimal cost matrix X̌ is the solution to the Riccati equation

AT X̌ + X̌ A+Q − X̌ BR−1B T X̌ = 0. (C.69)

The resulting cost of the system subject to an initial state x0 equals

J = xT
0 X̌ x0. (C.70)

C

304 C. LINEAR SYSTEMS THEORY

Proof. Subject to the feedback law, the system behaves as ẋ(t) = (A−BF)x(t). The solu-
tion for x(t) will hence be

x(t) = e(A−BF)t x0. (C.71)

The cost function now becomes

J =
∫ ∞

0
xT (t)(Q +F T RF)x(t)d t (C.72)

= xT
0

(∫ ∞

0
e(A−BF)T t (Q +F T RF)e(A−BF)t d t

)
x0.

We know from Theorem A.25 that, when A − BF is stable, the above integral equals

X̄ Q+F T RF
A−BF , which is per definition the solution to the Lyapunov equation

(A−BF)T X̄ Q+F T RF
A−BF + X̄ Q+F T RF

A−BF (A−BF)+ (Q +F T RF) = 0. (C.73)

For ease of notation, we will write X̄ Q+F T RF
A−BF just as X̄ . The cost J now equals

J = xT
0 X̄ x0. (C.74)

The matrix X̄ here is paramount to the cost function J , which is why we call it the cost
matrix. We now want to find for which feedback matrix F the above cost is minimized.
We should realize here that, if we choose F , we directly also find X̄ from (C.73).

Now let’s ask ourselves, for which F do we get a cost matrix X̄ such that F = R−1B T X̄ ?
To answer this question, we rewrite (C.73) by completing the squares with respect to F .
(See Theorem C.12 for details on how to do this.) The result becomes

(F −R−1B T X̄)T R(F −R−1B T X̄)+Q + AT X̄ + X̄ A− X̄ BR−1B T X̄ = 0. (C.75)

If we have picked our feedback matrix F such that F = R−1B T X̄ , then the first term will
be zero. It follows that X̄ satisfies the Riccati equation (C.69) and hence X̄ = X̌ , implying
that F = F̌ = R−1B T X̌ .

But what if F 6= R−1B T X̄ ? In this case the first term is not zero but, because R is
positive definite, it must be positive definite or positive semi-definite matrix. The crucial
thing though, is that this matrix will be directly added to Q. So picking the feedback
matrix F to be unequal to R−1B T X̄ is equivalent to increasing the state penalty matrix Q
by a positive semi-definite matrix. Naturally, increasing the state penalty matrix Q by a
positive semi-definite matrix cannot decrease the cost. It only increases it for many (if
not all) initial states x0.

From this we conclude that the optimal F must satisfy F = R−1B T X̄ . The correspond-
ing X̄ must then satisfy the Riccati equation (C.69). So if we take the solution X̌ from the
Riccati equation and set up F̌ = R−1B T X̌ , we get an optimal feedback matrix.

Theorem C.12. The Lyapunov equation

(A−BF)T X̄ + X̄ (A−BF)+ (Q +F T RF) = 0 (C.76)

can be rewritten, by completing the squares with respect to F , to

(F −R−1B T X̄)T R(F −R−1B T X̄)+ AT X̄ + X̄ A+Q − X̄ BR−1B T X̄ = 0. (C.77)

C.3. LINEAR QUADRATIC GAUSSIAN CONTROL

C

305

Proof. We want to rewrite the first equation to a quadratic form

(F −T1)T T2(F −T1)+T3 = 0, (C.78)

where T1, T2 and T3 are terms which we still need to find, but none of them have F in
them. To find T1, T2 and T3, we expand the above to

F T T2F −F T T2T1 −T T
1 T2F +T T

1 T2T1 +T3 = 0. (C.79)

Now we will compare equations (C.76) and (C.79). By looking at all the terms that have
two F ’s in them, we can immediately see that T2 = R. Then, by comparing all terms that
have only one F in them, we find that

T T
1 T2F = X̄ BF. (C.80)

Although there might be multiple values of T1 which satisfy this equation, we are sure
that one of them equals

T1 = (X̄ BT −1
2)T = R−1B T X̄ . (C.81)

Remember that both R and X̄ are assumed to be symmetric, while B is not.
Finally, by looking at all terms that are so far unaccounted for, we find that

T T
1 T2T1 +T3 = AT X̄ + X̄ A+Q. (C.82)

This implies that

T3 = AT X̄ + X̄ A+Q −T T
1 T2T1 = AT X̄ + X̄ A+Q − X̄ BR−1RR−1B T X̄ . (C.83)

Now that we have T1, T2 and T3, we can plug them into equation (C.78) to get (C.77).

It is important to note the order of the steps when finding F and X̄ . If we choose
any (sub-optimal) feedback matrix F , then we can find the cost matrix X̄ within the cost
function J = xT

0 X̄ x0 by solving the Lyapunov equation (C.73). However, if we want to
find the optimal control law, we first have to find the optimal cost matrix X̌ and then
use (C.68) to find the optimal feedback matrix F̌ . For this feedback matrix F̌ , the optimal
cost matrix X̌ of course also satisfies the Lyapunov matrix (C.73).

Also, keep in mind that this is the feedback matrix minimizing the infinite-time cost
function. It is not the feedback matrix minimizing the finite-time cost function. In fact,
optimizing the cost for a finite-time experiment is a more complicated problem, because
you also need to take into account the time you still have left in the experiment. If you
are just starting your experiment, it is worthwhile to apply significant inputs to improve
the state. However, when you are nearing the end, applying inputs will mostly be useless.
It will cost you due to R, but there will not be enough time to reap the benefits from the
improved state. We will not consider the problem of analytically optimizing the finite-
time cost.

C

306 C. LINEAR SYSTEMS THEORY

C.3.2. DIFFERENCES FOR THE DISCOUNTED COST FUNCTION
In Section C.2.4 we have studied the discounted cost function (C.48). Suppose that we
would also introduce such a discount here, getting the cost function

J =
∫ ∞

0
e2αt (

xT (t)Qx(t)+uT (t)Ru(t)
)

d t . (C.84)

How would this affect the optimal feedback matrix F̌ ?

Theorem C.13. Consider the linear system ẋ(t) = Ax(t)+Bu(t) with feedback law u(t) =
−F x(t). Assume that it is stabilizable up to degree α: there is a matrix Fα for which
Aα−BFα is stable. The optimal feedback matrix F̌α minimizing the discounted cost func-
tion (C.84) is given by

F̌α ≡ R−1B T X̌α, (C.85)

where the optimal discounted cost matrix X̌α is the solution to the Riccati equation

AT
α X̌α+ X̌αAα+Q − X̌αBR−1B T X̌α = 0. (C.86)

The resulting optimal cost of the system subject to an initial state x0 equals

J = xT
0 X̌αx0. (C.87)

Proof. Similarly to what was done in (C.72), we can find that the discounted cost is

J =
∫ ∞

0
e2αt xT (t)(Q +F T RF)x(t)d t (C.88)

= xT
0

(∫ ∞

0
e2αt e(A−BF)T t (Q +F T RF)e(A−BF)t d t

)
x0

= xT
0

(∫ ∞

0
e(A+αI−BF)T t (Q +F T RF)e(A+αI−BF)t d t

)
x0.

Now we can see that this equation is identical to what we had in (C.72), except that A is
replaced by Aα. As a result, the outcome is also the same, except with A replaced by Aα

in the derivation of the optimal cost matrix X̌ and the optimal feedback matrix F̌ .

It is interesting to note how α affects the stability of the controlled system Aα−BFα.
The main idea is that we always find a feedback matrix Fα (when possible) such that the
controlled system Aα−BFα is stable. In other words, the real parts of the eigenvalues of
Aα−BFα will be smaller than zero. Or equivalently, the real parts of the eigenvalues of
A−BFα will be smaller than −α.

Interestingly this means that, if α< 0, the controlled system is not necessarily stable.
We just know that the system state x(t) diverges less quickly than that the weight factor
eαt converges to zero, such that e2αt xT (t)Qx(t) still converges to zero. Controllers re-
sulting from negative values of α are therefore often lazy. They prefer to incur the cost of
a future bad state, rather than applying an input now to prevent that state.

Similarly, if α > 0, the controlled system is most certainly stable, because all the
eigenvalues of the controlled system are prescribed to be smaller than −α. This is why α
is in this case known as the prescribed degree of stability. It results in a more aggressive
control law to ensure this stability requirement. Such a control law prefers to apply an
input now to prevent a future bad state.

C.3. LINEAR QUADRATIC GAUSSIAN CONTROL

C

307

C.3.3. REINTRODUCING PROCESS NOISE
Next we will add input noise again. So we consider the system

ẋ(t) = Ax(t)+Bu(t)+v (t) = (A−BF)x(t)+v (t), (C.89)

where we assume that we fully know the state x(t) when determining the input u(t).
What is the optimal way to control this system?

Before we start, we need to make a few important realizations. First of all we need to
realize that, due to the noise, all parameters became random variables again, including
the cost J . So we need to work with the expectationE

[
J
]

again. Secondly, because of the
noise, the cost J has become infinite, as we discovered in Section C.2.1. We need to work
around that.

There are two ways to do so. We could minimize the expected steady-state cost
rate (C.47), or use a negative discount exponent α like in Theorem C.9. We will consider
the steady-state cost rate first. When we do, we actually find exactly the same feedback
matrix as in Theorem C.11.

Theorem C.14. Consider the linear system ẋ(t) = Ax(t)+Bu(t)+ v (t) with feedback law
u(t) =−F x(t). Assume that it is stabilizable: there is a matrix F for which A−BF is stable.
The optimal feedback matrix F̌ minimizing the expected steady-state cost rate (C.47) (with
α = 0) is the same as the one defined in (C.68). It results in an optimal steady-state cost
rate of

lim
T→∞

dE
[

J
T

]
dT

= tr
(
V X̌

)
. (C.90)

Proof. We need to minimize the expected steady-state cost rate (C.47). We should keep
in mind here that we are using a system

ẋ(t) = (A−BF)x(t)+v (t) = Ãx(t)+v (t), (C.91)

as well as a cost function

J =
∫ ∞

0
xT (t)

(
Q +F T RF

)
x(t)d t =

∫ ∞

0
xT (t)Q̃x(t)d t . (C.92)

It follows that the expected steady-state cost rate we need to minimize equals

lim
T→∞

dE
[

J
T

]
dT

= tr
(
V X̄ Q̃

Ã

)
. (C.93)

By using Theorem A.25 we can rewrite this to

lim
T→∞

dE
[

J
T

]
dT

= tr

(
V

∫ ∞

0
e(A−BF)T t (

Q +F T RF
)

e(A−BF)t d t

)
. (C.94)

Previously, in Theorem C.11, we needed to minimize the cost (C.72) which equaled

J = xT
0

(∫ ∞

0
e(A−BF)T t (Q +F T RF)e(A−BF)t d t

)
x0 (C.95)

= tr

(
Ψ0

(∫ ∞

0
e(A−BF)T t (Q +F T RF)e(A−BF)t d t

))
.

C

308 C. LINEAR SYSTEMS THEORY

So we see that these problems are actually exactly the same, except that Ψ0 is replaced
by V . Since both Ψ0 and V are just constants, the optimal F is exactly the same. To
minimize the steady-state cost rate, we therefore need to choose F̌ from Theorem C.11,
which turns the integral into X̌ . The result is a steady-state cost rate of (C.90).

Do things change if we use a discount exponent? At this point it probably will not
surprise you that the answer is ‘No’. We get the optimal feedback matrix F̌α from Theo-
rem C.13.

Theorem C.15. Consider the linear system ẋ(t) = Ax(t)+Bu(t)+ v (t) with feedback law
u(t) =−F x(t). Assume that it is stabilizable up to degree α: there is a matrix Fα for which
Aα−BFα is stable. The optimal feedback matrix F̌α minimizing the discounted cost func-
tion (C.84) is the same as the one defined in (C.85). It results in an optimal expected cost
of

E
[

J
]= tr

((
Ψ0 − V

2α

)
X̌α

)
. (C.96)

Proof. We know from Theorem (C.9) that the discounted cost equals

E
[

J
]= tr

((
Ψ0 − V

2α

)
X̄ Q+F T RF

Aα−BF

)
(C.97)

= tr

((
Ψ0 − V

2α

)(∫ ∞

0
e(A+αI−BF)T t (Q +F T RF)e(A+αI−BF)t d t

))
.

In Theorem C.13 we needed to optimize (C.88), which equaled

J = tr

(
Ψ0

(∫ ∞

0
e(A+αI−BF)T t (Q +F T RF)e(A+αI−BF)t d t

))
. (C.98)

Here we can see that these problems are exactly the same, albeit that Ψ0 has been re-
placed by

(
Ψ0 − V

2α

)
. As such, they also have the same solution F̌α from (C.85), which

turns the integral into X̌α. The resulting expected costE
[

J
]

equals (C.96).

We can conclude that adding process noise does not really affect our optimal control
strategy. We had a strategy which was optimal at getting rid of initial disturbances x0.
This same strategy is also optimal at getting rid of new disturbances caused by process
noise v (t). But does the same hold when we introduce measurement noise?

C.3.4. ESTIMATING THE STATE FROM NOISY MEASUREMENTS
We will now make the problem quite a bit harder by adding a measurement equation to
our system. This turns our system into

ẋ(t) = Ax(t)+Bu(t)+v (t), (C.99)

y(t) =C x(t)+w (t),

where w (t) is the measurement noise. Similarly to v (t), we assume w (t) is zero-mean
Gaussian white noise with intensity W .

C.3. LINEAR QUADRATIC GAUSSIAN CONTROL

C

309

We also assume that we cannot measure the full state x(t) anymore. So we cannot
use it to determine the input u(t). At time t we do know the output y(t), but this is of
course corrupted by measurement noise.

To solve this, we will introduce an observer. This observer uses a state estimate x̂(t)
which approximates x(t). We initialize this state estimate at what we expect the state
x(t) to be. That is, x̂0 =E

[
x(0)

]=µ0. We then update it through the estimate update law

˙̂x(t) = Ax̂(t)+Bu(t)+K
(

y(t)−C x̂(t)
)

. (C.100)

The idea behind this update law is that x̂(t) acts just like x(t). It is only when the mea-
surement y(t) =C x(t) is unequal to C x̂(t) that we adjust x̂(t) to correspond more to the
measurements. The amount by which we do this depends on the observer gain matrix
K .

We now want to choose K such that it minimizes the state estimation error e(t) ≡
x̂(t)−x(t). This error is a random variable as well, which makes it hard to minimize. The
best we can do is minimize its variance, which is what the next theorem is all about.

Theorem C.16. Consider the linear system (C.99) with state estimator (C.100). Assume
that it is detectable: there is a matrix K for which A−KC is stable. The minimum steady-
state error covariance matrix Ě equals the solution of the Riccati equation

AĚ + Ě AT +V − ĚC T W −1C Ě = 0, (C.101)

where the corresponding optimal observer gain matrix Ǩ equals

Ǩ = ĚC T W −1. (C.102)

Proof. To prove this, we will analyze the behavior of e(t). We can find that ė(t) equals

ė(t) = ˙̂x(t)− ẋ(t) (C.103)

= Ax̂(t)+Bu(t)+K (y(t)−C x̂(t))− Ax(t)−Bu(t)−v (t)

= A(x̂(t)−x(t))+K (C x(t)+w (t)−C x̂(t))−v (t)

= (A−KC)e(t)+K w (t)−v (t).

We can now use Theorem C.2 to find how the meanµe (t) and the covariance matrixΣe (t)
of the error e(t) vary over time. We know that, because x̂0 =E

[
x0

]
, the initial mean of e

equals
µe (0) ≡E[

e(0)
]=E[

x̂0 −x0

]=E[
E

[
x0

]−x0

]= 0. (C.104)

It follows from Theorem C.2 that

µe (t) ≡E[
e(t)

]= e(A−KC)tµe (0) = 0. (C.105)

The covariance matrix Σe (t) will not be zero. Instead, the initial covariance matrix Σe (0)
equals

Σe (0) ≡E
[(

e(0)−E[
e(0)

])(
e(0)−E[

e(0)
])T

]
=E[

e(0)eT (0)
]

(C.106)

=E
[(

x0 −E
[

x0

])(
x0 −E

[
x0

])T
]
=Σ0.

C

310 C. LINEAR SYSTEMS THEORY

The covariance of e(t) now develops according to

Σe (t) = e(A−KC)t (Σe (0)−E)e(A−KC)T t +E , (C.107)

where E is the solution to the Lyapunov equation

(A−KC)E +E(A−KC)T + (V +K W K T) = 0. (C.108)

This means that, as long as A −KC is stable, the error covariance Σe (t) will converge
to the steady-state error covariance E . And our job is to choose the matrix K so as to
minimize E .

We have actually already seen this exact problem before, in the proof of Theorem C.11.
Just like we did there, we can complete the squares with respect to W to find that

(K −EC T W −1)W (K −EC T W −1)T +V + AE +E AT −EC T W −1C E = 0. (C.109)

Through a similar argument, we now find that K can only minimize E when it satisfies
K = EC T W −1. It follows that E must satisfy the Riccati equation (C.101), proving the
theorem.

C.3.5. OPTIMAL CONTROL BASED ON THE STATE ESTIMATE
Now that we have an estimate x̂(t) of the state, how do we use this to control the system?

The main idea here is to pretend that the estimate x̂(t) is the true state. In other
words, we replace our old control law u(t) =−F x(t) by the new law u(t) =−F x̂(t). This
turns the system equations into

ẋ(t) = Ax(t)−BF x̂(t)+v (t), (C.110)

˙̂x(t) = Ax̂(t)−BF x̂(t)+K (C x(t)+w (t)−C x̂(t)). (C.111)

We can plug all this in a matrix form according to[
ẋ(t)
˙̂x(t)

]
=

[
A −BF

KC A−BF −KC

][
x(t)
x̂(t)

]
+

[
v (t)

K w (t)

]
. (C.112)

Instead of writing the system using x(t) and x̂(t) in the state, we can also write it using
x(t) and e(t) in the state. This time, the system equations are given by

ẋ(t) = (A−BF)x(t)−BF e(t)+v (t), (C.113)

ė(t) = (A−KC)e(t)+K w (t)−v (t). (C.114)

If we put this in a matrix form, we get[
ẋ(t)
ė(t)

]
=

[
A−BF −BF

0 A−KC

][
x(t)
e(t)

]
+

[
v (t)

K w (t)−v (t)

]
. (C.115)

The interesting point is that, in both of these cases, we wind up with a system of the
form ˙̃x(t) = Ãx̃(t)+ ṽ (t), for some new state vector x̃(t), some system matrix Ã and some

C.3. LINEAR QUADRATIC GAUSSIAN CONTROL

C

311

zero-mean Gaussian white noise ṽ (t) with intensity Ṽ . For instance, in the last case we
have

x̃(t) =
[

x(t)
e(t)

]
, Ã =

[
A−BF −BF

0 A−KC

]
and Ṽ =

[
V −V
−V K W K T +V

]
. (C.116)

In addition, using u(t) =−F x̂(t) =−F
(
x(t)+e(t)

)
we can write the cost as

J =
∫ ∞

0
e2αt

(
xT (t)Qx(t)+ (

x(t)+e(t)
)T F T RF

(
x(t)+e(t)

))
d t (C.117)

=
∫ ∞

0
e2αt

[
x(t)
e(t)

]T [
Q +F T RF F T RF

F T RF F T RF

][
x(t)
e(t)

]
d t =

∫ ∞

0
e2αt x̃T (t)Q̃ x̃(t)d t .

Given the feedback matrix F and the observer gain matrix K , it is always possible to write
the system as ˙̃x(t) = Ãx̃(t)+ ṽ (t), with corresponding state penalty matrix Q̃. So when
analyzing the properties of J , we only need to consider systems of this form.

The main question we still have to ask is: which combination of matrices F and K is
optimal for our full system? Fascinatingly, it turns out that our previous optimal matrices
F̌ and Ǩ , when applied together, are still optimal in this situation. This means that we
can set up our optimal controller and observer separately, and then connect them to
wind up with an optimal system. This is known as the separation principle.

Theorem C.17. Consider the linear system (C.115). Assume that there are matrices F and
K for which A−BF and A−KC are stable. The expected steady-state cost rate (C.47) (with
α= 0) is minimized by the feedback matrix F̌ from (C.68) and the observer gain matrix Ǩ
from (C.102). The resulting expected steady-state cost rate equals

lim
T→∞

dE
[

J
T

]
dT

= tr
(
X̌ Ǩ W Ǩ T)+ tr

(
ĚQ

)= tr
(
X̌ V

)+ tr
(
Ě F̌ T RF̌

)
. (C.118)

Proof. We start by rewriting the system. We already saw two ways of writing the system,
being (C.112) and (C.115). We will instead use[˙̂x(t)

ė(t)

]
=

[
A−BF −KC

0 A−KC

][
x̂(t)
e(t)

]
+

[
K w (t)

K w (t)+v (t)

]
. (C.119)

You may have noted that we write the state estimate x̂(t) as a random variable too now.
It is true that we know the estimate x̂(t) deterministically at time t , when it follows from
the estimate update law (C.100). However, before then it will still depend on what exact
noise we will get, and so it can take a variety of values. As such, we must treat it as a
random variable.

For the above system, the equivalent system vectors/matrices are

x̃(t) =
[

x̂(t)
e(t)

]
, Ã =

[
A−BF −KC

0 A−KC

]
, (C.120)

Ṽ =
[

K W K T K W K T

K W K T K W K T +V

]
, Q̃ =

[
Q +F T RF −Q

−Q Q

]
.

C

312 C. LINEAR SYSTEMS THEORY

Subject to these system matrices, we want to optimize the expected steady-state cost rate

lim
T→∞

dE
[

J
T

]
dT

= lim
T→∞

E
[

x̃T (T)Q̃ x̃(T)
]= tr

(
Ṽ X̄ Q̃

Ã

)
= tr

(
X Ṽ

Ã
Q̃

)
, (C.121)

where we have applied (C.47). Note that we have two expressions for the cost rate. Which
one is better to use?

Earlier we saw that this depends on whether we want to optimize F or K . Keep in
mind here that Ã and Q̃ depend on F , while Ṽ does not. This means that, when optimiz-

ing F , it is better to use the first relation, because then we only have to optimize X̄ Q̃
Ã

. In

fact, this is what we did at Theorem C.11. On the flip side, Ã and Ṽ depend on K , while Q̃
does not. So when optimizing K , it is better to use the second relation. This then comes

down to optimizing X Ṽ
Ã

, which we did at Theorem C.16.
But what do we do when we want to optimize K and F simultaneously? In this case,

why not try picking K first, and see how that affects our optimization problem for F ? So

we want to optimize X Ṽ
Ã

. We know that this matrix satisfies ÃX Ṽ
Ã
+X Ṽ

Ã
ÃT + Ṽ = 0, which

we can write as[
A−BF −KC

0 A−KC

][
X11 X12

X T
12 X22

]
+

[
X11 X12

X T
12 X22

][
(A−BF)T 0
−C T K T (A−KC)T

]
(C.122)

+
[

K W K T K W K T

K W K T K W K T +V

]
= 0.

It is worthwhile to note that X Ṽ
Ã

is the steady-state covariance of x̃(t). In other words, we
have

X11 = lim
t→∞E

[
x̂(t)x̂T (t)

]
, (C.123)

X22 = lim
t→∞E

[
e(t)eT (t)

]
, (C.124)

X12 = lim
t→∞E

[
x̂(t)eT (t)

]
. (C.125)

Expanding the matrix equation now results in four separate equations, being

(A−BF) X11 −KC X T
12 +X11 (A−BF)T −X12C T K T +K W K T = 0, (C.126)

(A−KC) X T
12 +X T

12 (A−BF)T −X22C T K T +K W K T = 0, (C.127)

(A−BF) X12 −KC X22 +X12 (A−KC)T +K W K T = 0, (C.128)

(A−KC) X22 +X22 (A−KC)T +K W K T +V = 0. (C.129)

The expected steady-state cost rate follows as

lim
T→∞

dE
[

J
T

]
dT

= tr
(

X Ṽ
Ã

Q̃
)
= tr

(
X11

(
Q +F T RF

)−X12Q −X T
12Q +X22Q

)
. (C.130)

So how shall we pick K ? What we could do is choose the value of K which minimizes
the term tr(X22Q). After all, neither X22 nor Q depends on F and (C.129) fully specifies

C.3. LINEAR QUADRATIC GAUSSIAN CONTROL

C

313

X22, given K . This does not guarantee that K is optimal, because we are only optimizing
a part of the complete cost expression. Though later we will see that it is indeed the
optimal observer gain matrix.

The resulting optimization problem is one which we have seen before. It is the exact
same problem we faced at Theorem C.16. As a result, the solution must be the same
optimal observer gain matrix Ǩ = ĚC T W −1, where Ě = X22 is the resulting steady-state
error covariance.

Next, let’s look at how this affects the rest of the problem. We start at either (C.127)
or (C.128); these two equations are equivalent. For the resulting value of K and X22 we
have KC X22 = K W K T . It follows that X12 = 0, which in turn reduces (C.126) to the Lya-
punov equation

(A−BF) X11 +X11 (A−BF)T + Ǩ W Ǩ T = 0. (C.131)

In other words, X11 equals the Lyapunov solution X Ǩ W Ǩ T

A−BF and we need to choose F so

as to optimize tr
(
X11

(
Q +F T RF

))
. We can also write this as tr

(
Ǩ W Ǩ T X̄ Q+F T RF

A−BF

)
(see

Theorem A.29) where we per definition must have

(A−BF)T X̄ Q+F T RF
A−BF + X̄ Q+F T RF

A−BF (A−BF)+Q +F T RF = 0. (C.132)

We need to optimize this with respect to F . Luckily, we have already seen this exact prob-
lem before at (C.73). The resulting solution equaled X̌ from Theorem C.11. Using this
result, we can write the expected steady-state cost rate as the first expression in (C.118).

But wait a second. What we have done so far is pick a value K = Ǩ and then optimize
F to F̌ . Who says that this is the joint optimum for K and F together? To prove that it is,
we can also do this exact derivation in a different set-up. Instead of putting x̂(t) and e(t)
into x̃(t), we now use x(t) and e(t). That is, we use (C.116) and (C.117). We then follow

the exact same steps, with main exception that we do not optimize tr
(

X Ṽ
Ã

Q̃
)

but instead

use tr
(
Ṽ X̄ Q̃

Ã

)
.

Because of this change, we now first have to pick F = F̌ . Optimizing for K would then
result in K = Ǩ . So using F = F̌ implies K = Ǩ is optimal, while using K = Ǩ implies using
F = F̌ is optimal. This important result means that the combination (F̌ , Ǩ) is at least a
local optimum of the problem. But since the problem is quadratic in F and K , it must
also be the global optimum.

An interesting side-effect of the above derivation is that we do wind up with a differ-
ent expression for the expected steady-state cost rate. It now equals the second expres-
sion from (C.118).

An interesting result from the previous theorem is that (C.125) equals zero. In other
words, the steady state error e(t) and estimate x̂(t) are uncorrelated and hence – since
they are Gaussian – independent. As a result, we can expand (C.121) into

lim
T→∞

dE
[

J
T

]
dT

= lim
T→∞

E
[

x̂T (T)
(
Q +F T RF

)
x̂(T)

]+ lim
T→∞

E
[
eT (T)Qe(T)

]
. (C.133)

The cost rate required just to the control the state estimate x̂(t) now equals tr
(
X̌ V

)
, while

the cost rate only due to the estimation error e(t) is tr
(
ĚQ

)
. But the sum of these two

terms is less than the total expected cost rate (C.118).

C

314 C. LINEAR SYSTEMS THEORY

The reason why we eventually wind up with more costs is because there is still cou-
pling between the two parameters e(t) and x̂(t). To be precise, the error affects the state
estimate due to the term −KC within Ã. Intuitively this means that, when there is an
error e(t), this error results in inputs u(t) to control the estimate x̂(t), even though that
estimate turns out to be wrong. Luckily x̂(t) does not influence e(t), which is the reason
why we can still design our controller and observer separately. But the cost we wind up
with is higher than the cost we would expect to get from each individual part.

The final question we should ask ourselves is whether this result also holds for the
discounted cost function. The answer is that it does. There is one difference though.
The costs only due to the error, given by∫ ∞

0
e2αt eT (t)Qe(t)d t , (C.134)

are now not minimized anymore by Ǩ = ĚC T W −1. Instead, we need a new observer gain
matrix Ǩα.

Theorem C.18. Consider the linear system (C.115). Assume there are matrices Fα and Kα

for which Aα−BFα and Aα−KαC are stable. The expected discounted cost (C.84) with
α < 0 is minimized by the feedback matrix F̌α from (C.85) and the observer gain matrix
Ǩα given by

Ǩα = ĚαC T W −1, (C.135)

where Ěα is the solution to the Riccati equation

AαĚα+ ĚαAT
α + (V −2αΣ0)− ĚαC T W −1C Ěα = 0. (C.136)

The resulting expected cost equals

E
[

J
]= tr

((−X̌α

2α

)(
Ǩ W Ǩ T −2αµ0µ

T
0

))+ tr

((−Ěα
2α

)
Q

)
(C.137)

= tr

((−X̌α

2α

)
(V −2αΨ0)

)
+ tr

((−Ěα
2α

)
F̌ T RF̌

)
.

Proof. We can derive this result in almost the exact same way as we derived Theorem C.17.
We just need to pay attention to the minor differences.

First of all, the initial distribution of x̃(t) suddenly has become important. It equals

x̃0 =
[

x̂0
e0

]
∼N

([
µ0
0

]
,

[
0 0
0 Σ0

])
=N

(
µ̃0, Σ̃0

)
. (C.138)

According to Theorem C.9, the cost which we want to minimize now has turned from

tr
(
Ṽ X̄ Q̃

Ã

)
into

E
[

J
]= tr

((
Ψ̃0 − Ṽ

2α

)
X̄ Q̃

Ãα

)
. (C.139)

C.3. LINEAR QUADRATIC GAUSSIAN CONTROL

C

315

So we need to replace Ã by Ãα, or equivalently A by Aα. Similarly, we need to replace Ṽ

by
(
Ψ̃0 − Ṽ

2α

)
, or equivalently[

K W K T K W K T

K W K T K W K T +V

]
by

[
µ0µ

T
0 0

0 Σ0

]
− 1

2α

[
K W K T K W K T

K W K T K W K T +V

]
(C.140)

=
[
µ0µ

T
0 +K

(−W
2α

)
K T K

(−W
2α

)
K T

K
(−W

2α

)
K T K

(−W
2α

)
K T + (

Σ0 − V
2α

)] .

That is, we need to replace W by −W
2α and V by

(
Σ0 − V

2α

)
.

Picking K now can be done in the same way. We optimize the equivalent of (C.129),
which equals

(Aα−KC) X22 +X22 (Aα−KC)T +K

(−W

2α

)
K T +

(
Σ0 − V

2α

)
= 0. (C.141)

Let’s write the optimal value of X22 as Ě ′
α. It will be the solution of the Riccati equation

AαĚ ′
α+ Ě ′

αAT
α +

(
Σ0 − V

2α

)
− Ě ′

αC T
(−W

2α

)−1

C Ě ′
α = 0. (C.142)

So solving the Riccati equation gives us Ě ′
α. The corresponding optimal observer gain

matrix Ǩα then equals

Ǩα = Ě ′
αC T

(−W

2α

)−1

. (C.143)

The only downside is that these equations do not work as α→ 0, because then Ě ′
α →∞.

We fix this by multiplying (C.142) by −2α and subsequently defining Ěα = −2αĚ ′
α. This

results in the more familiar Riccati equation (C.136), while the optimal observer gain
matrix can be written as (C.135).

The result of this choice of K is that X12 = 0 again and that, equivalently to (C.131),
X11 becomes the solution of the Lyapunov equation

(Aα−BF) X11 +X11 (Aα−BF)T +µ0µ
T
0 +K

(−W

2α

)
K T = 0. (C.144)

We now want to choose F to minimize the expected cost

E
[

J
]= tr

(
X11

(
Q +F T RF

)+ Ě ′
αQ

)
(C.145)

= tr

((
µ0µ

T
0 +K

(−W

2α

)
K T

)
X̄ Q+F T RF

Aα−BF + Ě ′
αQ

)
,

where we have again applied Theorem A.29. Note that only the Lyapunov solution term
depends on F , and we already know how to find its optimum. To be precise, its optimum
is the same as previously, except that A has been replaced by Aα. It is hence the solution
X̌α to the Riccati equation (C.86). The corresponding value of F equals F̌α = R−1B T X̌α.
Rewriting the expected cost (C.145) will then result in the first expression from (C.137).
To find the second expression from (C.137) we should have used a different joint vector
x̃(t), identically to what was mentioned at the end of Theorem C.17.

C

316 C. LINEAR SYSTEMS THEORY

We know how α affects the feedback matrix F̌α. If α becomes negative, we get a lazy
controller. So how does α affect the observer gain matrix Ǩα?

To see how this works, we just need to compare the two discounted Riccati equa-
tions (C.86) and (C.136). They are nearly the same. C replaces B , W replaces R, (V −2αΣ0)
replaces Q, X̌α replaces Ěα and F̌α replaces Ǩα. If a negative value of α will cause F̌α to
be small, then the same will hold for Ǩα.

Intuitively you can see this as follows. When α is highly negative, the current time
is far more important than the future; even the near future. So the controller will think,
‘Aggressively adjusting the state to any process noise will cost effort now, and only slowly
improve the state over time. That doesn’t seem worth it, especially since the state will
soon be unimportant anyway.’ Similarly, the observer will think, ‘Aggressively adjusting
the state estimate to any measurement noise will cost effort now, and only slowly im-
prove this estimate over time. That doesn’t seem worth it, especially since any errors will
soon be unimportant anyway.’ The two thoughts are equivalent too.

The result of such a lazy observer is that the estimate x̂(t) will not fluctuate too much
along with measurement noise. As such, the total input applied to the system will be
less. However, it also means that any deviations of the observation error e(t) that may
be present due to noise will be damped out less quickly, resulting in a larger steady-state
error covariance limt→∞Σe (t).

An interesting fact is that, when we use α> 0, and we get a more aggressive observer,
then the steady-state error covariance limt→∞Σe (t) will also be larger. Feel free to reason
out for yourself why this is the case.

C.4. THE VARIANCE OF THE LQG COST

In Section C.2 we have derived expressions for the mean LQG cost E
[

J
]
. In this section

we expand on that by deriving expressions for the variance V
[

J
]
. We should note here

that the cost J does not have a Gaussian distribution, so the mean and variance do not
tell us everything about the distribution of J . (Look up Figure C.2 on page 330 to see what
the distribution does look like.) Nevertheless, the variance does give some information
about how spread out it will be.

We start by studying two special cases: the infinite-time case T →∞ (Section C.4.1)
and the non-discounted case α = 0. (Section C.4.2). This will let us know the general
method with which we can derive expressions for the variance. We then expand this
method to the general case with finite T and negativeα (Section C.4.3). Finally, we derive
our expressions all over again, but then using matrix exponentials instead of Lyapunov
solutions (Section C.4.4).

Most of the proofs you find in this section can also be found in Bijl et al. (2016), albeit
in an abbreviated form and with a slightly adjusted notation. So for the summary, you
can look up that paper. For the more elaborate and comprehensive version, keep on
reading here.

C.4. THE VARIANCE OF THE LQG COST

C

317

C.4.1. THE INFINITE-TIME CASE
We first investigate the infinite-time discounted cost function C.48. The variance of the
cost is given by

V
[

J
]≡E[(

J −E[
J
])2

]
=E[

J 2]−E[
J
]2 . (C.146)

We already know how to calculate E
[

J
]
, but how do we find E

[
J 2

]
, given the system

parameters A, V , Q, R,µ0 and Σ0? (Or alternatively usingΨ0 =Σ0+µ0µ
T
0 instead of Σ0?)

That is the key question. It will be answered by the following theorem, which uses the
notation from Appendix A.4.1.

Theorem C.19. Consider the system ẋ(t) = Ax(t)+v (t). Assume that α< 0 and that Aα is
stable. The varianceV

[
J
]

of the infinite-time cost C.48 is then given by

V
[

J
]= 2tr

((
Ψ0 X̄ Q

α

)2
)
−2

(
µT

0 X̄ Q
α µ0

)2 +4tr

((
XΨ0

2α − X V
2α

4α

)
X̄ Q
α V X̄ Q

α

)
. (C.147)

Proof. We start off by evaluatingE
[

J 2
]
. This equals

E
[

J 2]=E[(∫ ∞

0
e2αt xT (t)Qx(t)d t

)2]
(C.148)

=E
[(∫ ∞

0
e2αt1 xT (t1)Qx(t1)d t

)(∫ ∞

0
e2αt2 xT (t2)Qx(t2)d t

)]
=E

[∫ ∞

0

∫ ∞

0
e2α(t1+t2)xT (t1)Qx(t1)xT (t2)Qx(t2)d t2 d t1

]
.

The above quantity is a scalar, which means we can take the trace of it. This allows us to
apply Theorem B.20, resulting in

E
[

J 2]=E[∫ ∞

0

∫ ∞

0
tr

(
e2α(t1+t2)xT (t1)Qx(t1)xT (t2)Qx(t2)

)
d t2 d t1

]
(C.149)

=
∫ ∞

0

∫ ∞

0

(
tr

(
e2αt1Ψ(t1)Q

)
tr

(
e2αt2Ψ(t2)Q

)+2tr
(
e2α(t1+t2)Ψ(t2, t1)QΨ(t1, t2)Q

)
−2e2α(t1+t2)µT (t1)Qµ(t1)µT (t2)Qµ(t2)

)
d t2 d t1.

We know µ(t) from Theorem C.2 and both Ψ(t) and Ψ(t1, t2) from Theorem C.5. That
allows us to expand the above expression. This will give us overly long equations though,
so to prevent that, we will consider each of the three terms from the above equation
separately. That is, we writeE

[
J 2

]= T1 +T2 +T3, where

T1 =
∫ ∞

0

∫ ∞

0
tr

(
e2αt1Ψ(t1)Q

)
tr

(
e2αt2Ψ(t2)Q

)
d t2 d t1, (C.150)

T2 = 2
∫ ∞

0

∫ ∞

0
tr

(
e2α(t1+t2)Ψ(t2, t1)QΨ(t1, t2)Q

)
d t2 d t1, (C.151)

T3 =−2
∫ ∞

0

∫ ∞

0
e2α(t1+t2)µT (t1)Qµ(t1)µT (t2)Qµ(t2)d t2 d t1. (C.152)

C

318 C. LINEAR SYSTEMS THEORY

We can see right away (see for instance (C.37)) that T1 = E[
J
]2. It now follows directly

from (C.146) thatV
[

J
]= T2 +T3. So we only need to solve T2 and T3.

We start with T3. We can apply Theorem C.2 to expand µ(t) and then use Theo-
rem A.25 to solve the resulting integral. This will give us

T3 =−2

(∫ ∞

0
e2αtµT (t)Qµ(t)d t

)2

(C.153)

=−2

(∫ ∞

0
e2αtµT

0 e AT t Qe Atµ0 d t

)2

=−2

(
µT

0

(∫ ∞

0
e AT

α t Qe Aαt d t

)
µ0

)2

=−2
(
µT

0 X̄ Q
α µ0

)2
.

Next up is T2. This is the most tricky term to solve. The first reason why this is tricky is
because the expression (C.34) forΨ(t1, t2) is only valid for t1 ≤ t2. Luckily, we can notice
that the integrand of (C.151) is symmetric in t1 and t2. That is, if we interchange t1 and
t2, we get exactly the same integrand; except transposed, but the integrand is a scalar
anyway. Because of this, we do not have to integrate over the complete integration area
– all possible values of t1 and t2. We could also integrate over half the integration area –
only over the values t1 ≤ t2. By doing this, we get half the outcome, so we should multiply
the outcome by two. This gives us

T2 = 4
∫ ∞

0

∫ ∞

t1

tr
(
e2α(t1+t2)ΨT (t1, t2)QΨ(t1, t2)Q

)
d t2 d t1. (C.154)

This allows us to apply (C.34). If we then also define the shorthand notation∆=Ψ0−X V ,
it follows that

T2 = 4
∫ ∞

0

∫ ∞

t1

tr

(
e2α(t1+t2)

(
e At1

(
Ψ0 −X V)

e AT t2 +X V e AT (t2−t1)
)T

Q (C.155)(
e At1

(
Ψ0 −X V)

e AT t2 +X V e AT (t2−t1)
)

Q
)

d t2 d t1

= 4
∫ ∞

0

∫ ∞

t1

tr
(
e2α(t1+t2)e At2∆e AT t1Qe At1∆e AT t2Q +e2α(t1+t2)e A(t2−t1)X V QX V e AT (t2−t1)Q

+2e2α(t1+t2)e A(t2−t1)X V Qe At1∆e AT t2Q
)

d t2 d t1.

There are once more three terms in this expressions, which we will denote by T2,1, T2,2

and T2,3, respectively. To be precise,

T2,1 = 4
∫ ∞

0

∫ ∞

t1

tr
(
e2α(t1+t2)e At2∆e AT t1Qe At1∆e AT t2Q

)
d t2 d t1, (C.156)

T2,2 = 4
∫ ∞

0

∫ ∞

t1

tr
(
e2α(t1+t2)e A(t2−t1)X V QX V e AT (t2−t1)Q

)
d t2 d t1, (C.157)

T2,3 = 8
∫ ∞

0

∫ ∞

t1

tr
(
e2α(t1+t2)e A(t2−t1)X V Qe At1∆e AT t2Q

)
d t2 d t1. (C.158)

C.4. THE VARIANCE OF THE LQG COST

C

319

We start with T2,1. We can see that the integrand here is once more symmetric in t1 and
t2. That means we can apply the inverse trick of what we just did. This allows us to solve
the integrals according to

T2,1 = 2tr

(∫ ∞

0

∫ ∞

0
e2α(t1+t2)∆e AT t1Qe At1∆e AT t2Qe At2 d t2 d t1

)
(C.159)

= 2tr

((∫ ∞

0
e2αt∆e AT t Qe At d t

)2)
= 2tr

((
∆X̄ Q

α

)2
)

.

The next term, T2,2 is not symmetric in t1 and t2. We do want both lower integration
bounds to be zero though. To fix this, we define s = t2 − t1. If we would integrate over s
instead of t2, then d s = d t2 while the integral bounds would run from 0 to ∞. This results
in

T2,2 = 4
∫ ∞

0

∫ ∞

0
tr

(
e2α(2t1+s)X V QX V e AT sQe As

)
d s d t1 (C.160)

= 4
∫ ∞

0
tr

(
e4αt1 X V QX V X̄ Q

α

)
d t1

= 4tr

(
X V Q

(−X V

4α

)
X̄ Q
α

)
.

For T2,3 we can apply the same substitution of s = t2 − t1. This turns it into

T2,3 = 8
∫ ∞

0

∫ ∞

0
tr

(
e2α(2t1+s)X V Qe At1∆e AT (s+t1)Qe As

)
d s d t1 (C.161)

= 8
∫ ∞

0
tr

(
e4αt1 X V Qe At1∆e AT t1 X̄ Q

α

)
d t1

= 8tr
(

X V QX∆
2α X̄ Q

α

)
.

Putting everything together results in the cost variance

V
[

J
]= 2tr

((
∆X̄ Q

α

)2
)
−2

(
µT

0 X̄ Q
α µ0

)2 +4tr

(
X V Q

(
2X∆

2α−
X V

4α

)
X̄ Q
α

)
. (C.162)

This seems like a pretty nice and easy-to-use expression, but it is not equal to (C.147),
which is still a slight bit more elegant. Luckily we can rewrite one into the other. This is a
more elaborate process than you might at first expect, so I have made a separate theorem
out of that. Theorem C.20 completes this proof.

Theorem C.20. The two expressions (C.147) and (C.162) are equivalent.

Proof. We will start by rewriting 2tr
(
∆X̄ Q

α

)2
. It equals

2tr

((
∆X̄ Q

α

)2
)
= 2tr

(((
Ψ0 −X V)

X̄ Q
α

)2
)

(C.163)

= 2tr

((
Ψ0 X̄ Q

α

)2 +
(

X V X̄ Q
α

)2 −2Ψ0 X̄ Q
α X V X̄ Q

α

)
.

C

320 C. LINEAR SYSTEMS THEORY

Next, we briefly define the shorthand P = 2X∆
2α− X V

4α and rewrite 4tr
(

X V QP X̄ Q
α

)
. Due to

the definition of X̄ Q
α , it must equal

4tr
(

X V QP X̄ Q
α

)
= 4tr

(
X V

(
−AT

α X̄ Q
α − X̄ Q

α Aα

)
P X̄ Q

α

)
. (C.164)

We know that tr(S) = tr
(
ST

)
for any matrix S, and as a result tr(S) = 1

2 tr
(
S +ST

)
. If we

apply this, we find that

4tr
(

X V QP X̄ Q
α

)
= 2tr

(
−X V AT

α X̄ Q
α P X̄ Q

α −X V X̄ Q
α AαP X̄ Q

α (C.165)

−AαX V X̄ Q
α P X̄ Q

α −X V X̄ Q
α PAT

α X̄ Q
α

)
.

Per definition we have Aα = A+αI . Using this, we can see that the above is equivalent to

4tr
(

X V QP X̄ Q
α

)
= 2tr

(
−X V AT X̄ Q

α P X̄ Q
α −X V X̄ Q

α A2αP X̄ Q
α (C.166)

−AX V X̄ Q
α P X̄ Q

α −X V X̄ Q
α PAT

2α X̄ Q
α

)
= 2tr

((−AX V −X V AT)
X̄ Q
α P X̄ Q

α +X V X̄ Q
α

(−A2αP −PAT
2α

)
X̄ Q
α

)
.

We know that −AX V −X V AT equals V , but what is −A2αP −PAT
2α equal to? Applying the

definition ∆=Ψ0 −X V , we find that

−A2αP −PAT
2α =−2

(
A2αX∆

2α−X∆
2αAT

2α

)+ (A+2αI)
X V

4α
+ X V

4α
(A+2αI)T (C.167)

= 2∆+ 1

4α

(
AX V +X V AT)+4α

X V

4α

= 2Ψ0 −2X V + −V

4α
+X V = 2Ψ0 −X V − V

4α
.

We can also rewrite P itself. If we first apply Theorem A.27, followed by Theorem A.30, it
turns into

P = 2XΨ0−X V

2α − X V

4α
= 2

(
XΨ0

2α −X X V

2α

)
− X V

4α
= 2

(
XΨ0

2α − X V
2α−X V

4α

)
− X V

4α
. (C.168)

As a result of this, we wind up with

4tr
(

X V QP X̄ Q
α

)
= 2tr

(
V X̄ Q

α

(
2

(
XΨ0

2α − X V
2α−X V

4α

)
− X V

4α

)
X̄ Q
α +X V X̄ Q

α

(
2Ψ0 −X V − V

4α

)
X̄ Q
α

)

= 4tr

(
V X̄ Q

α

(
XΨ0

2α − X V
2α

4α

)
X̄ Q
α

)
+2tr

(
2X V X̄ Q

αΨ0 X̄ Q
α −

(
X V X̄ Q

α

)2
)

. (C.169)

By combining (C.163) and (C.169), we now see that

2tr

((
∆X̄ Q

α

)2
)
+4tr

(
X V QP X̄ Q

α

)
= 2tr

((
Ψ0 X̄ Q

α

)2
)
+4tr

((
XΨ0

2α − X V
2α

4α

)
X̄ Q
α V X̄ Q

α

)
, (C.170)

which proves that (C.147) and (C.162) are indeed equivalent.

C.4. THE VARIANCE OF THE LQG COST

C

321

C.4.2. THE NON-DISCOUNTED CASE
The cost for the non-discounted case can be derived in a very similar way. The details
are all just different. If we once more use ∆ =Ψ0 − X V , we wind up with the following
theorem.

Theorem C.21. Consider the system ẋ(t) = Ax(t)+ v (t). Assume that A is Sylvester. The

varianceV
[

J
T

]
of the finite-time cost (C.42) (with α= 0) is then given by

V
[

J
T

]
= 2tr

(
(∆X̄ Q (T))2)−2

(
µT

0 X̄ Q (T)µ0

)2 +4tr
(

X V Q
(

X V
(
T X̄ Q − X̄ X̄ Q

(T)
)

(C.171)

+2X∆ X̄ Q (T)−2X̃ X∆e AT T Q (T)
))

.

Proof. We will follow the same set-up as the proof of Theorem C.19. Make sure you have

read that proof before. Just like previously, we haveV
[

J
T

]
= T2 +T3, where the terms T2

and T3 follow from (C.151) and (C.152). The main difference is that now the integrals run
up to time T and α has been set to zero.

For T3 this results in

T3 =−2

(
µT

0

(∫ T

0
e AT t Qe At d t

)
µ0

)
=−2

(
µT

0 X̄ Q (T)µ0

)
, (C.172)

where we have used definition (A.119) of X̄ Q (T). Note that X̄ Q (T) can be found through
Theorem A.26.

We once more split T2 up into the three terms T2,1, T2,2 and T2,3. T2,1 now equals

T2,1 = 2tr

((∫ T

0
∆e AT t Qe At

)2
)
= 2tr

((
∆X̄ Q (T)

)2
)

. (C.173)

For T2,2 we apply the same substitution of s = t2 − t1. This results in

T2,2 = 4
∫ T

0

∫ T

t1

tr
(
e A(t2−t1)X V QX V e AT (t2−t1)Q

)
d t2 d t1 (C.174)

= 4
∫ T

0

∫ T−t1

0
tr

(
X V QX V e AT sQe As

)
d s d t1.

Solving this is relatively easy if we first interchange the integrals. When doing so, we
should keep the integration area the same. This integration area is defined by 0 ≤ t1 ≤ T
and 0 ≤ s ≤ T − t1, or alternatively as 0 ≤ s ≤ T and 0 ≤ s ≤ T −s. (If you draw this area out
in a plane, you will find that these integration bounds are equivalent.) So we get

T2,2 = 4
∫ T

0

∫ T−s

0
tr

(
X V QX V e AT sQe As

)
d t1 d s (C.175)

= 4
∫ T

0
(T − s) tr

(
X V QX V e AT sQe As

)
d s.

This gives us two integrals – one with T and one with s. The first can be solved directly,
while the second requires Theorem A.31. The solution will equal

T2,2 = 4tr
(

X V QX V
(
T X̄ Q (T)− X̄ X̄ Q

))
. (C.176)

C

322 C. LINEAR SYSTEMS THEORY

We have saved the worst for last: the term T2,3. If we apply the same substitution and
interchanging of integrals, then similarly to (C.161) we get

T2,3 = 8
∫ T

0

∫ T−s

0
tr

(
X V Qe At1∆e AT (s+t1)Qe As

)
d t1 d s (C.177)

= 8
∫ T

0
tr

(
X V QX∆(T − s)e AT sQe As

)
d s.

We can expand X∆(T − s) using Theorem A.26, giving us

T2,3 = 8
∫ T

0
tr

(
X V Q

(
X∆−e A(T−s)X∆e AT (T−s)

)
e AT sQe As

)
d s (C.178)

= 8
∫ T

0
tr

(
X V QX∆e AT sQe As −X V Qe A(T−s)X∆e AT (T−s)e AT sQe As

)
d s

= 8tr

(
X V QX∆ X̄ Q (T)−X V Q

(∫ T

0
e A(T−s)X∆e AT T Qe As d s

))
.

The integral in the above expression is per definition (A.121) equal to X̃ X∆e AT T Q (T). It
can be found through Theorem A.39. Using it, we now know that T2,3 equals

T2,3 = 8tr

(
X V QX∆ X̄ Q (T)−X V Q X̃ X∆e AT T Q (T)

)
. (C.179)

If we now merge all our results together, we directly find (C.171).

When T →∞, the variance of the cost (when α = 0) naturally goes to infinity. How-
ever, it would be interesting to calculate the variance of the steady-state cost rate. When
A is stable, then this will be finite. Its value can be found through the following theorem.

Theorem C.22. Consider the system ẋ(t) = Ax(t)+ v (t). Assume that A is stable. The
variance of the steady-state cost rate (C.46) is then given by

V

[
lim

T→∞
d J

T

dT

]
= 2tr

((
X V Q

)2
)

. (C.180)

Proof. By taking the variance of the steady-state cost rate (C.46) we get

V

[
lim

T→∞
d J

T

dT

]
= lim

T→∞
V

[
xT (T)Qx(T)

]
(C.181)

= lim
T→∞

E
[(

xT (T)Qx(T)
)2

]
−E[

xT (T)Qx(T)
]2

.

We already know the expected steady-state cost rate E
[

xT (T)Qx(T)
]

from (C.47). By
using Theorem B.19 we can also find that

E
[(

xT (T)Qx(T)
)2

]
= tr(Ψ(T)Q)2 +2tr

(
(Ψ(T)Q)2)−2

(
µT (T)Qµ(T)

)
. (C.182)

C.4. THE VARIANCE OF THE LQG COST

C

323

In the limit of T → ∞, we have µ(T) → 0 and Ψ(T) → X V . As a result, the variance
immediately reduces to

V

[
lim

T→∞
d J

T

dT

]
= 2tr

((
X V Q

)2
)

, (C.183)

which equals (C.180). Do note here that 2tr
((

X V Q
)2

)
is not the same as 2tr

((
V X̄ Q

)2
)
, so

there is no easy alternate version for this expression.

C.4.3. THE GENERAL CASE
We have saved the hardest and most general case for last. Let’s consider the variance of
the finite-time discounted cost function.

Theorem C.23. Consider the system ẋ(t) = Ax(t)+v (t). Assume that A−α, A, Aα and A2α

are Sylvester. The varianceV
[

J
T

]
of the finite-time cost (C.49) is then given by

V[JT] = 2tr
(
(∆X̄ Q

α (T))2
)
−2

(
µT

0 X̄ Q
α (T)µ0

)2 +4tr
(

X V Q
(

X V e4αT X̄ Q
−α(T)− X̄ Q

α (T)

4α

+2X∆
2α X̄ Q

α (T)−2X̃
X∆2αe AT

2αT Q
2α (T)

))
. (C.184)

Proof. For this proof we will use the same set-up as we did in Theorems C.19 and C.21.
Make sure you are familiar with that first.

We once more find the term T3, which now equals

T3 =−2

(
µT

0

(∫ T

0
e2αt e AT t Qe At d t

)
µ0

)
=−2

(
µT

0 X̄ Q
α (T)µ0

)
. (C.185)

For T2,1 we find that

T2,1 = 2tr

((∫ T

0
e2αt∆e AT t Qe At

)2
)
= 2tr

((
∆X̄ Q

α (T)
)2

)
. (C.186)

Our starting point for T2,2, similarly to (C.175), is

T2,2 = 4
∫ T

0

∫ T−s

0
tr

(
e2α(2t1+s)X V QX V e AT sQe As

)
d t1 d s (C.187)

= 4
∫ T

0

(
e4α(T−s) −1

4α

)
tr

(
e2αs X V QX V e AT sQe As

)
d s.

This integral once more has two parts, which we can solve through

T2,2 = 4
∫ T

0

1

4α
tr

(
e4αT e−2αs X V QX V e AT sQe As −e2αs X V QX V e AT sQe As

)
d s

= 4tr

(
X V QX V e4αT X̄ Q

−α(T)− X̄ Q
α (T)

4α

)
. (C.188)

C

324 C. LINEAR SYSTEMS THEORY

Finally there is T2,3. Similarly to (C.177) we get

T2,3 = 8
∫ T

0

∫ T−s

0
tr

(
e2α(2t1+s)X V Qe At1∆e AT (s+t1)Qe As

)
d t1 d s (C.189)

= 8
∫ T

0
tr

(
e2αs X V QX∆

2α(T − s)e AT sQe As
)

d s.

Expanding X∆
2α(T−t2) through Theorem A.26 and subsequently applying definition (A.121)

turns this into

T2,3 = 8
∫ T

0
tr

(
e2αs X V Q

(
X∆

2α−e A2α(T−s)X∆
2αe AT

2α(T−s)
)

e AT sQe As
)

d s (C.190)

= 8
∫ T

0
tr

(
e2αs X V QX∆

2αe AT sQe As −e2α(2T−s)X V Qe A(T−s)X∆
2αe AT T Qe As

)
d s

= 8tr

(
X V Q

(
X∆

2α

(∫ T

0
e AT

α sQe Aαs d s

)
−

(∫ T

0
e A2α(T−s)X∆

2αe AT
2αT Qe As d s

)))
= 8tr

(
X V Q

(
X∆

2α X̄ Q
α (T)− X̃

X∆2αe AT
2αT Q

2α (T)

))
.

Adding up all the intermediate results now directly gives us (C.184).

The nice part is that Theorem C.23 reduces to Theorems C.19 and C.21 in the cases
of T →∞ and α→ 0, respectively.

When T →∞, then for stable Aα and α < 0 we will have e AαT → 0 and e4αT → 0. In
addition, X̄ Q

α (T) → X̄ Q
α , which means that (C.184) reduces to (C.162).

When α→ 0, something similar happens. Although here we first have to combine
Theorems A.26 and A.30 to find that

X̄
X̄ Q
−α

α (T) = X̄
X̄ Q
−α

α −e AT
αT X̄

X̄ Q
−α

α e AαT = X̄ Q
α − X̄ Q

−α
4α

−e AT
αT X̄ Q

α − X̄ Q
−α

4α
e AαT (C.191)

=
(

X̄ Q
α −e AT

αT X̄ Q
α e AαT

4α

)
−e4αt

(
X̄ Q
−α−e AT−αT X̄ Q

−αe A−αT

4α

)
+ e4αT −1

4α
X̄ Q
−α

= X̄ Q
α (T)−e4αT X̄ Q

−α(T)

4α
+ e4αT −1

4α
X̄ Q
−α.

In addition, l’Hôpital’s rule also tells us that

lim
α→0

e4αT −1

4α
= lim
α→0

d
dα

(
e4αT −1

)
d

dα (4α)
= lim
α→0

4Te4αT

4
= T. (C.192)

Combining these two results implies that, as α→ 0, we have

e4αT X̄ Q
−α(T)− X̄ Q

α (T)

4α
→ T X̄ Q − X̄ X̄ Q

(T). (C.193)

Through this, (C.184) immediately reduces to (C.171) as α→ 0.

C.4. THE VARIANCE OF THE LQG COST

C

325

C.4.4. SOLUTIONS USING MATRIX EXPONENTIALS

The method of using Lyapunov solutions to find E
[

J
T

]
and V

[
J

T

]
has a significant

downside: if A or Aα is not Sylvester, the theorems do not hold. By solving integrals
using matrix exponentials, using the theorems from Appendix A.5, we can work around
that problem.

Theorem C.24. If we define the matrix C as

C =


−AT

2α Q 0 0 0
0 A V 0 0
0 0 −AT Q 0
0 0 0 A2α V
0 0 0 0 −AT

−2α

 , (C.194)

and write C e ≡ eC T as

eC T ≡C e =

C e
11 · · · C e

15
...

. . .
...

C e
51 · · · C e

55

 , (C.195)

then we can findE
[

J
T

]
andV

[
J

T

]
through

E
[

J
T

]
= tr

(
(C e

44)T (
C e

12Ψ0 +C e
13

))
, (C.196)

V
[

J
T

]
= 2tr

((
(C e

44)T (
C e

12Ψ0 +C e
13

))2 −2(C e
44)T (C e

14Ψ0 +C e
15)

)
(C.197)

−2
(
µT

0 (C e
44)T C e

12µ0

)2
.

Proof. We first prove the expression forE
[

J
T

]
. We know from (C.51) that

E
[

J
T

]
= tr

((∫ T

0
e2αtΨ(t)d t

)
Q

)
. (C.198)

We also know that Σ(t) satisfies (C.17), and identically thatΨ(t) satisfies

Ψ(t) = e AtΨ0e AT t +
∫ t

0
e A(t−s)V e AT (t−s) d s. (C.199)

Inserting this into (C.198) will give us

E
[

J
T

]
= tr

(∫ T

0
e2αt e AtΨ0e AT t Q d t +

∫ T

0

∫ t

0
e2αt e A(t−s)V e AT (t−s)Q d s d t

)
(C.200)

= tr

(∫ T

0
e AT

2αt Qe AtΨ0 d t +
∫ T

0

∫ t

0
e AT

2αt Qe A(t−s)V e−AT s d s d t

)
= tr

(
e AT

2αT
∫ T

0
e−AT

2α(T−t)Qe AtΨ0 d t +e AT
2αT

∫ T

0

∫ t

0
e−AT

2α(T−t)Qe A(t−s)V e−AT s d s d t

)
.

C

326 C. LINEAR SYSTEMS THEORY

This may seem like a completely haphazard way of rewriting the equation. It makes
sense when we add in Theorems A.34 through A.37. These theorems tell us that

C e
44 = e A2αT , (C.201)

C e
12 =

∫ T

0
e−AT

2α(T−t)Qe At d t , (C.202)

C e
13 =

∫ T

0

∫ t

0
e−AT

2α(T−t)Qe A(t−s)V e−AT s d s d t . (C.203)

Applying them immediately results in (C.196).

Proving the expression for V
[

J
T

]
is done similarly, but it will obviously be more

work. First of all, we should note that C e
14 and C e

15 equal

C e
14 =

∫ T

0

∫ t

0

∫ s

0
e−AT

2α(T−t)Qe A(t−s)V e−AT (s−r)Qe A2αr dr d s d t , (C.204)

C e
15 =

∫ T

0

∫ t

0

∫ s

0

∫ r

0
e−AT

2α(T−t)Qe A(t−s)V e−AT (s−r)Qe A2α(r−q)V e−AT
−2αq d q dr d s d t .

Using this, we will find the terms T3 and T2 from the proof of Theorem C.23. After all,

together these two terms equalV
[

J
T

]
. We can directly see from (C.185) that T3 equals

T3 =−2

(
µT

0

(∫ T

0
e2αt e AT t Qe At d t

)
µ0

)
=−2

(
µT

0 (C e
44)T C e

12µ0

)2
. (C.205)

Next, we will find T2. This will be done very differently than previously. We begin all the
way at the original definition (C.151) of T2, which is for the finite-time case equal to

T2 = 2
∫ T

0

∫ T

0
tr

(
e2α(t1+t2)Ψ(t2, t1)QΨ(t1, t2)Q

)
d t2 d t1. (C.206)

For Ψ(t1, t2) we now use a relation similar to (C.199). We can derive, similarly to (C.25),
that

Ψ(t1, t2) = e At1Ψ0e AT t2 +
∫ t1

0

∫ t2

0
e A(t1−s1)V δ (s1 − s2)e AT (t2−s2) d s2 d s1 (C.207)

= e At1Ψ0e AT t2 +
∫ min(t1,t2)

0
e A(t1−s)V e AT (t2−s) d s.

Keep in mind here that Ψ(t1, t2) =ΨT (t2, t1). To keep our equation manageable, we will
writeΨ(t1, t2) asΨa +Ψb , where we define

Ψa = e At1Ψ0e AT t2 , (C.208)

Ψb =
∫ min(t1,t2)

0
e A(t1−s)V e AT (t2−s) d s. (C.209)

C.4. THE VARIANCE OF THE LQG COST

C

327

This turns (C.206) into three parts, being T2 = T2,aa +T2,ab +T2,bb , where each of these is
defined as

T2,aa = 2
∫ T

0

∫ T

0
tr

(
e2α(t1+t2)ΨT

a QΨaQ
)

d t2 d t1, (C.210)

T2,ab = 4
∫ T

0

∫ T

0
tr

(
e2α(t1+t2)ΨT

a QΨbQ
)

d t2 d t1, (C.211)

T2,bb = 2
∫ T

0

∫ T

0
tr

(
e2α(t1+t2)ΨT

b QΨbQ
)

d t2 d t1. (C.212)

We just need to rewrite each of these terms in a format which we can solve through ma-
trix exponentials. For T2,aa this goes according to

T2,aa = 2
∫ T

0

∫ T

0
tr

(
e2α(t1+t2)e At2Ψ0e AT t1Qe At1Ψ0e AT t2Q

)
d t2 d t1 (C.213)

= 2tr

((∫ T

0
e2αt e AT t Qe AtΨ0

)2
)

= 2tr
((

(C e
44)T C e

12Ψ0
)2

)
.

For T2,ab we get an extra integral, which means we wind up with

T2,ab = 4
∫ T

0

∫ T

0

∫ min(t1,t2)

0
tr

(
e2α(t1+t2)e AT t2Ψ0e At1Qe A(t1−s)V e AT (t2−s)Q

)
d s d t2 d t1.

(C.214)

The main problem here is the order of integration. We want to cycle the multiplication
of the elements in the integrand to have Ψ0 at the end. When we do, we see that we
encounter t1 in the exponents first, then s and then t2. So we want the integration order
to become d t2 d s d t1. How do we accomplish this?

We can rearrange the integrals as long as we keep the integration area the same. This
area is described by 0 ≤ s ≤ (t1, t2) ≤ T . Given the order of integration that we want, we
can turn the above into

T2,ab = 4
∫ T

0

∫ t1

0

∫ T

s
. . . d t2 d s d t1 (C.215)

= 4
∫ T

0

∫ t1

0

∫ T

0
. . . d t2 d s d t1 −4

∫ T

0

∫ t1

0

∫ s

0
. . . d t2 d s d t1.

In the last part we have split the integral up into two integrals. The good news is that we
can solve both integrals, because they are in the right order and their integration bounds
are zero. We can also even split up the first integral. This turns T2,ab into

T2,ab = 4tr

((∫ T

0

∫ t1

0
e2αt1 e AT t1Qe A(t1−s)V e−AT s d s d t1

)(∫ T

0
e2αt2 e AT t2Qe At2 d t2

)
Ψ0

)
−4tr

(∫ T

0

∫ t1

0

∫ s

0
e2α(t1+t2)e AT t1Qe A(t1−s)V e AT (t2−s)Qe At2Ψ0 d t2 d s d t1

)
= 4tr

(
(C e

44)T C e
13(C e

44)T C e
12Ψ0 − (C e

44)T C e
14Ψ0

)
. (C.216)

C

328 C. LINEAR SYSTEMS THEORY

That leaves us with T2,bb to solve. It equals

T2,bb = 2
∫ T

0

∫ T

0

∫ min(t1,t2)

0

∫ min(t1,t2)

0
tr

(
e2α(t1+t2)e A(t2−s1)V e AT (t1−s1)Q (C.217)

e A(t1−s2)V e AT (t2−s2)Q
)

d s2 d s1 d t2 d t1.

The integration area is now given by 0 ≤ (s1, s2) ≤ (t1, t2) ≤ T . As integration order, I will
want d s1 d t2 d s2 d t1. This can be obtained through

T2,bb = 2
∫ T

0

∫ t1

0

∫ T

s2

∫ min(t1,t2)

0
. . .d s1 d t2 d s2 d t1 (C.218)

= 2
∫ T

0

∫ t1

0

∫ T

0

∫ min(t1,t2)

0
. . .d s1 d t2 d s2 d t1 −2

∫ T

0

∫ t1

0

∫ s2

0

∫ min(t1,t2)

0
. . .d s1 d t2 d s2 d t1.

The tricky part now lies in the min(t1, t2) integral bound. For the bounds of the second
integral, we have t2 ≤ s2 ≤ t1, which means that min(t1, t2) reduces to t2. For the left-
hand side integral we have no such luck. However, we can readjust the integral order to
d s2 d t1 d s1 d t2. When we do, we can again pull off the same trick, resulting in

T2,bb = 2
∫ T

0

∫ t2

0

∫ T

s1

∫ t1

0
. . .d s2 d t1 d s1 d t2 −2

∫ T

0

∫ t1

0

∫ s2

0

∫ t2

0
. . .d s1 d t2 d s2 d t1 (C.219)

= 2
∫ T

0

∫ t2

0

∫ T

0

∫ t1

0
. . .d s2 d t1 d s1 d t2 −2

∫ T

0

∫ t2

0

∫ s1

0

∫ t1

0
. . .d s2 d t1 d s1 d t2

−2
∫ T

0

∫ t1

0

∫ s2

0

∫ t2

0
. . .d s1 d t2 d s2 d t1.

We can also note that the integrand (which we have replaced by dots for now) is sym-
metric with respect to both t1 and t2 as well as s1 and s2. That means that the last two
integrals from the above expression are equal. It also allows us to split up the first inte-
gral. This tells us that

T2,bb = 2tr

((∫ T

0

∫ t

0
e2αt e AT t Qe A(t−s)V e−AT s d s d t

)2
)
−4

∫ T

0

∫ t1

0

∫ s2

0

∫ t2

0
(C.220)

tr
(
e2α(t1+t2)e A(t2−s1)V e AT (t1−s1)Qe A(t1−s2)V e AT (t2−s2)Q

)
d s1 d t2 d s2 d t1

= 2tr

((
e AT

2αT
∫ T

0

∫ t

0
e

(−AT
2α

)
(T−t)Qe A(t−s)V e

(−AT)
s d s d t

)2
)
−4tr

(
e AT

2αT
∫ T

0

∫ t1

0

∫ s2

0

∫ t2

0

e(−AT
2α)(T−t1)Qe A(t1−s2)V e(−AT)(s2−t2)Qe A2α(t2−s1)V e(−A−2α)T s1 d s1 d t2 d s2 d t1

)
= 2tr

((
(C e

44)T C e
13

)2 −2(C e
44)T C e

15

)
.

By putting all results together, we find (C.197).

You may be wondering which method works better to calculate the cost mean and
variance: using Lyapunov solutions or matrix exponentials? There are a few cases when

C.5. APPLICATIONS OF THE DERIVED EXPRESSION

C

329

the choice is obvious. For infinite-time problems we have to use Lyapunov solutions,
while for non-Sylvester matrices A we have to use matrix exponentials.

For the rest, the same issues hold as are discussed in Appendix A.5.3. For small time
steps T (smaller than roughly a few seconds) using the matrix exponential method is of-
ten better, but for larger times the matrix exponential method of Theorem C.24 becomes
numerically very inaccurate. In that case using Lyapunov solutions is the obvious choice.

C.5. APPLICATIONS OF THE DERIVED EXPRESSION
We have derived methods to calculate the mean and the variance of the LQG cost J .
In this section we will look at two questions: are these equations correct and how can
we use them? The first question will be answered in Section C.5.1 while we look at the
second one in Section C.5.2.

C.5.1. A SIMULATION VERIFYING THE DERIVED EQUATIONS
We will set up an example LQG system

ẋ(t) =
[

1/4 1/2
−1/7 −1/3

]
x(t)+v (t), (C.221)

which has interesting eigenvalues at 0.075 and −0.16. As distribution of the initial state
x0 we use

x0 ∼N
(
µ0,Σ0

)=N

([
1
−1

]
,

[
4 1
1 2

])
. (C.222)

As cost function weight we use Q = I , and we choose a noise intensity V of

V =
[

3 −2
−2 8

]
(C.223)

Finally we use a simulation time of T = 3s to let the noise and the initial state contribute
roughly equally to the cost.

For this system, we run n = 1000000 numerical simulations with time step d t =
0.01s. The mean and standard deviation of the cost J

T
, for various values of α, is shown

in Table C.1. This table compares these experimental results with the theoretical results
given by (C.43), (C.50), (C.171) and (C.184). Alternatively, we could of course have used
the matrix exponential equations (C.196) and (C.197), but these equations give (as ex-
pected) exactly the same result, barring minor numerical differences.

In Table C.1 we can see that the experimental and the theoretical results are nearly
identical. There are minor differences, but these can be explained partly by statistical
variations and partly by the inaccuracies in the numerical cost integration. As a result,
we can conclude that the derived equations are very likely correct.

It is also interesting to note that the mean and the standard deviation of J
T

are of
the same order of magnitude. This seems strange, because for positive (semi-)definite
Q and R the cost J

T
cannot be negative. The reason for this can be seen if we examine

the probability density function of J
T

, which is shown in Figure C.2. Here we see that

most of the time the cost J
T

is lower than the mean E
[

J
T

]
. However, when the cost is

C

330 C. LINEAR SYSTEMS THEORY

Table C.1: The meanE
[

J T

]
and standard deviation

√
V

[
J T

]
of the cost after 1000000 experiments. Experi-

mental results are compared to the theoretical expressions given by (C.43), (C.50), (C.171) and (C.184).

Discount exponent α 0.05 0 −0.05 −0.1

Experiment mean 97.1 80.2 66.6 55.7

Theoretical mean 97.6 80.5 66.9 55.9

Experiment standard deviation 95.8 78.4 64.5 53.4

Theoretical standard deviation 94.6 77.3 63.5 52.6

Figure C.2: The probability density function of the cost J T for various values of α. The vertical lines denote
the means. This plot was generated using a histogram of the cost of 1000000 experiments performed with
system (C.221).

higher than this mean, then it may be a lot higher, increasing the standard deviation of
the distribution.

C.5.2. A SIMULATION APPLYING THE DERIVED EQUATIONS

We will now apply the derived equations. One application, in which we analyze the ap-
proximated cost function of a Gaussian process regression algorithm, can be found in
Section 3.5. Here we will apply the derived expressions for controller synthesis.

In literature, people almost always use the controller that minimizes the expected
value of the cost. This is done irrespective of the variance of the cost. However, if the goal
is to keep the cost below a certain threshold, then this is not always the best approach.

Consider the system

ẋ(t) =
[

1 0
1/20 1

]
x(t)+

[
1
0

]
u(t)+v (t), (C.224)

C.5. APPLICATIONS OF THE DERIVED EXPRESSION

C

331

Figure C.3: The cost mean E
[

J
]

and standard deviation
√
V

[
J
]

with respect to the control matrix F = (1−
f)Fopt + f Fmv, for varying f , when applying the control law u(t) = −F x(t) in system (C.224). It is clear that
minimizing the mean cost does not give the same control law as minimizing the cost variance. In general,
using the minimum variance controller results in more safe (stable) controllers, at the cost of larger applied
inputs.

where only the first state can be controlled directly. Furthermore, the coupling between
the first and the second state is very weak. This is troublesome, as the noise v with in-
tensity V = I does excite this second state, and with Q = I there will be penalties. Fixing
the problem can be expensive though, because R = I . However, to prevent the cost from
becoming very high, we use a strongly negative discount exponent α=−0.8.

As control law we use a linear controller u(t) =−F x(t). The optimal control matrix,
found through Theorem C.15, equals Fopt =

[
1.6 9.9

]
. It minimizes E

[
J
]

at
[

J (Fopt)
]=

154.4 and standard deviation
√
V

[
J (Fopt)

]= 192.0. However, we can also minimizeV
[

J
]

using a gradient descent method or a similar method. This gives the minimum-variance
control matrix Fmv =

[
4.4 30.0

]
with mean cost E

[
J (Fmv)

] = 187.5 and standard devi-

ation
√
V

[
J (Fmv)

] = 180.5. This mean cost is significantly larger than E[J]opt, making

it seem as if this is a significantly worse control matrix. This is also illustrated in Fig-
ure C.3, which shows that using Fmv (at f = 1) results in a significantly higher mean cost
than using Fopt (at f = 0).

However, now suppose that we do not care so much about the mean cost. All we
want is to reduce the probability that the cost J is above a certain threshold J̄ . That is, we
aim to minimize p(J > J̄) where we use J̄ = 1500, which is roughly ten times the mean.
Using 500000 numerical simulations, with T = 20s and d t = 0.01s, we have found that

p(J (Fopt) > J̄) ≈ 0.093%, (C.225)

p(J (Fmv) > J̄) ≈ 0.062%. (C.226)

Hence the optimal controller has about half as many threshold-violating cases as the

332 C. LINEAR SYSTEMS THEORY

minimum-variance control law, which is a significantly worse result. This shows that it
is sometimes useful to go for a control law which reduces the variance of the cost, and
such a control law can be found using the equations we derived.

C.6. OVERVIEW OF LITERATURE AND CONTRIBUTIONS
Most of the theory in this chapter is not new. The basic control system notation of Sec-
tion C.1 was set up by Skogestad and Postlethwaite (2005), while the more formal system
notation came from Øksendal (1985).

In Section C.2, the discounted cost function was mentioned by Bosgra et al. (2008),
who also made a few comments on calculating the expected cost. I have not found any
resource mentioning the finite-time discounted expected cost (C.50) though.

Most of the theory from Section C.3 can also be found spread out across the book
by Anderson and Moore (1990). My own contribution here is Theorem C.18, which I
have not managed to find anywhere else either.

However, my main contribution is Section C.4, studying the distribution and specif-
ically the variance of the LQG cost function. There is actually very few literature on this
exact topic.

It is known that the LQG cost function is the sum of squared Gaussian parameters,
turning it into a generalized noncentralχ2 distribution. This distribution does not have a
known probability density function, although its properties have been studied before in
literature, for instance by Rice (1944), Schwartz (1970), Sain and Liberty (1971). Methods
to approximate it are discussed by Mathai and Provost (1992), Davies (1980). However,
none of this has been applied, or can directly be applied, to the LQG cost function.

When it comes to LQG control, most methods only focus on the expected costE
[

J
]
.

Luckily there are a few exceptions to this. For instance, Minimum Variance Control
(MVC) (see Åström (1970)) minimizes the variance of the output y . It does not focus
on the cost function though. On the other hand, Variance Constrained LQG (VCLQG)
(see Collins and Selekwa (1999), Conway and Horowitz (2008)) minimizes the cost func-
tion subject to bounds on the variance of the state x and/or the input u. Alternatively, in
Minimal Cost Variance (MCV) control (see Kang et al. (2014), Won et al. (2008)) the mean
costE

[
J
]

is fixed through an equality constraint and the cost varianceV
[

J
]

(or alterna-
tively the cost cumulant) is then minimized. However, expressions for the cost variance
V

[
J
]

are still not given. As such, the only piece of literature focusing on the mean and
variance of the LQG cost function is my own publication of Bijl et al. (2016).

REFERENCES

Here you find all the literature that was referred to in this thesis. I would like to note
here that a reference is not the same as a recommendation. In fact, they are completely
different concepts. So please never use the number of references that a paper gets as a
quality criterion.

REFERENCES
Petter Abrahamsen, A Review of Gaussian Random Fields and Correlation Functions,

Technical Report 917 (Norwegian Computing Center, Oslo, Norway, 1997).

Fabiano Daher Adegas and Jakob Stoustrup, Structured control of LPV systems with ap-
plication to wind turbines, in Proceedings of the American Control Conference (ACC),
Montreal, Québec (IEEE, 2012) pages 756–761.

Shipra Agrawal and Navin Goyal, Analysis of Thompson sampling for the multi-armed
bandit problem, in JMLR Workshop and Conference Proceedings, Volume 23 (2012)
pages 39.1–39.26.

Sacha Alberici, Sil Boeve, Pieter van Breevoort, Yvonne Deng, Sonja Förster, Ann Gar-
diner, Valentijn van Gastel, Katharina Grave, Heleen Groenenberg, David de Jager,
Erik Klaassen, Willemijn Pouwels, Matthew Smith, Erika de Visser, Thomas Winkel
and Karlien Wouters, Subsidies and costs of EU energy, Technical Report DESNL14583
(Ecofys, 2014).

Peter Bjørn Andersen, Mac Gaunaa, Christian Bak and Thomas Buhl, Load alleviation
on wind turbine blades using variable airfoil geometry, in Proceedings of the EWEC,
Athens, Greece (2006).

Brian D. O. Anderson and John B. Moore, Optimal Control: Linear Quadratic Methods
(Prentice Hall, 1990).

Athanasios C. Antoulas, Approximation of Large-Scale Dynamical Systems (Society for
Industrial and Applied Mathematics (SIAM), 2005).

P. Auer, N. Cesa-Bianchi, Y. Freund and R. E. Schapire, Gambling in a rigged casino: The
adversarial multi-armed bandit problem, in Proceedings of the 36th Annual Sympo-
sium on Foundations of Computer Science (1995) pages 322–331.

Francis R. Bach, Exploring large feature spaces with hierarchical multiple kernel learning,
in Advances in Neural Information Processing Systems 21, edited by D. Koller, D. Schu-
urmans, Y. Bengio and L. Bottou (Curran Associates, Inc., 2009) pages 105–112.

333

http://publications.nr.no/917_Rapport.pdf
http://vbn.aau.dk/files/73497625/acc_2012_5.pdf
http://vbn.aau.dk/files/73497625/acc_2012_5.pdf
http://www.jmlr.org/proceedings/papers/v23/agrawal12/agrawal12.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/ECOFYS%202014%20Subsidies%20and%20costs%20of%20EU%20energy_11_Nov.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.6454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.6454&rep=rep1&type=pdf
http://users.cecs.anu.edu.au/~john/papers/BOOK/B03.PDF
http://matwbn.icm.edu.pl/ksiazki/amc/amc11/amc1155.pdf
http://www.dklevine.com/archive/refs4462.pdf
http://www.dklevine.com/archive/refs4462.pdf
http://papers.nips.cc/paper/3418-exploring-large-feature-spaces-with-hierarchical-multiple-kernel-learning.pdf

334 REFERENCES

Christian Bak, Mac Gaunaa, Peter B. Andersen, Thomas Buhl, Per Hansen, Kasper Clem-
mensen and Rene Moeller, Wind tunnel test on wind turbine airfoil with adaptive trail-
ing edge geometry, in Proceedings of the 45th AIAA Aerospace Sciences Meeting and Ex-
hibit, Reno, Nevada (2007).

R.H. Bartels and G.W. Stewart, Solution of the matrix equation AX +X B =C , Communi-
cations of the ACM 15, pages 820–826 (1972).

Santiage Basualdo, Load alleviation on wind turbine blades using variable airfoil geome-
try, Journal of Wind Engineering 29, pages 169–182 (2005).

Richard Bellman, Introduction to Matrix Analysis (SIAM, 1997).

Jonathan Berg, Dale Berg and Jon White, Fabrication, integration, and initial testing of a
SMART rotor, in Proceedings of the 50th AIAA Aerospace Sciences Meeting including the
New Horizons Forum and Aerospace Exposition, Nashville, Tennessee (2012).

James Bergstra and Yoshua Bengio, Random search for hyper-parameter optimization,
Journal of Machine Learning Research 13, pages 281–305 (2012).

James S. Bergstra, Rémi Bardenet, Yoshua Bengio and Balázs Kégl, Algorithms for hyper-
parameter optimization, in Advances in Neural Information Processing Systems, Vol-
ume 24 (2011) pages 2546–2554.

Felix Berkenkamp, Angela P. Schoellig and Andreas Krause, Safe controller optimization
for quadrotors with Gaussian processes, in Proceedings of the International Conference
on Robotics and Automation (ICRA), 2016 (2016).

Dimitri P. Bertsekas and John N. Tsitsiklis, Neuro-Dynamic Programming (Athena Scien-
tific, 1996).

Fernando D. Bianchi, Hernán de Battista and Ricardo J. Mantz, Wind Turbine Control
Systems (Springer, 2007).

Hildo Bijl, Gaussian progress regression techniques source code, (2016a),
https://github.com/HildoBijl/GPRT.

Hildo Bijl, SONIG source code, (2016b), https://github.com/HildoBijl/SONIG.

Hildo Bijl, Thomas B. Schön, Jan-Willem van Wingerden and Michel Verhaegen, Online
sparse Gaussian process training with input noise, Submitted for publication (2017a).

Hildo Bijl, Thomas B. Schön, Jan-Willem van Wingerden and Michel Verhaegen, A se-
quential Monte Carlo approach to Thompson sampling for Bayesian optimization,
Submitted for publication (2017b).

Hildo Bijl, Jan-Willem van Wingerden, Thomas B. Schön and Michel Verhaegen, Online
sparse Gaussian process regression using FITC and PITC approximations, in Proceed-
ings of the IFAC symposium on System Identification, SYSID, Beijing, China (2015).

http://dx.doi.org/10.2514/6.2007-1016
http://dx.doi.org/10.2514/6.2007-1016
http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1260/0309524054797122
https://books.google.nl/books/about/Introduction_to_Matrix_Analysis.html?id=sP8J4oqwlLkC
http://energy.sandia.gov/wp-content/gallery/uploads/AIAA-2012-1291-297-SAND2011-9405C.pdf
http://energy.sandia.gov/wp-content/gallery/uploads/AIAA-2012-1291-297-SAND2011-9405C.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://arxiv.org/pdf/1509.01066.pdf
https://arxiv.org/pdf/1509.01066.pdf
https://books.google.nl/books/about/Neuro_dynamic_Programming.html?id=WxCCQgAACAAJ
https://books.google.nl/books/about/Wind_Turbine_Control_Systems.html?id=46SicQAACAAJ
https://books.google.nl/books/about/Wind_Turbine_Control_Systems.html?id=46SicQAACAAJ
https://github.com/HildoBijl/GPRT
https://github.com/HildoBijl/SONIG
http://arxiv.org/abs/1601.08068
http://arxiv.org/abs/1604.00169
http://user.it.uu.se/~thosc112/bijlwsv2015.pdf
http://user.it.uu.se/~thosc112/bijlwsv2015.pdf

REFERENCES 335

Hildo Bijl, Jan-Willem van Wingerden, Thomas B. Schön and Michel Verhaegen, Mean
and variance of the LQG cost function, Automatica 67, pages 216–223 (2016).

Hildo Bijl, Jan-Willem van Wingerden and Michel Verhaegen, Applying Gaussian pro-
cesses to reinforcement learning for fixed-structure controller synthesis, in Proceedings
of the 19th IFAC World Congress (2014) pages 10391–10396.

Ake Björck, Numerical Methods for Least Squares Problems (SIAM, 1996).

Manuel Blum and Martin Riedmiller, Optimization of Gaussian process hyperparameters
using Rprop, in European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (2013).

Okko H. Bosgra, Huibert Kwakernaak and Gjerrit Meinsma, Design Methods for Control
Systems (Dutch Institute of Systems and Control (DISC), 2008).

Stephen Boyd and Lieven Vandenberghe, Convex Optimization (Cambridge University
Press, 2004).

Corentin Briat, Linear Parameter-Varying and Time-Delay Systems (Springer, 2015).

Eric Brochu, Vlad M Cora and Nando de Freitas, A Tutorial on Bayesian Optimization of
Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning, Technical Report (University of British Columbia, 2010).

Thomas Buhl, Mac Gaunaa and Christian Bak, Potential load reduction using airfoils
with variable trailing edge geometry, Journal of Solar Energy Engineering 127, pages
503–516 (2005).

Colin Campbell and Yiming Ying, Learning with Support Vector Machines (Morgan and
Claypool, 2011).

Joaquin Q. Candela, Agathe Girard, Jan Larsen and Carl E. Rasmussen, Propagation of
uncertainty in Bayesian kernel models - application to multiple-step ahead forecasting,
in International Conference on Acoustics, Speech and Signal Processing, Volume 2 (MIT
Press, 2003) pages 701–704.

Joaquin Q. Candela and Carl E. Rasmussen, A unifying view of sparse approximate Gaus-
sian process regression, Journal of Machine Learning Research 6, pages 1939–1959
(2005).

Damien Castaignet, Thanasis Barlas, Thomas Buhl, Niels K. Poulsen, Jens Jakob Wedel-
Heinen, Niels A. Olesen, Christian Bak and Taeseong Kim, Full-scale test of trailing
edge flaps on a Vestas V27 wind turbine: active load reduction and system identifica-
tion, Journal of Wind (2012).

Krzysztof Chalupka, Christopher K. I. Williams and Iain Murray, A framework for evalu-
ating approximation methods for Gaussian process regression, Machine Learning Re-
search 14, pages 333–350 (2013).

http://arxiv.org/abs/1602.02524
http://dx.doi.org/10.3182/20140824-6-ZA-1003.01623
http://dx.doi.org/10.3182/20140824-6-ZA-1003.01623
https://books.google.nl/books?id=myzIPBwyBbcC
http://ml.informatik.uni-freiburg.de/_media/publications/blumesann2013.pdf
http://ml.informatik.uni-freiburg.de/_media/publications/blumesann2013.pdf
http://wwwhome.math.utwente.nl/~meinsmag/dmcs/dmcs0708.pdf
http://wwwhome.math.utwente.nl/~meinsmag/dmcs/dmcs0708.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://books.google.nl/books/about/Linear_Parameter_Varying_and_Time_Delay.html?id=AbyxoAEACAAJ
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1012.2599
http://dx.doi.org/ 10.1115/1.2037094
http://dx.doi.org/ 10.1115/1.2037094
https://books.google.nl/books/about/Learning_with_Support_Vector_Machines.html?id=uhqmlu0lgf8C
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/1262/pdf/imm1262.pdf
http://www.jmlr.org/papers/volume6/quinonero-candela05a/quinonero-candela05a.pdf
http://www.jmlr.org/papers/volume6/quinonero-candela05a/quinonero-candela05a.pdf
https://www.researchgate.net/publication/243971847_Full-scale_test_of_trailing_edge_flaps_on_a_Vestas_V27_wind_turbine_Active_load_reduction_and_system_identification
http://arxiv.org/abs/1205.6326
http://arxiv.org/abs/1205.6326

336 REFERENCES

Olivier Chapelle and Lihong Li, An empirical evaluation of Thompson sampling, in Ad-
vances in Neural Information Processing Systems, Volume 24 (Curran Associates, Inc.,
2011) pages 2249–2257.

Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet and Sayan Mukherjee, Choosing
multiple parameters for support vector machines, Machine Learning 46, pages 131–159
(2002).

Steven C. Chapra and Raymond P. Canale, Numerical Methods for Engineers (McGraw-
Hill, 2015).

Kamalika Chaudhuri, Yoav Freund and Daniel J. Hsu, A parameter-free hedging algo-
rithm, in Advances in Neural Information Processing Systems, Volume 22 (2009) pages
297–305.

Robert T. Clemen and Robert L. Winkler, Advances in decision analysis: From foundations
to applications, (Cambridge University Press, 2007) Chapter Aggregating Probability
Distributions, pages 154–176.

Emmanual G. Collins and Majura F. Selekwa, Fuzzy quadratic weights for variance con-
strained LQG design, in Proceedings of the 38th IEEE Conference on Decision and Con-
trol, Phoenix, Arizona, USA (1999).

Richard Conway and Roberto Horowitz, A quasi-Newton algorithm for LQG control de-
sign with variance constraints, in Proceedings of the Dynamic Systems and Control
Conference, Ann Arbor, Michigan, USA (2008).

Dan Cornford, Ian T. Nabney and Christopher K. I. Williams, Modelling frontal disconti-
nuities in wind fields, Journal of Nonparametric Statistics 14, pages 43–58 (2002).

Dennis D. Cox and Susan John, SDO: A statistical method for global optimization, in Mul-
tidisciplinary Design Optimization: State-of-the-Art (1997) pages 315–329.

Legel Csató and Manfred Opper, Sparse online Gaussian processes, Neural Computation
14, pages 641–669 (2002).

Roger Daley, Atmospheric Data Analysis (Cambridge University Press, 1991).

Patrick Dallaire, Camille Besse and Brahim Chaib-draa, Learning Gaussian process mod-
els from uncertain data, in Proceedings of the 16th International Conference on Neural
Information Processing (2009).

Andreas C. Damianou, Michalis K. Titsias and Neil D. Lawrence, Variational inference
for latent variables and uncertain inputs in Gaussian processes, Journal of Machine
Learning Research 17 (2016).

A. M. Davie and A. J. Stothers, Improved bound for complexity of matrix multiplication,
in Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2, Volume 143
(2013) pages 351–369.

http://papers.nips.cc/paper/4321-an-empirical-evaluation-of-thompson-sampling.pdf
http://papers.nips.cc/paper/4321-an-empirical-evaluation-of-thompson-sampling.pdf
http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/chapelleml02.pdf
http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/chapelleml02.pdf
https://epiportal.com/Ebooks/numerical_methods_for_engineers_for_engineers_chapra_canale_6th_edition.pdf
http://papers.nips.cc/paper/3883-a-parameter-free-hedging-algorithm.pdf
http://dx.doi.org/10.1109/CDC.1999.827993
http://dx.doi.org/10.1109/CDC.1999.827993
http://www.me.berkeley.edu/~horowitz/Publications_files/All_papers_numbered/167c_Conway_Constrained_LQG_DSCC%202008.pdf
http://www.me.berkeley.edu/~horowitz/Publications_files/All_papers_numbered/167c_Conway_Constrained_LQG_DSCC%202008.pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=4809D47CC2F2E9F18113218874E7C005?doi=10.1.1.634.4846&rep=rep1&type=pdf
https://www.researchgate.net/publication/2764365_SDO_A_Statistical_Method_for_Global_Optimization
https://www.researchgate.net/publication/2764365_SDO_A_Statistical_Method_for_Global_Optimization
https://core.ac.uk/download/files/7/8529.pdf
https://core.ac.uk/download/files/7/8529.pdf
https://books.google.nl/books?id=RHM6pTMRTHwC
https://www.researchgate.net/publication/221140644_Learning_Gaussian_Process_Models_from_Uncertain_Data
https://www.researchgate.net/publication/221140644_Learning_Gaussian_Process_Models_from_Uncertain_Data
http://jmlr.org/papers/volume17/damianou16a/damianou16a.pdf
http://jmlr.org/papers/volume17/damianou16a/damianou16a.pdf
http://www.maths.ed.ac.uk/~sandy/a11164.pdf

REFERENCES 337

Robbert B. Davies, Algorithm AS 155: The distribution of a linear combination of χ2 ran-
dom variables, Journal of the Royal Statistical Society. Series C (Applied Statistics) 29,
pages 323–333 (1980).

Marc P. Deisenroth, Efficient Reinforcement Learning using Gaussian Processes, Ph.D.
thesis, Karlsruhe Institute of Technology (2010).

Marc P. Deisenroth and Jun W. Ng, Distributed Gaussian processes, in Proceedings of the
International Conference on Machine Learning (ICML) (Lille, France, 2015).

Marc P. Deisenroth and Carl E. Rasmussen, PILCO: A model-based and data-efficient ap-
proach to policy search, in Proceedings of the International Conference on Machine
Learning (ICML), Bellevue, Washington, USA (ACM Press, 2011) pages 465–472.

Petros Dellaportas and David A. Stephens, Bayesian analysis of errors-in-variables regres-
sion models, Biometrics, 51, pages 1085–1095 (1995).

L.C.W. Dixon and G.P. Szegö, The global optimisation problem: an introduction, in To-
wards global optimization, Volume 2, edited by L.C.W. Dixon and G.P. Szegö (North-
Holland Publishing, 1978) pages 1–15.

Zvi Drezner, Computation of the trivariate normal integral, Mathematics of Computa-
tion 62, pages 289–294 (1994).

David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum and Zoubin
Ghahramani, Structure Discovery in Nonparametric Regression through Compositional
Kernel Search, Technical Report (arXiv.org, 2013).

Yaakov Engel, Shie Mannor and Ron Meir, Bayes meets Bellman: The Gaussian process
approach to temporal difference learning, in Proceedings of the 20th International Con-
ference on Machine Learning, edited by Tom Fawcett and Nina Mishra (2003).

Yaakov Engel, Shie Mannor and Ron Meir, Reinforcement learning with Gaussian pro-
cesses, in Proceedings of the 22nd International Conference on Machine Learning (ACM
Press, 2005) pages 201–208.

T. van Engelen and H. Braam, TURBU Offshore; Computer program for frequency domain
analysis of horizontal axis offshore wind turbines - Implementation, Technical Report
Report ECN-C-04-079 (ECN, 2004).

Nando de Freitas, Alex Smola and Masrour Zoghi, Regret Bounds for Deterministic Gaus-
sian Process Bandits, Technical Report (arXiv.org, 2012).

Yuan Cheng Fung, An Introduction to the Theory of Aeroelasticity (Wiley, 1955).

Yarin Gal, Mark van der Wilk and Carl E. Rasmussen, Distributed variational inference in
sparse Gaussian process regression and latent variable models, in Advances in Neural
Information Processing Systems (NIPS) (2014).

http://www.robertnz.net/pdf/lc_chisq.pdf
http://www.robertnz.net/pdf/lc_chisq.pdf
http://mlg.eng.cam.ac.uk/pub/pdf/Dei10.pdf
http://mlg.eng.cam.ac.uk/pub/pdf/Dei10.pdf
https://arxiv.org/abs/1502.02843
https://arxiv.org/abs/1502.02843
http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
http://dx.doi.org/10.2307/2533007
http://tocs.ulb.tu-darmstadt.de/129919500.pdf
http://tocs.ulb.tu-darmstadt.de/129919500.pdf
http://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185242-8/S0025-5718-1994-1185242-8.pdf
http://www.ams.org/journals/mcom/1994-62-205/S0025-5718-1994-1185242-8/S0025-5718-1994-1185242-8.pdf
http://arxiv.org/abs/1302.4922
http://arxiv.org/abs/1302.4922
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.3600&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.3600&rep=rep1&type=pdf
http://www.machinelearning.org/proceedings/icml2005/papers/026_Reinforcement_EngelEtAl.pdf
https://www.ecn.nl/docs/library/report/2004/c04079.pdf
https://www.ecn.nl/docs/library/report/2004/c04079.pdf
https://arxiv.org/abs/1203.2177
https://arxiv.org/abs/1203.2177
https://books.google.nl/books/about/An_Introduction_to_the_Theory_of_Aeroela.html?id=KetYrthKfEgC
https://papers.nips.cc/paper/5593-distributed-variational-inference-in-sparse-gaussian-process-regression-and-latent-variable-models.pdf
https://papers.nips.cc/paper/5593-distributed-variational-inference-in-sparse-gaussian-process-regression-and-latent-variable-models.pdf

338 REFERENCES

François Le Gall, Powers of tensors and fast matrix multiplication, in Proceedings of the
39th International Symposium on Symbolic and Algebraic Computation (ISSAC 2014)
(2014) pages 296–303.

Alan Genz, Numerical computation of rectangular bivariate and trivariate normal and t
probabilities, Statistics and Computing 14, pages 251–260 (2004).

M. N. Gibbs, Bayesian Gaussian Processes for Regression and Classification, Ph.D. thesis,
Department of Physics, University of Cambridge (1997).

Agathe Girard and Roderick Murray-Smith, Learning a Gaussian Process Model with Un-
certain Inputs, Technical Report 144 (Department of Computing Science, University
of Glasgow, 2003).

Agathe Girard, Carl E. Rasmussen, Joaquin Q. Candela and Roderick Murray-Smith,
Gaussian process priors with uncertain inputs - application to multiple-step ahead
time series forecasting, in Advances in Neural Information Processing Systems (MIT
Press, 2003) pages 545–552.

Paul W. Goldberg, Christopher K. I. Williams and Christopher M. Bishop, Regression with
input-dependent noise: A Gaussian process treatment, in Advances in Neural Informa-
tion Processing Systems (MIT Press, 1998) pages 493–499.

Michael Green and David J. N. Limebeer, Linear Robust Control (Dover Publications,
1995).

Steffen Grünewälder, Jean-Yves Audibert, Manfred Opper and John Shawe-Taylor, Regret
bounds for Gaussian process bandit problems, in Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS) (2010).

Michael U. Gutmann and Jukka Corander, Bayesian Optimization for Likelihood-Free In-
ference of Simulator-Based Statistical Models, Technical Report (arXiv.org, 2015).

William W. Hager, Updating the inverse of a matrix, SIAM Rev. 31, pages 221–239 (1989).

Simon Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall, 1999).

Joachim Heinz, Niels N. Sørensen and Frederik Zahle, Investigation of the load reduction
potential of two trailing edge flap controls using CFD, Journal of Wind Energy (2010),
10.1002/we.435.

Philipp Hennig and Christian J. Schuler, Entropy search for information-efficient global
optimization, Journal of Machine Learning Research 13, pages 1809–1837 (2012).

James Hensman, Fusi Nicoló and Neil D. Lawrence, Gaussian processes for big data, in
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence
(UAI), Bellevue, Washington, USA (2013).

James Hensman, Magnus Rattray and Neil D. Lawrence, Fast variational inference in the
conjugate exponential family, in Advances in Neural Information Processing Systems
(NIPS) (2012) pages 2888–2896.

http://arxiv.org/abs/1401.7714
http://arxiv.org/abs/1401.7714
http://www.math.wsu.edu/faculty/genz/papers/bvnt.pdf
http://www.inference.phy.cam.ac.uk/mng10/GP/thesis.ps.gz
http://www.dcs.gla.ac.uk/~rod/publications/GirMur03-tr-144.pdf
http://www.dcs.gla.ac.uk/~rod/publications/GirMur03-tr-144.pdf
http://papers.nips.cc/paper/2313-gaussian-process-priors-with-uncertain-inputs-application-to-multiple-step-ahead-time-series-forecasting.pdf
http://papers.nips.cc/paper/1444-regression-with-input-dependent-noise-a-gaussian-process-treatment.pdf
http://papers.nips.cc/paper/1444-regression-with-input-dependent-noise-a-gaussian-process-treatment.pdf
http://courses.ee.sun.ac.za/Robuuste_Beheerstelsels_813/images/7288379.pdf
http://www.jmlr.org/proceedings/papers/v9/grunewalder10a/grunewalder10a.pdf
http://www.jmlr.org/proceedings/papers/v9/grunewalder10a/grunewalder10a.pdf
http://arxiv.org/abs/1501.03291
http://arxiv.org/abs/1501.03291
http://web.tecnico.ulisboa.pt/~mcasquilho/acad/or/ftp/1989SIAM_Hager.pdf
https://cdn.preterhuman.net/texts/science_and_technology/artificial_intelligence/Neural%20Networks%20-%20A%20Comprehensive%20Foundation%20-%20Simon%20Haykin.pdf
http://dx.doi.org/10.1002/we.435
http://dx.doi.org/10.1002/we.435
https://arxiv.org/abs/1112.1217
http://www.auai.org/uai2013/prints/papers/244.pdf
http://www.auai.org/uai2013/prints/papers/244.pdf
http://papers.nips.cc/paper/4766-fast-variational-inference-in-the-conjugate-exponential-family.pdf
http://papers.nips.cc/paper/4766-fast-variational-inference-in-the-conjugate-exponential-family.pdf

REFERENCES 339

José M. Hernández-Lobato, Matthew W. Hoffman and Zoubin Ghahramani, Predictive
entropy search for efficient global optimization of black-box functions, in Advances in
Neural Information Processing Systems 27 (Curran Associates, Inc., 2014).

José M. Hernández-Lobato, Matthew W. Hoffman and Zoubin Ghahramani, Supplemen-
tary material for: Predictive Entropy Search for Efficient Global Optimization of Black-
box Functions, Technical Report (Machine Learning Group, Department of Engineer-
ing, University of Cambridge, 2014).

Nicholas J. Higham, Accuracy and Stability of Numerical Algorithms (SIAM, 2002).

Geoffrey E. Hinton and Ruslan R Salakhutdinov, Using deep belief nets to learn covariance
kernels for Gaussian processes, in Advances in Neural Information Processing Systems
20, edited by J. C. Platt, D. Koller, Y. Singer and S. T. Roweis (Curran Associates, Inc.,
2008) pages 1249–1256.

Matt Hoffman, David M. Blei, Chong Wang and John Paisley, Stochastic Variational In-
ference, Technical Report (arXiv.org, 2012).

Matthew Hoffman, Eric Brochu and Nando de Freitas, Portfolio allocation for Bayesian
optimization, in Uncertainty in Artificial Intelligence (UAI) (2011) pages 327–336.

Mike Holland, Anne Wagner, Joe Spadaro, Trevor Davies and Martin Adams, Revealing
the costs of air pollution from industrial facilities in Europe, Technical Report (Euro-
pean Environment Agency, 2011).

Chih-Wei Hsu, Chih-Chung Chang and Chih-Jen Lin, A Practical Guide to Support Vector
Classification, Technical Report (Department of Computer Science, National Taiwan
University, 2003).

Marco F. Huber, Recursive Gaussian process regression, in Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver,
Canada (2013) pages 3362–3366.

Marco F. Huber, Recursive Gaussian process: On-line regression and learning, Pattern
Recognition Letters 45, pages 85–91 (2014).

A. W. Hulskamp, The Smart Rotor Concept on Wind Turbines, Ph.D. thesis, TU Delft
(2011).

Kiyosi Itô, On stochastic differential equations, Memoirs of the American Mathematical
Society 4 (1951).

Carl Jidling, Niklas Wahlström, Adrian Wills and Thomas B. Schön, Linearly constrained
Gaussian processes, Technical Report (arXiv.org, 2017).

Thomas B. Schön Johan Dahlin, Mattias Villani, Efficient approximate Bayesian inference
for models with intractable likelihoods, Technical Report (arXiv.org, 2015).

Donald R. Jones, A taxonomy of global optimization methods based on response surfaces,
Journal of Global Optimization 21, pages 345–383 (2001).

http://papers.nips.cc/paper/5324-predictive-entropy-search-for-efficient-global-optimization-of-black-box-functions.pdf
http://papers.nips.cc/paper/5324-predictive-entropy-search-for-efficient-global-optimization-of-black-box-functions.pdf
https://jmhldotorg.files.wordpress.com/2014/10/pes-appendix.pdf
https://jmhldotorg.files.wordpress.com/2014/10/pes-appendix.pdf
https://jmhldotorg.files.wordpress.com/2014/10/pes-appendix.pdf
http://ftp.demec.ufpr.br/CFD/bibliografia/Higham_2002_Accuracy%20and%20Stability%20of%20Numerical%20Algorithms.pdf
http://papers.nips.cc/paper/3211-using-deep-belief-nets-to-learn-covariance-kernels-for-gaussian-processes.pdf
http://papers.nips.cc/paper/3211-using-deep-belief-nets-to-learn-covariance-kernels-for-gaussian-processes.pdf
http://arxiv.org/abs/1206.7051
http://arxiv.org/abs/1206.7051
http://arxiv.org/abs/1009.5419
http://www.eea.europa.eu/publications/cost-of-air-pollution/at_download/file
http://www.eea.europa.eu/publications/cost-of-air-pollution/at_download/file
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://dx.doi.org/ 10.1109/ICASSP.2013.6638281
http://dx.doi.org/ 10.1109/ICASSP.2013.6638281
http://dx.doi.org/ 10.1109/ICASSP.2013.6638281
http://dx.doi.org/10.1016/j.patrec.2014.03.004
http://dx.doi.org/10.1016/j.patrec.2014.03.004
http://repository.tudelft.nl/islandora/object/uuid:1e34c0f4-1f84-4728-8665-e5a9b901b271/datastream/OBJ/download
https://archive.org/details/onstochasticdiff029540mbp
https://archive.org/details/onstochasticdiff029540mbp
https://arxiv.org/abs/1703.00787
https://arxiv.org/abs/1703.00787
http://arxiv.org/abs/1506.06975
http://arxiv.org/abs/1506.06975
http://research.cs.wisc.edu/areas/ai/airg/jones01taxonomy.pdf

340 REFERENCES

Donald R. Jones, Matthias Schonlau and William J. Welch, Efficient global optimization
of expensive black-box functions, Journal of Global Optimization 13, pages 455–492
(1998).

A. G. Journel and C. J. Huijbregts, Mining Geostatistics (Blackburn Press, 1978).

John D. Anderson Jr., Fundamentals of Aerodynamics (McGraw-Hill, 2010).

Bei Kang, Chukwuemeka Aduba and Chang-Hee Won, Statistical control for performance
shaping using cost cumulants, IEEE Transactions on Automatic Control 59, pages 249–
255 (2014).

C. G. Kaufman and B. A. Shaby, The role of the range parameter for estimation and pre-
diction in geostatistics, Biometrika 100, pages 473–484 (2013).

C. T. Kelley, Iterative Methods for Optimization (SIAM, 1995).

David A. Kendrick, Stochastic Control for Economic Models (McGraw-Hill, 1981).

Kristian Kersting, Christian Plagemann, Patrick Pfaff and Wolfram Burgard, Most likely
heteroscedastic Gaussian process regression, in Proceedings of the 24th International
Conference on Machine Learning (2007) pages 393–400.

Robert D. Kleinberg, Nearly tight bounds for the continuum-armed bandit problem, in
Advances in Neural Information Processing Systems 17 (MIT Press, 2004) pages 697–
704.

Jeonghwan Ko, Andrew J. Kurdila and Thomas W. Strganac, Nonlinear control of a pro-
totypical wing section with torsional nonlinearity, Journal of Guidance, Control and
Dynamics 20, pages 1181–1189 (1997).

Jeonghwan Ko, Thomas W. Strganac and Andrew J. Kurdila, Stability and control of a
structurally nonlinear aeroelastic system, Journal of Guidance, Control and Dynamics
21, page 718/725 (1998).

A. N. Kolmogorov, Interpolation und Extrapolation von stationären zufäligen Folgen, Bul-
letin of the Academy of Science (Nauk), USSR 5, pages 3–14 (1941).

Peng Kou, Feng Gao and Xiaohong Guan, Sparse online warped Gaussian process for wind
power probabilistic forecasting, Applied Energy 108, pages 410–428 (2013).

H.J. Kushner, A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise, Journal of Basic Engineering 86, pages 97–106 (1964).

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra and Yoshua Bengio,
An empirical evaluation of deep architectures on problems with many factors of varia-
tion, in Proceedings of the 24th International Conference on Machine Learning (2007).

Jeanette Lawrence, Introduction to Neural Networks (California Scientific Software Press,
1994).

http://www.ressources-actuarielles.net/EXT/ISFA/1226.nsf/0/f84f7ac703bf5862c12576d8002f5259/$FILE/Jones98.pdf
http://www.ressources-actuarielles.net/EXT/ISFA/1226.nsf/0/f84f7ac703bf5862c12576d8002f5259/$FILE/Jones98.pdf
https://books.google.nl/books/about/Mining_Geostatistics.html?id=Id1GAAAAYAAJ
http://www.mheducation.com/highered/product/fundamentals-aerodynamics-anderson/M1259129918.html
http://dx.doi.org/ 10.1109/TAC.2013.2270838
http://dx.doi.org/ 10.1109/TAC.2013.2270838
http://arxiv.org/abs/1108.1851
https://www.siam.org/books/textbooks/fr18_book.pdf
https://liberalarts.utexas.edu/files/495395
http://people.csail.mit.edu/kersting/papers/kersting07icml_mlHetGP.pdf
http://people.csail.mit.edu/kersting/papers/kersting07icml_mlHetGP.pdf
http://papers.nips.cc/paper/2634-nearly-tight-bounds-for-the-continuum-armed-bandit-problem.pdf
http://dx.doi.org/10.2514/2.4174
http://dx.doi.org/10.2514/2.4174
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.38.9384&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.38.9384&rep=rep1&type=pdf
http://dx.doi.org/10.1016/j.apenergy.2013.03.038
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1431594
http://www.iro.umontreal.ca/~lisa/publications2/index.php/attachments/single/89
https://books.google.nl/books/about/Introduction_to_Neural_Networks.html?id=XVpaAAAAYAAJ

REFERENCES 341

David C. Lay, Steven R. Lay and Judi J. McDonald, Linear Algebra and Its Applications,
fifth edition (Pearson, 2015).

Miguel Lazaro-Gredilla and Michalis K. Titsias, Variational heteroscedastic Gaussian pro-
cess regression, in Proceedings of the 28th International Conference on Machine Learn-
ing (2011) pages 841–848.

Quoc V. Le, Alex J. Smola and Stéphane Canu, Heteroscedastic Gaussian process regres-
sion, in Proceedings of the International Conference on Machine Learning (ICML),
Bonn, Germany (2005) pages 489–496.

Rick Lind and Dario H. Baldelli, Identifying parameter-dependent volterra kernels to pre-
dict aeroelastic instabilities, AIAA Journal 43, pages 2496–2502 (2005).

Daniel James Lizotte, Practical Bayesian Optimization, Ph.D. thesis, University of Alberta
(2008).

Lennart Ljung, System Identification: Theory for the User (Prentice Hall, Upper Saddle
River, NJ, USA, 1999).

Charles F. van Loan, Computing integrals involving the matrix exponential, IEEE Trans-
actions on Automatic Control 23, pages 395–404 (1978).

D. J. C. MacKay, Neural networks and machine learning, (Springer, 1998) Chapter Intro-
duction to Gaussian processes, pages 133–165.

David J. C. MacKay, Comparison of approximate methods for handling hyperparameters,
Neural Computation 11, pages 1035–1068 (1999).

Jan R. Magnus and Heinz Neudecker, Matrix Differential Calculus with Applications in
Statistics and Econometrics (Wiley, 1999).

Alonso Marco, Philipp Hennig, Jeannette Bohg, Stefan Schaal and Sebastian Trimpe, Au-
tomatic LQR tuning based on Gaussian process global optimization, in Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA) 2016 (IEEE,
2016).

K. V. Mardia and R. J. Marshall, Maximum likelihood estimation of models for residual
covariance in spatial regression, Biometrika 71, pages 135–146 (1984).

Arakaparampil M. Mathai and Serge B. Provost, Quadratic Forms in Random Variables
(Taylor & Francis, 1992).

G. Matheron, The intrinsic random functions and their applications, Advances in Applied
Prob 5, pages 439–468 (1973).

Andrew McHutchon, Nonlinear Modelling and Control using Gaussian Processes, Ph.D.
thesis, Churchill College (2014).

https://books.google.nl/books/about/Linear_Algebra_and_Its_Applications.html?id=_4bjtgAACAAJ
http://www.icml-2011.org/papers/456_icmlpaper.pdf
http://www.icml-2011.org/papers/456_icmlpaper.pdf
https://cs.stanford.edu/~quocle/LeSmoCan05.pdf
https://cs.stanford.edu/~quocle/LeSmoCan05.pdf
http://arc.aiaa.org/doi/abs/10.2514/1.12042
http://www.csd.uwo.ca/~dlizotte/publications/lizotte_phd_thesis.pdf
https://books.google.nl/books/about/System_Identification.html?id=nHFoQgAACAAJ
https://www.cs.cornell.edu/cv/ResearchPDF/computing.integrals.involving.Matrix.Exp.pdf
https://www.cs.cornell.edu/cv/ResearchPDF/computing.integrals.involving.Matrix.Exp.pdf
http://www.inference.eng.cam.ac.uk/mackay/alpha.pdf
http://www.janmagnus.nl/misc/mdc2007-3rdedition
http://www.janmagnus.nl/misc/mdc2007-3rdedition
https://arxiv.org/abs/1605.01950
https://arxiv.org/abs/1605.01950
http://dx.doi.org/10.2307/2336405
https://books.google.nl/books?id=tFOqQgAACAAJ
http://cg.ensmp.fr/bibliotheque/public/MATHERON_Publication_00180.pdf
http://cg.ensmp.fr/bibliotheque/public/MATHERON_Publication_00180.pdf

342 REFERENCES

Andrew McHutchon and Carl E. Rasmussen, Gaussian process training with input noise,
in Advances in Neural Information Processing Systems (NIPS), Granada, Spain (2011)
pages 1341–1349.

Thomas P. Minka, Expectation propagation for approximate Bayesian inference, in Pro-
ceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (2001).

Jonas Mockus, Vytautas Tiesis and Antanas Zilinskas, The application of Bayesian meth-
ods for seeking the extremum (Elsevier, Amsterdam, 1978) pages 117–129.

Peter Mörters and Yuval Peres, Brownian Motion (Cambridge University Press, 2010).

Robb J. Muirhead, Aspects of Multivariate Statistical Theory (Wiley, 2005).

Iain Murray and Ryan Prescott Adams, Slice sampling covariance hyperparameters of la-
tent Gaussian models, Technical Report (arXiv.org, 2010).

S. T. Navalkar, L. O. Bernhammer, J. Sodja, E. van Solingen, G. A. M. van Kuik, and J.-
W. van Wingerden, Wind tunnel tests with combined pitch and free-floating flap con-
trol: Data-driven iterative feedforward controller tuning, Wind Energy Science (2016),
10.5194/wes-2016-14.

Radford M. Neal, Bayesian Learning for Neural Networks (Springer, 1996).

Adam Niesłony, Determination of fragments of multiaxial service loading strongly influ-
encing the fatigue of machine components, Mechanical Systems and Signal Processing
23, pages 2712–2721 (2009).

A. O’Hagan and J. F. C. Kingman, Curve fitting and optimal design for prediction, Journal
of the Royal Statistical Society, Series B (Methodological) 40, pages 1–42 (1978).

Bernt Øksendal, Stochastic Differential Equations (Springer-Verlag, 1985).

Todd O’Neil, Heather Gilliatt and Thomas W. Strganac, Investigations of aeroelastic re-
sponse for a system with continuous structural nonlinearities, in Proceedings of the 37th
Structures, Structural Dynamics and Materials Conference, Salt Lake City, Utah (1996).

Todd O’Neil and Thomas W. Strganac, Nonlinear aeroelastic response - Analyses and ex-
periments, in Proceedings of the 36th Structures, Structural Dynamics and Materials
Conference, New Orleans, Louisiana (1996).

Todd O’Neil and Thomas W. Strganac, Aeroelastic response of a rigid wing supported by
nonlinear springs, Journal of Aircraft 35, pages 616–622 (1998).

Michael Osborne, Bayesian Gaussian Processes for Sequential Prediction, Optimisation
and Quadrature, Ph.D. thesis, University of Oxford (2010).

Art B. Owen, Monte Carlo theory, methods and examples (2013).

Jinkyoo Park and Kincho H. Law, Bayesian Ascent (BA): A data-driven optimization
scheme for real-time control with application to wind farm power maximization, IEEE
Transactions on Control Systems Technology (2015).

https://papers.nips.cc/paper/4295-gaussian-process-training-with-input-noise.pdf
http://arxiv.org/abs/1301.2294
http://arxiv.org/abs/1301.2294
http://download.springer.com/static/pdf/22/chp%253A10.1007%252F3-540-07165-2_55.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F3-540-07165-2_55&token2=exp=1470990788~acl=%2Fstatic%2Fpdf%2F22%2Fchp%25253A10.1007%25252F3-540-07165-2_55.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fchapter%252F10.1007%252F3-540-07165-2_55*~hmac=7fd85c4265c1a6a8ed4e8ab7c936ae639932404d17c03950c01b5f3a759a0195
http://download.springer.com/static/pdf/22/chp%253A10.1007%252F3-540-07165-2_55.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F3-540-07165-2_55&token2=exp=1470990788~acl=%2Fstatic%2Fpdf%2F22%2Fchp%25253A10.1007%25252F3-540-07165-2_55.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Fchapter%252F10.1007%252F3-540-07165-2_55*~hmac=7fd85c4265c1a6a8ed4e8ab7c936ae639932404d17c03950c01b5f3a759a0195
http://research.microsoft.com/en-us/um/people/peres/brbook.pdf
https://books.google.nl/books/about/Aspects_of_Multivariate_Statistical_Theo.html?id=WXginwEACAAJ
http://arxiv.org/abs/1006.0868
http://arxiv.org/abs/1006.0868
http://dx.doi.org/10.5194/wes-2016-14
http://dx.doi.org/10.5194/wes-2016-14
https://books.google.nl/books/about/Bayesian_Learning_for_Neural_Networks.html?id=_peZjbrDC8cC
http://dx.doi.org/ 10.1016/j.ymssp.2009.05.010
http://dx.doi.org/ 10.1016/j.ymssp.2009.05.010
http://www.jstor.org/stable/2984861
http://www.jstor.org/stable/2984861
http://th.if.uj.edu.pl/~gudowska/dydaktyka/Oksendal.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/8409/31b72f63bc50edc0195a3726c28d1eb1c911.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/8409/31b72f63bc50edc0195a3726c28d1eb1c911.pdf
http://aeweb.tamu.edu/aeroel/papers/oneil1.pdf
http://aeweb.tamu.edu/aeroel/papers/oneil1.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.487.4677&rep=rep1&type=pdf
http://www.robots.ox.ac.uk/~mosb/public/pdf/136/full_thesis.pdf
http://statweb.stanford.edu/~owen/mc/
http://eil.stanford.edu/publications/jinkyoo_park/IEEE_CST_2016.pdf
http://eil.stanford.edu/publications/jinkyoo_park/IEEE_CST_2016.pdf

REFERENCES 343

Georgios Pechlivanoglou, Passive and active flow control solutions for wind turbine
blades, Ph.D. thesis, Technischen Universität Berlin (2012).

Cédric Philibert and Hannele Holttinen, Technology Roadmap: Wind Energy – 2013 edi-
tion, Technical Report (International Energy Agency, 2013).

Ananth Ranganathan, Ming-Hsuan Yang and Jeffrey Ho, Online sparse Gaussian process
regression and its applications, IEEE Transactions on Image 20, pages 391–404 (2011).

Carl E. Rasmussen and Christopher K.I. Williams, Gaussian Processes for Machine Learn-
ing (MIT Press, 2006).

Karl J. Åström, Introduction to Stochastic Control Theory (Academic Press, 1970).

Stephen O. Rice, Mathematical analysis of random noise, Bell System Technical Journal
23, pages 282–332 (1944).

Silvio Rodrigues, Carlos Restrepo, George Katsouris, Rodrigo Teixeira Pinto, Maryam
Soleimanzadeh, Peter Bosman and Pavol Bauer, A multi-objective optimization frame-
work for offshore wind farm layouts and electric infrastructures, Energies 9, page 216
(2016).

Michael K. Sain and Stanley R. Liberty, Performance-measure densities for a class of LQG
control systems, IEEE Transactions on Automatic Control 16, pages 431–439 (1971).

Mathieu Salzmann and Raquel Urtasun, Implicitly constrained Gaussian process regres-
sion for monocular non-rigid pose estimation, in Advances in Neural Information Pro-
cessing Systems, Volume 23, edited by J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel and A. Culotta (Curran Associates, Inc., 2010) pages 2065–2073.

F.J. Savenije and J.M. Peeringa, Aero-elastic simulation of offshore wind turbines in the fre-
quency domain, Technical Report Report ECN-E-09-060 (Energy research centre ECN,
The Netherlands, 2009).

Bernhard Schölkopf and Alexander J. Smola, Learning with Kernels (MIT Press, 2002).

Thomas B. Schön and Fredrik Lindsten, Learning of dynamical systems - particle filters
and Markov chain methods (draft manuscript) (2017).

Morton I. Schwartz, Distribution of the time-average power of a Gaussian process, IEEE
Transactions on Information Theory 16, pages 17–26 (1970).

Matthias Seeger, Bayesian model selection for support vector machines, Gaussian pro-
cesses and other kernel classifiers, in Advances in Neural Information Processing Sys-
tems 12, edited by S. A. Solla, T. K. Leen and K. Müller (MIT Press, 2000) pages 603–609.

Matthias Seeger, Christopher K.I. Williams and Neil D. Lawrence, Fast forward selection
to speed up sparse Gaussian process regression, in Workshop on AI and Statistics (2003).

https://depositonce.tu-berlin.de/bitstream/11303/3784/1/Dokument_5.pdf
https://www.iea.org/publications/freepublications/publication/technology-roadmap-wind-energy---2013-edition.html
https://www.iea.org/publications/freepublications/publication/technology-roadmap-wind-energy---2013-edition.html
http://dx.doi.org/ 10.1109/TIP.2010.2066984
http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/
https://books.google.nl/books/about/Introduction_to_Stochastic_Control_Theor.html?id=vMAsAwAAQBAJ
https://www.ganino.com/files/BSTJ/Vol23/bstj23-3-282.pdf
https://www.ganino.com/files/BSTJ/Vol23/bstj23-3-282.pdf
http://dx.doi.org/10.3390/en9030216
http://dx.doi.org/10.3390/en9030216
http://dx.doi.org/10.1109/TAC.1971.1099784
http://papers.nips.cc/paper/4179-implicitly-constrained-gaussian-process-regression-for-monocular-non-rigid-pose-estimation.pdf
http://papers.nips.cc/paper/4179-implicitly-constrained-gaussian-process-regression-for-monocular-non-rigid-pose-estimation.pdf
ftp://ftp.ecn.nl/pub/www/library/report/2009/e09060.pdf
ftp://ftp.ecn.nl/pub/www/library/report/2009/e09060.pdf
https://www.cs.utah.edu/~piyush/teaching/learning-with-kernels.pdf
http://dx.doi.org/10.1109/TIT.1970.1054407
http://dx.doi.org/10.1109/TIT.1970.1054407
http://papers.nips.cc/paper/1722-bayesian-model-selection-for-support-vector-machines-gaussian-processes-and-other-kernel-classifiers.pdf
http://papers.nips.cc/paper/1722-bayesian-model-selection-for-support-vector-machines-gaussian-processes-and-other-kernel-classifiers.pdf
http://research.microsoft.com/en-us/um/cambridge/events/aistats2003/proceedings/176.pdf

344 REFERENCES

K. Selvam, S. Kanev, J. W. van Wingerden, T. van Engelen and M. Verhaegen, Feedback-
feedforward individual pitch control for wind turbine load reduction, International
Journal of Robust and Nonlinear Control (2008), 10.1002/rnc.1324.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams and Nando de Freitas, Taking
the human out of the loop: A review of Bayesian optimization, Proceedings of the IEEE
104, pages 148–175 (2016).

Bobak Shahriari, Ziyu Wang, Matthew W. Hoffman, Alexandre Bouchard-Côté and
Nando de Freitas, An Entropy Search Portfolio for Bayesian Optimization, Technical
Report (University of Oxford, 2014).

Sigurd Skogestad and Ian Postlethwaite, Multivariable Feedback Control: Analysis and
Design (John Wiley & Sons, 2005).

Patricia L. Smith, Splines as a useful and convenient statistical tool, The American Statis-
tician 33, pages 57–62 (1979).

Alex J. Smola and Peter Bartlett, Sparse greedy Gaussian process regression, in Advances in
Neural Information Processing Systems (NIPS), Vancouver, Canada (2001) pages 619–
625.

Edward Snelson and Zoubin Ghahramani, Sparse Gaussian processes using pseudo-
inputs, in Advances in Neural Information Processing Systems (NIPS) (2006) pages
1257–1264.

Edward Snelson and Zoubin Ghahramani, Variable noise and dimensionality reduction
for sparse Gaussian processes, in Proceedings of the Twenty-Second Conference on Un-
certainty in Artificial Intelligence (UAI), Cambridge, Massachusetts, USA (2006).

Jasper Snoek, Hugo Larochelle and Ryan Prescott Adams, Practical Bayesian optimiza-
tion of machine learning algorithms, in Neural Information Processing Systems (2012).

Niranjan Srinivas, Andreas Krause, Sham M. Kakade and Matthias W. Seeger,
Information-theoretic regret bounds for Gaussian process optimization in the bandit
setting, IEEE Transactions on Information Theory 58, pages 3250 – 3265 (2012).

Michael L. Stein, Interpolation of Spatial Data (Springer, 1999).

Ingo Steinwart and Andreas Christmann, Support Vector Machines (Springer, 2008).

Tilo Strutz, Data Fitting and Uncertainty (Springer, 2016).

Yanan Sui, Alkis Gotovos, Joel W. Burdick and Andreas Krause, Safe exploration for opti-
mization with Gaussian processes, in Proceedings of the 32Nd International Conference
on International Conference on Machine Learning, ICML’15, Volume 37 (2015) pages
997–1005.

S. Sundararajan and S. Sathiya Keerthi, Predictive approaches for choosing hyperparam-
eters in Gaussian processes, in Advances in Neural Information Processing Systems 12,
edited by S. A. Solla, T. K. Leen and K. Müller (MIT Press, 2000) pages 631–637.

http://dx.doi.org/ 10.1002/rnc.1324
http://dx.doi.org/ 10.1002/rnc.1324
https://www.cs.ox.ac.uk/people/nando.defreitas/publications/BayesOptLoop.pdf
https://www.cs.ox.ac.uk/people/nando.defreitas/publications/BayesOptLoop.pdf
http://arxiv.org/abs/1406.4625
http://ee.neyshabur.ac.ir/department/electrical/images/multivariable_feedback_control_-_analysis_and_design.pdf
http://ee.neyshabur.ac.ir/department/electrical/images/multivariable_feedback_control_-_analysis_and_design.pdf
http://dx.doi.org/ 10.2307/2683222
http://dx.doi.org/ 10.2307/2683222
http://papers.nips.cc/paper/1880-sparse-greedy-gaussian-process-regression.pdf
http://papers.nips.cc/paper/1880-sparse-greedy-gaussian-process-regression.pdf
https://papers.nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs.pdf
https://arxiv.org/abs/1206.6873
https://arxiv.org/abs/1206.6873
https://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=DA0F3247D773EE6BC4DF9F540F3F4A47?doi=10.1.1.352.4052&rep=rep1&type=pdf
https://books.google.nl/books/about/Interpolation_of_Spatial_Data.html?id=5n_XuL2Wx1EC
https://books.google.nl/books/about/Support_Vector_Machines.html?id=HUnqnrpYt4IC
http://www.springer.com/us/book/9783658114558
http://proceedings.mlr.press/v37/sui15.pdf
http://proceedings.mlr.press/v37/sui15.pdf
http://papers.nips.cc/paper/1767-predictive-app-roaches-for-choosing-hyperparameters-in-gaussian-processes.pdf

REFERENCES 345

Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction (MIT
Press, 1998).

Andreas Svensson, Johan Dahlin and Thomas B. Schön, Marginalizing Gaussian process
hyperparameters using sequential monte carlo methods, in Proceedings of the IEEE In-
ternational Workshop on Computational Advances in Multi-Sensor Adaptive Process-
ing (CAMSAP) (2015).

Andreas Svensson, Arno Solin, Simo Särkkä and Thomas B. Schön, Computationally ef-
ficient Bayesian learning of Gaussian process state space models, in Proceedings of the
19th International Conference on Artificial Intelligence and Statistics (AISTATS), Cadiz,
Spain (2016).

The MathWorks Inc., Nonlinear modeling of a magneto-rheological fluid damper. Ex-
ample file provided by Matlab ® R2015b System Identification ToolboxTM (2015),
available at http://mathworks.com/help/ident/examples/nonlinear-modeling-of-a-
magneto-rheological-fluid-damper.html.

Philip Duncan Thompson, Optimum smoothing of two-dimensional fields, Tellus A 8
(1956).

William R. Thompson, On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples, Biometrika 25, pages 285–294 (1933).

Michalis K. Titsias, Variational learning of inducing variables in sparse Gaussian pro-
cesses, in Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS) (Clearwater Beach, FL, USA, 2009).

Michalis K. Titsias and Neil D. Lawrence, Bayesian Gaussian process latent variable
model, in Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics (AISTATS 13) (2010) pages 844–851.

Aimo Torn and Antanas Zilinskas, Global Optimization (Springer-Verlag New York, Inc.,
1989).

Roland Tóth, Modeling and Identification of Linear Parameter-Varying Systems (Springer,
2010).

Emmanuel Vazquez and Julien Bect, Convergence properties of the expected improvement
algorithm with fixed mean and covariance functions, Journal of Statistical Planning
and Inference 140, pages 3088–3095 (2010).

Julien Villemonteix, Emmanuel Vazquez and Eric Walter, An informational approach
to the global optimization of expensive-to-evaluate functions, Journal of Global Op-
timization 43, pages 373–389 (2009).

Hermann-Josef Wagner and Jyotirmay Mathur, Introduction to Wind Energy Systems
(Springer, 2013).

http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf
https://arxiv.org/abs/1502.01908
https://arxiv.org/abs/1502.01908
https://arxiv.org/abs/1502.01908
https://arxiv.org/abs/1506.02267
https://arxiv.org/abs/1506.02267
https://arxiv.org/abs/1506.02267
http://mathworks.com/help/ident/examples/nonlinear-modeling-of-a-magneto-rheological-fluid-damper.html
http://www.tellusa.net/index.php/tellusa/article/download/9008/10574
http://www.tellusa.net/index.php/tellusa/article/download/9008/10574
http://www.jstor.org/stable/2332286
http://www.jmlr.org/proceedings/papers/v5/titsias09a/titsias09a.pdf
http://www.jmlr.org/proceedings/papers/v5/titsias09a/titsias09a.pdf
http://www.aueb.gr/users/mtitsias/papers/vargplvmAISTATS10.pdf
http://www.aueb.gr/users/mtitsias/papers/vargplvmAISTATS10.pdf
http://users.abo.fi/atorn/Globopt.html
https://books.google.nl/books/about/Modeling_and_Identification_of_Linear_Pa.html?id=fr3w56xbzikC
http://dx.doi.org/10.1016/j.jspi.2010.04.018
http://dx.doi.org/10.1016/j.jspi.2010.04.018
http://arxiv.org/abs/cs/0611143
http://arxiv.org/abs/cs/0611143
https://books.google.nl/books/about/Introduction_to_Wind_Energy_Systems.html?id=-sdbfE8A8TsC

346 REFERENCES

Niklas Wahlström, Modeling of Magnetic Fields and Extended Objects for Localization
Applications, Ph.D. thesis, Linköping University (2015).

Niklas Wahlström, Patrix Axelsson and Fredrik Gustafsson, Discretizing stochastic dy-
namical systems using Lyapunov equations, in Proceedings of the 19th IFAC World
Congress (2014).

Chunyi Wang and Radford M. Neal, Gaussian Process Regression with Heteroscedastic or
Non-Gaussian Residuals, Technical Report (arXiv.org, 2012).

Jiandong Wang, Akira Sano, Tongwen Chen and Biao Huang, Identification of Hammer-
stein systems without explicit parameterization of nonlinearity, International Journal
of Control 82, pages 937–952 (2009).

Norbert Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series
(MIT Press, 1949).

Christopher K. I. Williams and Carl E. Rasmussen, Gaussian processes for regression, in
Advances in Neural Information Processing Systems, Volume 8 (MIT Press, 1996) pages
514–520.

Jan-Willem van Wingerden, Control of Wind Turbines with ’Smart’ Rotors: Proof of Con-
cept & LPV Subspace Identification, Ph.D. thesis, TU Delft (2008).

Chang-Hee Won, Cheryl B. Schrader and Anthony N. Michel, Advances in Statistical
Control, Algebraic Systems Theory, and Dynamic Systems Characteristics (Birkhäuser
Boston, 2008).

http://user.it.uu.se/~thosc112/team/wahlstrom2015phd.pdf
http://arxiv.org/abs/1402.1358
http://arxiv.org/abs/1402.1358
http://arxiv.org/abs/1212.6246
http://arxiv.org/abs/1212.6246
https://www.researchgate.net/publication/228737455_Identification_of_Hammerstein_systems_without_explicit_parameterisation_of_non-linearity
https://www.researchgate.net/publication/228737455_Identification_of_Hammerstein_systems_without_explicit_parameterisation_of_non-linearity
https://books.google.nl/books/about/Extrapolation_Interpolation_and_Smoothin.html?id=bqFnngEACAAJ
http://papers.nips.cc/paper/1048-gaussian-processes-for-regression.pdf
http://www.dcsc.tudelft.nl/Research/PublicationFiles/publication-6542.pdf
https://books.google.nl/books/about/Advances_in_Statistical_Control_Algebrai.html?id=yVrIOxf2DREC
https://books.google.nl/books/about/Advances_in_Statistical_Control_Algebrai.html?id=yVrIOxf2DREC

INDEX

Symbols
χ-squared distribution 261

A
Acquisition function 174
Adaptive quadratures149
Air density . 34
Alternate Lyapunov equation222
Alternate Lyapunov solution 222
Ancestor (particles) . 164
Automatic relevance determination 45
Azimuth (Wind turbine) 187

B
Basis function . 25
Bayes’ theorem .41
Bayesian optimization 173
Big O notation . 75
Blockwise matrix inverse 208
Brownian motion . 288

C
Center of gravity (airfoil) 33
Challenge (particles)152
Challenger particle . 152
Champion particles 152
Cholesky decomposition 256
Cognitive load . xiii
Coleman transformation 187
Complexity penalty . 43
Computational requirements 74, 75
Conditional independence 273
Constrained Gaussian process

regression .55
Constrained Gaussian process

regression equation 56
Constraint .55
Continuous entropy 177
Continuous Lyapunov equation 222

Controller parameters 57
Controller settings . 57
Coppersmith-Winograd algorithm 75
Correlation function . 18
Cost matrix . 302
Cost rate . 296
Covariance function18, 23
Covariance matrix . 255
Cumulative density function 148, 256
Cumulative weight chart 162
Cut-off covariance function 106
Cyclic property . 204

D
Damping coefficients 33
Data fit term . 43
Defensive importance sampling 165
Delta distribution .246
Delta function . 246, 288
Derivative covariance function 28
Derivative mean function28
Derivative of a Gaussian process 28
Deterministic training conditional

assumption 104
Differential entropy .177
Discount exponent . 297
Discount factor . 58
Discounted cost function296
Discrete Lyapunov equation222
Distribution .244

E
Entropy . 110, 177
Entropy search .179
Entropy search acquisition function . . 179
Error (Gaussian process optimization) 173
Error function . 153
Error minimization . 174
Errors-in-variables regression 141

347

348 INDEX

Evidence maximization 92
Expected improvement acquisition

function . 176
Expected posterior variance 93
Expected squared state 293
Expected squared value 261
Expexted value acquisition function . . 174
Exploitation .174
Exploration . 174
Exploration parameter 175

F
Feathering . 7
Feature function . 51
Feature vector .51
Feedback matrix . 301
Finite-time cost function 295
FITC algorithm .81
FITC training equation 81
Flutter . 5, 36
Fully independent training conditional

algorithm . 81
Fully independent training conditional

assumption 81
Function bias . 51
Function offset . 51

G
Gauss-Jordan elimination 75
Gaussian distribution255
Gaussian exponential212
Gaussian mixture model110
Gaussian probability density

function13, 255
Gaussian process . 23
Gaussian process optimization173
Gaussian process regression 2
Gaussian process regression

equation 22, 74
Generalized χ-squared distribution . . . 261
Gust . 6

H
Heteroscedasticity . 67
Hidden subsidies .4
Hurwitz matrix . 222

Hyper-prior . 41
Hyperparameters . 40

I
Importance sampling159
Independence (random variables) 246
Index variable . 23
Individual pitch control 7
Inducing function values 76
Inducing input points76
Inducing input set . 76
Information matrix . 17
Initial state . 289
Input penalty matrix299
Input vector . 25
Instantaneous regret173
Instantaneous reward57
Integer (Algorithms) 134
Integral of a Gaussian process 30
Integrity of a prediction69
Inverse Coleman transformation 188
Invertible matrix . 222
Itô isometry . 291
Iterative feedback tuning 195

J
Joint probability density function 245

K
Kernel density estimation 159
Kernel function . 18
Kronecker product .206
Kullback-Leibler divergence 178

L
LDU decomposition 208
Learning index . 88
Length scale .18
Length scales .13
Life cycles . 189
Lift coefficient . 34
Likelihood .41
Limit cycle . 36
Linear covariance function 49
Linear parameter-varying control 8
Linear quadratic gaussian control 288

INDEX 349

Log-likelihood . 43
Lyapunov constant . 222
Lyapunov equation . 221
Lyapunov solution . 222
Lyapunov solution properties 224

M
Marginal likelihood 41, 161
Marginalization .245
Matlab scripts . xiv
Matrix covariance function 27
Matrix derivative .205
Matrix exponentials 232
Matrix inverse . 207
Matrix inversion lemma 209
Matrix of squared length scales 25
Maximum a posteriori method 42
Maximum distribution 146
Maximum entropy probability

distribution111
Maximum likelihood method42
Mean function . 23
Mean squared error .133
Mean variance . 134
Mean vector . 255
Measured function values 20
Measured value . 13
Measurement input set 20
Measurement noise 13, 306
Measurement points . 20
Memory requirement 75
Miner’s rule . 191
minimal cost variance control330
Minimum variance control 330
Mixture importance sampling 164
Moment matching 53, 110
Moments (Probability distribution) . . . 110
Monte Carlo . 110, 157
Monte Carlo maximum distribution

algorithm . 151
Multi-blade coordinate transformation 187
Multinomial resampling 162
Multiplication matrix 222
Multivariate Gaussian distribution 15

N
NARX system . 130
Noisy input Gaussian process regression

algorithm . 118
Noncentral χ-squared distribution 261
Normal distribution 255
Normalization constant 43
Null distribution 178, 247

O
Observation likelihood41, 161
Observer . 307
Observer gain matrix 307
Optimal cost matrix 301
Optimal discounted cost matrix 304
Optimal discounted feedback matrix . 306
Optimal feedback matrix 301
Optimal input . 146
Optimal observer gain matrix 307
Optimal output . 146
Output function . 161
Overfitting . 43

P
Parameterized control law 57
Partially independent training conditional

algorithm . 81
Partially independent training conditional

assumption 81
Particle . 151, 157
Piecewise smooth covariance function . 48
PITC algorithm .81
Pitch . 32
Pitch angle (blades) . 7
Pitch-plunge system 32, 59
Plunge .32
Portfolio methods . 179
Posterior covariance function 24
Posterior distribution 14
Posterior hyperparameter distribution . 41
Posterior mean function 24
Posterior sampling .180
Posterior state distribution 161
Power form . 261
Precision matrix . 17
Predicting . 19

350 INDEX

Prediction step (regression)75
Predictive entropy search198
Preparation step . 75
Prescribed degree of stability 297
Prior covariance function 24
Prior distribution 12, 252
Prior hyperparameter distribution 41
Prior knowledge .12
Prior mean function . 24
Prior state distribution 161
Probabilistic global optimization174
Probability density function 12, 244
Probability matching 180
Probability of improvement acquisition

function . 175
Process noise . 288
Prosthaphaeresis formula 241
Pseudo measurement distribution 97

Q
Quadratic cost function63
Quadratic power form 261
Quadratic value function 63

R
Random variable . 244
Random vector .15, 244
Rare events . 159
Recommendation (acquisition func.) . 179
Regret . 174
Regret minimization 174
Regularization . 43
Relative entropy . 178
Resampling . 162
Reward function . 58
Riccati equation 301, 307
Root bending moment 187
Root mean squared error 137
Round of challenges 152
Runtime requirement 75

S
S-N Curve . 189
Schur complement . 207
Science per cognitive load xiii
Self-normalized importance sampling 161

Separation principle 309
Sequential Monte Carlo samplers 155
Simpson’s formula . 241
Sparse Gaussian process prediction

equation . 78
Sparse Gaussian process regression .74, 78
Sparse Gaussian process training

equation . 77
Sparse online noisy input Gaussian

process regression124
Spring constant . 32
Squared exponential correlation

function . 18
Squared exponential covariance

function 19, 25
Stable matrix .222
Standard deviation function174
Standard Gaussian distribution 255
Standard probability density function 255
State estimate .307
State estimate update law 307
State estimation error 307
State evolution .289
State penalty matrix 294
State transition function157
State vector . 288
Stationary particle distribution153
Steady-state cost rate 296
Steady-state error covariance matrix . . 307
Steady-state state covariance matrix . . 291
Stochastic variational inference 104
Stratified resampling 164
Subset of data approach 127
Subset of data method104
Surface area (wing) . 34
Surprise (measurements)106
Sylvester equation . 223
Sylvester matrix . 222
System input .299
System matrix . 288
Systematic resampling164

T
Thompson sampling 180
Tower shadow . 6
Trace operator . 204

INDEX 351

Training step (regression) 75
Trial function values . 20
Trial input set . 20
Trial points . 20
Trigonometric addition formula241
True value . 13
Try-out points . 173
Turbulence . 6

U
Uncertainty incorporating squared expo-

nential covariance function . 116
Unit vector . 301
Unmerging distributions 77, 267
Upper confidence bound acquisition

function . 176

V
Value . 58
Value function . 58
Variance constrained LQG330
Vectorization . 206

W
Weight (particles) . 159
Weight degeneracy . 162
Weight vector . 49
Weighted mean reward 58
Wind shear . 6
Woodbury matrix identity 209
Writing mindset .xii

	Preface
	The goal of this student version
	Thoughts behind the writing style
	The set-up of the student version and its chapters
	Final words

	Introduction
	Issues behind Gaussian process regression
	What does Gaussian process regression do?
	Limitations of Gaussian process regression

	Why wind turbine control?
	The issue of cost
	The issue of size
	The issue of vibrations
	The issue of frequencies
	The issue of control

	Overview of this booklet

	An intuitive introduction to Gaussian process regression
	Approximating a variable
	The prior distribution
	Making measurements of f
	Merging distributions
	Multiple variables to approximate
	Measuring only a single variable

	Approximating variables we have not measured
	Making prior assumptions on function values
	Making predictions about other function values
	Splitting up the measurement and trial points
	Implementing noisy measurements

	Different views on Gaussian processes
	The formal definition of a Gaussian process
	The intuitive view of a Gaussian process
	The mathematical view of Gaussian process regression

	Multi-dimensional inputs and outputs
	Using multi-dimensional input points
	Using multi-dimensional output points
	A simplification when using multi-dimensional outputs
	The covariance functions within the covariance matrix

	The derivative and integral of a Gaussian process
	The derivative of a Gaussian process
	The mean and covariance of the derivative
	Implementing derivative measurements
	Integrals of Gaussian processes

	Identifying the dynamics of a pitch-plunge system
	The pitch-plunge system set-up
	The pitch-plunge system equations of motion
	A first approximation of the state transition function
	Making a higher-dimensional approximation

	Literature – A short history of GP regression

	Details of the covariance function
	The basics of tuning hyperparameters
	Probabilities and likelihoods
	Integrating over hyperparameters
	The maximum likelihood method
	Optimizing the log-likelihood
	Using different hyper-priors

	Other covariance functions and tuning methods
	Different kinds of covariance functions
	The covariance function for linear functions
	Trading off covariance functions
	Combining covariance functions

	Applying GP regression to linear relations
	Measuring linear relations of function values
	Applying constrained Gaussian process regression
	Hyperparameter tuning for constrained GP regression
	A practical use of constrained GP regression

	Linearized modeling of the pitch-plunge system
	The linearized discrete equations of motion
	Applying the linear covariance function
	Switching to the nonlinear system

	Approximating a quadratic value function
	The LQG problem set-up
	Approximating the value function for a single controller
	Adding noise to the problem
	Varying the controller settings
	Further extensions: unstable and nonlinear systems

	Overview of literature
	Literature on hyperparameter tuning
	Literature on covariance functions
	Literature on constrained GP regression

	Sparse and online Gaussian process regression
	Sparse Gaussian process regression
	A notation for discussing computational requirements
	Analyzing the computational requirements
	Faster prediction: using inducing input points
	Faster training: using measurements individually
	More flexibility: using measurements in subgroups
	An incorrect alternative view on sparse GP regression

	Online Gaussian process regression
	Regular online Gaussian process regression
	Sparse online Gaussian process regression
	Online FITC regression
	Online PITC regression
	Numerical stability of the online methods

	Choosing the inducing input points
	Manually choosing the inducing input points offline
	Automatically tuning the inducing input points offline
	Adjusting the inducing input points online
	A different merging order

	Applications of sparse online GP regression
	A comparison between algorithms
	Application to the pitch-plunge system

	Overview of literature and contributions
	Literature overview
	Suggestions for further research

	Noisy input Gaussian process regression
	Using stochastic trial points
	Integrating over possible trial points
	Intermezzo: background behind moment matching
	The expected value of the trial function value
	The variance of the trial function value
	The mean and variance of sparse predictions
	Using multiple trial input points

	Using stochastic measurement points
	The problem behind integrating over measurement points
	The noisy input Gaussian process regression algorithm
	Sparse and online algorithms – the main ideas
	The posterior distribution of the measurement point
	Updating the distribution of the inducing function values
	Derivatives needed for the SONIG algorithm

	Extensions to the SONIG algorithm
	Applying hyperparameter tuning
	Using multiple outputs
	The posterior distribution of the measured output
	The posterior covariance between input and output
	An online system identification algorithm

	Experiments
	Application to a test function
	Identification of a magneto-rheological fluid damper
	Noisy state measurements of the pitch-plunge system

	Overview of literature
	Literature overview
	Suggestions for further research

	Gaussian process optimization
	Finding the maximum of a Gaussian process
	The maximum distribution
	An analytical approach to finding the maximum
	A derivative approach to finding the maximum
	A particle approach to finding the maximum
	Finding the limit distribution of the particles
	An intuitive view on the two different distributions
	Using multiple challengers

	Intermezzo: sequential Monte Carlo samplers
	The idea behind Monte Carlo methods
	Importance sampling
	Self-normalized importance sampling
	Sequential importance sampling
	Resampling
	Mixture importance sampling
	Defensive importance sampling

	Applying SMC ideas to find the maximum
	Notations and definitions
	Improving the convergence rate
	Adding weights to particles
	Resampling of particles
	Ensuring correct convergence
	Expanding the algorithm to continuous functions
	The distribution of the maximum value

	Gaussian process optimization
	The Gaussian process optimization problem set-up
	Basic GPO methods: acquisition functions
	Intermezzo: the entropy of distributions
	Entropy search
	Portfolio methods
	Thompson sampling

	Experiments
	Optimizing a one-dimensional function
	Optimizing a two-dimensional function
	A wind turbine simulation system
	Multiple reference frames: the Coleman transformation
	A quality criterion: the damage equivalent load
	Optimizing the controller settings of a wind turbine
	Applying the methods to a wind tunnel test
	Lessons learned from the optimization experiments

	Overview of literature and contributions
	Literature overview
	Suggestions for further research

	Conclusion and recommendations
	Matrix algebra
	Matrix operations
	The trace operator
	Matrix derivatives
	Vectorization and the Kronecker product

	Matrix inverses
	Blockwise matrix inverses
	Inverting sums of matrices

	Gaussian exponentials
	Multiplying Gaussian exponentials
	Multiplying/dividing Gaussian exponential functions
	Joint Gaussian exponential functions
	Other Gaussian exponential relations

	Lyapunov equations
	Notations and definitions
	Finding the Lyapunov solution
	Basic properties of Lyapunov solutions
	Combinations of Lyapunov solutions
	More integral expressions

	Using matrix exponentials to solve integrals
	Integrals within matrix exponentials
	Using matrix exponentials to solve Lyapunov equations
	A comparison between the two methods

	Miscellaneous

	Probability theory
	Introducing the probability density function
	Definition of the probability density function
	Joint distributions
	Conditional distributions
	Special cases of the probability density function

	The mean and the covariance
	The fundamentals behind the mean and the covariance
	Linear transformations of random variables
	Further properties of the mean and the covariance

	Transformations of probability density functions
	Linear transformations of a random variable
	Nonlinear transformations of random variables
	Merging distributions

	The Gaussian distribution
	The Gaussian probability density function
	The standard Gaussian distribution
	Linear transformations of Gaussian distributions
	Marginalization and conditioning of Gaussian distributions
	Special cases of the Gaussian distribution
	Power forms of Gaussian random variables

	Manipulating Gaussian distributions
	Merging Gaussian distributions
	Measuring linear relations of Gaussian variables
	Linear functions with Gaussian weights

	Conditionally independent Gaussian variables
	Conditional independence of random vectors
	Conditional independence between vector elements
	Conditional independence of parts of a vector
	Online updating of distributions

	Linear systems theory
	Linear systems and their evolution
	System definition
	Evolution of the system state

	The expected cost
	The infinite-time cost function
	The cost of a system without noise
	The finite-time cost function
	The discounted cost function

	Linear quadratic Gaussian control
	The input that optimizes the cost function
	Differences for the discounted cost function
	Reintroducing process noise
	Estimating the state from noisy measurements
	Optimal control based on the state estimate

	The variance of the LQG cost
	The infinite-time case
	The non-discounted case
	The general case
	Solutions using matrix exponentials

	Applications of the derived expression
	A simulation verifying the derived equations
	A simulation applying the derived equations

	Overview of literature and contributions

	References
	Index

