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SUMMARY

Wind turbines are growing bigger to become more cost-efficient. This does increase the
severity of the vibrations that are present in the turbine blades, both due to predictable
effects like wind shear and tower shadow, and due to less predictable effects like turbu-
lence and flutter. If wind turbines are to become bigger and more cost-efficient, these
vibrations need to be reduced.

This can be done by installing trailing-edge flaps to the blades. Because of the variety
of circumstances which the turbine should operate in, this results in large uncertainties.
As such, we need methods that can take stochastic effects into account. Preferably we
develop an algorithm that can learn from online data how the flaps affect the wind turbine
and how to optimally control them.

A simple prior analysis can be done using a linearized version of the system. In this
case it is important to know not only the expected cost (damage) that will be incurred
by the wind turbine in various situations, but also the spread of this cost. This can for
instance be done by looking at the variance of the cost function. Various expressions are
available to analytically calculate this variance. Alternatively, we can prescribe a degree of
stability for the system.

Due to the limitations of linear approximations of systems, it is more effective to apply
nonlinear regression methods. A promising one is Gaussian Process (GP) regression.
Given a training set (X , y) it can predict function values f (x∗) for test points x∗. It has its
basis in Bayesian probability theory, which allows it to not only make this prediction, but
also give information (the variance) about its accuracy.

The usual way in which GP regression is applied has a few important limitations.
Most importantly, it is computationally intensive, especially when applied to constantly
growing data sets. In addition, it has difficulties dealing with noise present in the training
input points x . There are methods to solve either of these issues, but these tricks generally
do not work well together, or their combination requires many computational resources.
However, by making the right approximations, like Taylor expansions and at times even
linearizations, Gaussian process regression can be applied efficiently, in an online way,
to data sets with noisy input points. This enables GP regression to be used for system
identification problems like online non-linear black-box modeling.

Another limitation is that it can be difficult to find the optimum of a Gaussian process.
The reason is that the optimum of a Gaussian process is not a fixed point but a random
variable. The distribution of this optimum cannot be calculated analytically, but we
can use particle methods to approximate it. We can subsequently use this principle to
efficiently explore an unknown nonlinear function, trying to locate its optimum. To do so,
we sample a point x from the optimum distribution, measure what the function value
f (x) at this point is, update the Gaussian process approximation of the function, update

ix
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the optimum distribution and repeat this process until the distribution has converged.
Finding the optimum of a function like this has shown to have competitive performance
at keeping the cumulative regret low, compared to similar algorithms. In addition, it
allows wind turbines to tune the gains of a fixed-structure controller so as to optimize a
nonlinear cost function like the damage equivalent load.

All these improvements are a step forward in the application of Gaussian process
regression to wind turbine applications. But as is always the case with research, there are
still many things left to improve further.



SAMENVATTING

Windturbines worden steeds groter om zo goedkoop mogelijk energie te kunnen pro-
duceren. Dit verergert wel de trillingen die in de bladen aanwezig zijn, zowel vanwege
voorspelbare effecten als windscheer en torenschaduw, maar ook door minder voorspel-
bare effecten als turbulentie en flutter. Als windturbines groter moeten worden, met een
hogere kostenefficiëntie, dan moeten deze trillingen verminderd worden.

Dit kan bereikt worden door verstelbare flappen aan de achterkant van de bladen te
zetten. Door de grote variëteit aan omstandigheden die de windturbine zal ondervinden,
resulteert dit in grote onzekerheden. Hierdoor hebben we methoden nodig die om
kunnen gaan met deze stochastische effecten. Bij voorkeur ontwikkelen we een algoritme
dat van online informatie kan leren hoe de flappen de windturbine beïnvloeden en hoe
ze vervolgens optimaal bestuurd kunnen worden.

Een simpele analyse vooraf kan gedaan worden via een linearisatie van het systeem.
In dit geval is het belangrijk om niet alleen te weten wat de verwachte kosten (schade) zijn
die plaats zal vinden in verschillende situaties, maar ook de spreiding van deze kosten.
Dit kan bijvoorbeeld gedaan worden door te kijken naar de variantie van de kostenfunctie.
Verschillende uitdrukkingen voor deze variantie zijn beschikbaar. Aan de andere kant is
het ook mogelijk om een bepaalde graad van stabiliteit voor het systeem voor te schrijven.

Door de beperkingen van lineaire systeembenaderingen is het beter om nonlineaire
regressiemethoden te gebruiken. Een beloftevol voorbeeld is Gaussisch proces-regressie
(GP-regressie). Gegeven een trainingsset (X , y) kan deze methode functiewaarden f (x∗)
voorspellen voor testpunten x∗. Het heeft een basis in de Bayesiaanse kansrekening,
waardoor het niet alleen in staat is om zo’n voorspelling te maken, maar ook informatie te
geven (de variantie) over de nauwkeurigheid ervan.

De gebruikelijke manier om GP-regressie toe te passen heeft een paar belangrijke
beperkingen. Bovenal is het rekentechnisch een erg complexe methode, vooral als het
toegepast wordt op grote en groeiende datasets. Hiernaast heeft het ook moeite met
het meerekenen van ruis aanwezig in de invoerpunten x . Er zijn methoden om elk van
deze problemen op te lossen, maar die trucs gaan over het algemeen niet goed samen,
of vereisen erg veel rekenkracht. Echter, door de juiste benaderingen te maken, zoals
Taylor-ontwikkelingen en af en toe zelfs een linearisatie, kan Gaussisch proces-regressie
op een efficiënte online manier toegepast worden op datasets met stochasische invoer-
punten. Dit stelt GP-regressie in staat om gebruikt te worden voor systeemidentificatie-
toepassingen, zoals online niet-lineaire zwarte doos-modelering.

Een andere beperking is dat Gaussische processen niet gemakkelijk geoptimaliseerd
kunnen worden. De reden is dat het optimum van een Gaussisch proces niet een vast
punt is, maar een stochastische variabele. De verdeling van dit optimum kan daarnaast
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ook niet analytisch berekend worden, maar we kunnen het wel benaderen met nume-
rieke methoden. Dit principe kunnen we vervolgens gebruiken om op efficiënte wijze
onbekende nonlineaire functies te verkennen, op zoek naar het optimum. Om dit te doen
kiezen we een willekeurig punt x , volgens de verdeling van het optimum, meten we wat
de bijbehorende functiewaarde f (x) op dit punt is, rekenen we dit mee in de Gaussisch
proces-benadering, updaten we de distributie van het optimum en herhalen we dit hele
proces tot de verdeling geconvergeerd is. Deze wijze van het vinden van het optimum
van een functie heeft laten zien dat het concurrerende prestaties heeft, ten opzichte van
soortgelijke algoritmen, in het beperkt houden van de totaal opgetelde kosten tijdens
het verkennen. Hiernaast stelt het windturbines in staat om de versterkingen van een
vaste-structuur regelaar bij te stellen, om op die manier een niet-lineaire kostenfunctie
als de schade-equivalente belasting te optimaliseren.

Al deze verbeteringen zijn een belangrijke stap vooruit in de toepassing van Gaussisch
proces-regressie op windturbines. Maar zoals altijd het geval is met onderzoek, zijn er
nog steeds tal van dingen om verder te verbeteren.



1
INTRODUCTION

On April 22, 2016 the Paris Agreement was signed. This historic agreement requires
countries to reduce greenhouse gas emissions, with as main goal to fight global warming.
At the time of writing, 195 countries have signed the treaty, with 146 having ratified it.
Countries are expected to gradually phase out fossil fuels like coal, gas and oil, and use
more renewable energy sources like solar, hydro and wind energy. It is for this reason that
there has been a tremendous growth of interest in these types of energy, as well as a large
desire to make them more cost-efficient.

When using renewable energy, it is generally wise to use a variety of sources. When
one source provides little energy due to external factors – i.e., there is less sun, water
or wind available at a given time – then other sources can potentially compensate. As
a result, a lot of research is done in all kinds of renewable energy sources. In this thesis
we focus on wind energy. We start by looking at how wind energy is developing, what
challenges it faces and what is needed to overcome these.

1.1. FACTORS AFFECTING THE COST OF WIND ENERGY
The most important factor in wind energy is the cost of energy. How much money does it
cost to produce one kWh of wind energy? And more importantly: what decisions should
we make to lower this cost? It is important here to realize that this cost-efficiency can,
roughly put, be calculated through

Cost-efficiency = Total energy produced

Total capital costs+Total operating costs
. (1.1)

There are many design choices that affect this cost-efficiency, and they do so in a variety
of ways.

Probably the most important factor is the location of the wind turbine. As noted
by Navalkar (2016), many wind turbines reside on land in flat wind-rich regions of low
population density with a stable grid connection and a green government policy. The
reason for this is clear: land-based turbines generally have a lower operating cost, because

1
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inspection and maintenance is easier to perform. At the same time, the set-up costs are
also lower: the turbine components make up 68% of the capital costs for onshore turbines,
but 32% for offshore turbines (Moné et al., 2015). The difference is mainly caused by the
additional infrastructure that is required for offshore turbines.

However, with most of the suitable onshore locations already taken (Gebraad, 2014),
and with an increase in social pressure against such sites, the focus starts to shift more and
more towards offshore wind energy (van Solingen, 2015). At the same time, these locations
have some favorable properties of their own (Hau, 2006). Offshore wind turbines have
more persistent wind speeds, enabling them to extract more power from the available
wind (Pryor and Barthelmie, 2001, 2002). In addition, the lower surface roughness allows
the wind speed above the sea increases more rapidly than it does on land. This allows
for lower towers. Finally, turbulence levels are lower (Türk and Emeis, 2010), positively
affecting the amount of fatigue damage incurred by such turbulence.

Another factor that influences the cost-efficiency is the way that turbines are grouped.
When multiple wind turbines in turbine parks are grouped closely together, then costs
are saved due to easier installation, lower cable lengths, fewer space requirements and
such. On the flip side, wind turbines are subject to aerodynamic interaction, where the
upwind wind turbines reduce the power that lower wind turbines can generate (Gebraad,
2014). This holds for both onshore and offshore wind turbines, but more strongly for the
latter, because on sea turbine wakes recover more slowly as a result of less mixing of the
air (Hansen et al., 2012).

The size of wind turbines also strongly affects the cost-efficiency. The power generated
by a wind turbine scales quadratically with the rotor diameter (Bianchi et al., 2007, Wagner
and Mathur, 2013). In other words, a wind turbine that is twice as large will generate
four times as much power. As a result, larger wind turbines have a significantly higher
energy production, while the costs do not scale up that way. This has resulted in wind
turbines growing larger and larger, as is also shown by Figure 1.1. One of the main factors
limiting this increase in size is fatigue damage. Bigger wind turbines are subject to more
intense vibrations, and the resulting fatigue limits the lifetime of the turbine. To continue
this trend of growing wind turbines, it is therefore crucial to reduce the fatigue damage
sustained by the turbines. One way to do so would be through active control.

We will study active control of wind turbines more in-depth next, in Section 1.2. But
first it is worthwhile to note its effects on the cost-efficiency. The conventional way of
reducing the bending stresses present, is by adding more material to the turbine blades.
When we instead use active control to reduce the bending stresses, it is possible to reduce
the amount of materials required to produce wind turbines, effectively bringing down the
total capital cost. At the same time, the lifetime of the turbine may increase due to a lower
fatigue load, resulting in a higher total amount of energy produced. However, applying
active control generally means that the wind turbine has more moving parts, which may
require more maintenance, adding to the total operating costs.

It can be concluded that there are many factors that affect the cost-efficiency of the
turbine and finding the ‘perfect wind turbine’ is something that will still take a lot of
research. This especially holds when it comes to actively reducing the vibrations within
wind turbines, which is what we look at next.
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Figure 1.1: Development of the size of wind turbines over the years. The future sizes are a prognosis, whose
validity strongly depends on whether the technical challenges related to larger wind turbines can be solved.
Source: Rodrigues et al. (2016). Similar results are given by Philibert and Holttinen (2013).

1.2. TACKLING THE VIBRATIONS IN THE WIND TURBINE
Vibrations play a significant role within wind turbines. For example, the fluctuating
bending moments at the root of the turbine blades cause fatigue damage. In addition,
vibrations also move up the drive train, potentially causing damage in the generator. It is
therefore crucial to reduce these vibrations.

1.2.1. THE CAUSE OF VIBRATIONS

The vibrations within wind turbines are caused by a variety of factors. Some of the factors
are predictable. An important example is wind shear, which is defined as a variation
in wind velocity occurring along a direction at right angles to the wind’s direction. The
most common one here is vertical wind shear (as opposed to horizontal wind shear)
which is a variation in wind speed at different altitudes. In practice, higher altitudes often
have higher wind speeds, as shown by Figure 1.2. This causes a fluctuating root bending
moment within the blades. Another predictable factor is tower shadow. This is a reduction
of the wind speed near the turbine tower and it also causes significant cyclic loads.

There are also less predictable causes of vibrations. These are mostly by fluctuations
within the wind field. These variations can take the form of gusts (a sudden increase in the
wind speeds), turbulence (rapid variations in air pressure and flow velocity) or other more
stationary yet still unpredictable variations in the wind speed. In bad cases the turbine
blade may also be subject to flutter, which is a dynamic instability of the blade, caused by
positive feedback between the blade deflection/inclination and the aerodynamic force
applied to it.

Altogether, these vibrations have the potential to cause significant fatigue damage in
the turbine. If turbines are to grow larger, or have a longer lifetime, it is therefore crucial
to reduce the vibrations. There are various ways to affect the workings of the turbine, and
we will study them next.
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Figure 1.2: A wind turbine with the incoming wind visualized. Because the wind speed is lower on lower altitudes,
the turbine experiences vertical wind shear. In addition, because the tower blocks the incoming wind, tower
shadow occurs.

1.2.2. METHODS OF AFFECTING THE TURBINE STATE
There are three common ways of controlling a wind turbine. The first is by yawing the
turbine. This is used to rotate it into the wind, but minor adjustments can also be made
to direct the wind turbine wake away from other turbines downstream (Gebraad, 2014).
The second is by using the generator torque to control the rotor speed of the wind turbine.
This is generally down for below-rated wind conditions. At above-rated wind conditions,
it is more common to adjust the pitch angle of the blades to keep the rotor speed limited,
which is done through full-span pitch actuators.

Conventionally, the pitch actuators give all turbine blades the same pitch angle. How-
ever, instead of collectively controlling the pitch angle, it is also possible to apply Individ-
ual Pitch Control (IPC). This means that the pitch angle of the individual blades – each
weighing dozens of tons – are adjusted several times during each rotation of the turbine.
This technique has shown to be effective at reducing the first dominant peak of the load
frequency spectrum, but is not capable at reducing higher frequency vibrations due to
the limitations of the pitch actuator (Navalkar, 2016).

A more promising approach at reducing higher frequency vibrations is to install flaps
on the trailing edge of the blades, as shown in Figure 1.3. These flaps can be actuated
at much higher frequencies than what IPC can obtain. They can be actuated using
small motors (Berg et al., 2012), using shape memory alloys (Hulskamp, 2011) or using
piezo-actuators (Bak et al., 2007, Hulskamp, 2011). For a complete overview of control
methods, see (Pechlivanoglou, 2012). There are also other methods of controlling the air
flow, like the use of synthetic jets, microtabs or microflaps. These have been explored
in the literature, but their application to turbine prototypes is still very scarce. These
are hence still very novel technologies, whose feasibility still needs to be proven. At the
same time, there is ample evidence that trailing-edge flaps are capable of reducing the
vibrations (Castaignet et al., 2012, Andersen et al., 2006, Basualdo, 2005, Buhl et al., 2005).
That is why we will consider trailing-edge flaps in this thesis.
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Figure 1.3: A wind turbine with trailing-edge flaps attached to the blades. Contrary to individual pitch control,
these flaps are capable of reducing relatively high-frequency oscillations.

1.2.3. METHODS OF OBTAINING DATA

To be able to properly affect the state of the wind turbine, it is crucial to know what state
it is in. After all, active control can very well amplify vibrations instead of reducing them.
This requires measurements. In literature, a variety of data has been used, including pitot
tubes to measure air pressure (Heinz et al., 2010), strain gauges to measure moments (Cas-
taignet et al., 2012), accelerometers to measure motion, or LiDAR technology to measure
the incoming airflow (Pechlivanoglou, 2012). This data can then be used to actuate the
flap.

Although the measured data is not only necessary to estimate the state of the wind
turbine. It is also crucial at determining its behavior. Although the dynamics of the
wind turbine can be predicted reasonably well through first-principle modeling, they
will never exactly match the dynamics of the real turbines (van der Veen et al., 2013).
There are always minor variations in the manufacturing process, and these differences
between turbines are likely to grow over time as the turbines age. As a result, a data-driven
controller can very well outperform a model-based controller (Formentin et al., 2014).
This is why it is crucial to obtain a sufficient amount of data to tune controllers.

1.2.4. CALCULATING THE FATIGUE LOAD

The goal of the control law should ideally be to reduce the fatigue load as much as
possible. However, calculating the amount of ‘fatigue’ is not a trivial matter. There are
two important matters: at what point of the blade do we want to minimize the fatigue?
And how do we quantify the fatigue?

An important quantity for wind turbines, that can also be measured relatively easily,
is the blade Root Bending Moment (RBM). As a result, it makes sense to only focus on the
stresses present at the root of the blade. This is also the place where the bending moment
is the largest. That is why, in this thesis, we will focus on the RBM.

To calculate the fatigue damage at the blade root, we need to take all fluctuations of
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the RBM into account. This is not trivial, since the blade will be subject to lots of small
oscillations, a few big ones, and many in-between. An example of the blade RBMs during
the regular operation of a wind turbine is shown in Figure 1.4.

Figure 1.4: The root bending moments of the wind turbine in flapping direction. The values given are in the
rotating reference frame. The numbers were produced by a TURBU simulation (van Engelen and Braam, 2004)
using representative operating conditions. It can be seen that, next to the default oscillations of the turbine due
to the rotation of the blades, there are also many smaller oscillations.

The first step is to analyze how many oscillations of which magnitude our blades have
been subject to. This is done through rainflow counting (Niesłony, 2009). An explanation
of this process is shown in Figure 1.5.

This gives us the magnitudes of all the individual oscillations encountered. The next
step is to compare them with each other. To do this, we use the S-N Curve. Here, S is the
stress magnitude of the oscillations that the blade encounters and N is the number of
such oscillations that the material can survive before failing; also known as the life cycles.
The S-N curve is generally plotted using a logarithmic scale for N . In this case, it takes a
mostly linear shape for most materials. This means that N and S approximately satisfy a
relation of the form SN m = constant. That is, if the oscillation stress S becomes twice as
big, the number of life cycles is reduced by a factor 2m . Or alternatively, 2m oscillations of
stress S are equivalent to one oscillation of stress 2S. This equivalence rule is known as
Miner’s rule (Wirsching et al., 1995) and the factor m is known as the Wöhler exponent.
The exponent depends on the material used, with our glass fiber turbine blades having a
Wöhler exponent of m = 11 (Savenije and Peeringa, 2009).

Using this equivalence principle, we can calculate the Damage Equivalent Load
(DEL) (Freebury and Musial, 2000). This is the 1 Hz oscillatory load that would result in the
same fatigue damage as the RBM that has been sustained. By calculating this quantity, it
becomes easy to compare the load sustained during experiments with different durations.
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Figure 1.5: The rainflow procedure visualized. We start with a signal to analyze (top left). We then extract the
peaks of this signal (top right). Everything else is irrelevant. We turn the plot sideways and let rain flow down
from every rightward turning point (bottom left). When two flows meet, the shorter one (based on horizontal
distance traveled) is cut off and the longer one continues. Based on these flow lengths, we can split the signal up
into individual oscillations (bottom right). Here we should distinguish half oscillations from full oscillations.
The bottom right figure was generated using the tools made by Niesłony (2009).

Concluding, the goal of our controller would be to minimize the DEL. Although in
reality there are still more facets to it. After all, not only the damage sustained by the
turbine matters, but also the control input required to obtain this amount of damage, and
possibly other factors play a role as well. Optimal control of wind turbines is hence always
a multi-objective optimization problem with a nonlinear objective function.

1.3. POSSIBLE CONTROL METHODOLOGIES

As mentioned before, our main challenge when designing a controller for wind turbine
lies in dealing with the uncertainties present. This is partly due to uncertainties in the
wind turbine model, but also the wind turbine environment is highly stochastic in nature.
To adequately control the trailing-edge flaps, reducing the vibrations, we need methods
to take into account these uncertainties.
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1.3.1. APPLYING LINEAR METHODS
To improve wind turbine control methods, we can first look into providing improvements
to currently existing methodologies. For that, we must examine the kind of controllers
currently used.

As is the case in many industries, wind turbine producers traditionally have a strong
preference for applying proven techniques, such as linear control laws (Bossanyi, 2000).
This is despite the fact that wind turbines are inherently nonlinear systems. Control
methodologies like Proportional-Integral-Derivative (PID) control, possibly with low-pass
filters and notch filters, are commonly applied.

A probable step forward is to apply the slightly more sophisticated Linear-Quadratic-
Gaussian (LQG) control. This is not applied as much yet, but as it falls within the realm
of linear control laws, the industry is comparatively more likely to accept it. At the same
time, research on applying it to wind turbines is common and recent (Hur and Leithead,
2017).

LQG has as advantage that it has a clear cost function to optimize. If we can let this
cost function approximate the DEL, we can tune the controller parameters to reduce the
fatigue damage sustained. Methods to optimize the LQG cost already exist. (For a full
literature overview on this, see Chapter 2.) However, at the same time we should also
take care that the cost does not exceed a certain threshold. If that happens, complete
failure of the wind turbine may occur. This means that we should look into the statistical
properties of the LQG cost. It leads to the first question of this thesis which we will study
in Chapter 2.

Question 1a: Within LQG control, how can we reduce the probability that the
cost exceeds a given threshold?

When using LQG control, we need accurate knowledge of both the system model and the
system state. When the state is not known, it can be observed, for instance through a
Kalman filter (Kalman and Bucy, 1961). Identically, when there is uncertainty in the system
model, we can prescribe a degree of stability (Anderson and Moore, 1969). Combining
these ideas has not been done before (see Chapter 3 for a complete literature overview)
which leads to the second question of this thesis.

Question 1b: In LQG control, how can we prescribe a degree of stability while
also optimally applying a state estimator?

Linear control methodologies do have significant limitations. Linear systems, even Linear-
Parameter-Varying (LPV) systems, cannot fully describe all the wind turbine dynam-
ics (Boukhezzar and Siguerdidjane, 2010). More importantly, it is impossible to use a
linear control methodology to optimize a highly nonlinear cost function such as the
DEL. In fact, many other methods like LPV-control (Tóth, 2010, Briat, 2015) and robust
control (Green and Limebeer, 1995, Skogestad and Postlethwaite, 2005) also cannot in-
corporate a cost function like the DEL. For that reason, we need a method that can
both approximate any type of nonlinear function, as well as deal with large degrees of
uncertainty.
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In this thesis we have chosen to apply Gaussian Process (GP) regression (Rasmussen
and Williams, 2006). This technique has its basis in Bayesian probability theory, making
it ideally suited to deal with stochastic effects. In addition, given the right covariance
function (kernel) it can approximate any nonlinear function. A large part of this thesis
(Chapters 4 to 6) will be devoted to investigating how it can be used to analyze and control
wind turbines.

1.3.2. SYSTEM IDENTIFICATION METHODS

We start applying GP regression by analyze wind turbine models. When a wind turbine
enters production, an important question is whether we can obtain a model of it. Due to
the problems described before, we cannot solely use first-principle modeling. We need a
data-based approach. And for economic reasons, the downtime of the wind turbine must
remain limited. Ideally, the wind turbine continues to operate while the nonlinear system
identification algorithm is running.

One option is to combine first-principle modeling with adaptive control (Landau
et al., 2016), which comes down to performing online adjustments of various system
parameters. Though effective, this method has limitations in the sense that it can only
adjust to what falls within its model. A more powerful method is black-box modeling,
where as few assumptions are made in advance about the model of the system that is to
be identified. This leads to the third question this thesis is meant to answer.

Question 2: How can Gaussian process regression be used for online black-box
modeling of a nonlinear multi-variable system like a wind turbine?

To answer this question, it is crucial that the identification process does not require too
much computational power. If we require months of computations to obtain a model
of the wind turbine, while the turbine itself is already up and running, then clearly the
identification method is not suitable for our purposes. We will look into detail into this
question in Chapter 4.

1.3.3. OPTIMIZING THE NONLINEAR COST FUNCTION

As mentioned before, our main goal is to minimize the DEL from Section 1.2.4. This is
a complicated and highly nonlinear cost function. Existing control methods like linear-
parameter-varying control and robust control control all optimize specific types of cost
functions, and the DEL certainly does not fall among them. We could try to approximate
it using GP regression.

At the same time, we should take into account the conservative nature of the wind
turbine industry. An advanced nonlinear control law is unlikely to be adopted, so it is
more worthwhile to restrict ourselves to fixed-structure control laws with only a handful of
controller gains. We hence need to find a way to approximate and subsequently optimize
the DEL with respect to these gains. Gaussian process regression is once more very
suitable at dealing with nonlinear functions, especially when uncertainty is involved. This
leads to the following research question, which we study in Chapter 5.
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Question 3a: How can Gaussian process regression be used to approximate and
optimize the cost function of a system with a fixed-structure control law?

In reality the situation is more involved. Instead of just doing experiments and subse-
quently optimizing the controller gains, we should tune the gains in an online way. After
all, wind turbine downtime will only result in additional costs. In addition, we also want
the wind turbine to incur as little damage as possible from the tuning process. This leads
to the final and most important question this thesis is meant to answer.

Question 3b: How can the gains of a fixed-structure control law be tuned online,
in such a way as to minimize the damage sustained by the wind turbine?

This question will be the focus of Chapter 6, where it will be studied in-depth.

1.4. STRUCTURE OF THIS THESIS
This thesis will answer the questions that have been posed, where each chapter tackles
one individual subquestion. A full overview is shown in Figure 1.6.

Figure 1.6: A flow chart of the thesis, showing which questions are answered in which chapter. One branch
requires prior knowledge on linear systems theory, while the other branch assumes prior knowledge on Gaussian
process regression.

• Chapter 2 looks at the variance of the cost of LQG systems, deriving various analytic
expressions to calculate it. It is based on Bijl et al. (2016), and the main contribution is
a set of expressions to calculate the variance of the LQG cost function.
Full citation: Hildo Bijl, Jan-Willem van Wingerden, Thomas B. Schön, and Michel Verhaegen.

Mean and variance of the LQG cost function. Automatica, 67:216–223, May 2016b.
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• Chapter 3 studies whether it is possible to prescribe a degree of stability for LQG
systems, and how the state can in that case be optimally observed. This chapter is
based on Bijl and Schön (2017) and its contribution is an expression for the optimal
observer gains when optimizing the discounted LQG cost.
Full citation: Hildo Bijl and Thomas B. Schön. Optimal controller/observer gains of discounted-

cost LQG systems. Submitted for publication to Automatica, 2017.

• Chapter 4 aims to set up a system identification algorithm using Gaussian process
regression. Specifically, it tries to take into account noisy measurements in an online
way. This work is based on Bijl et al. (2017b) and contributes a novel online nonlinear
black-box system identification algorithm.
Full citation: Hildo Bijl, Thomas B. Schön, Jan-Willem van Wingerden, and Michel Verhaegen.

System Identification through Online Sparse Gaussian Process Regression with Input Noise.

IFAC Journal of Systems and Control, 2:1–11, December 2017.

• Chapter 5 examines whether Gaussian process regression can be applied to approxi-
mate a nonlinear cost function of a system. To account for finite-time experiments,
it does this through a reinforcement learning set-up. The contents are based on Bijl
et al. (2014) and the main contribution is a method of combining GP regression and
reinforcement learning.
Full citation: Hildo Bijl, Jan-Willem van Wingerden, and Michel Verhaegen. Applying Gaussian

processes to reinforcement learning for fixed-structure controller synthesis. In Proceedings of

the 19th IFAC World Congress, pages 10391–10396, 2014b.

• Chapter 6 looks at whether a fixed-structure controller can be tuned in an online way,
so as to minimize the total amount of damage sustained by the wind turbine. The
resulting Bayesian optimization algorithm has been described in Bijl et al. (2017a).
The main contribution of this chapter is an algorithm of approximating the maximum
distribution as well as its application to Thompson sampling for Bayesian optimiza-
tion.
Full citation: Hildo Bijl, Thomas B. Schön, Jan-Willem van Wingerden, and Michel Verhaegen. A

sequential Monte Carlo approach to Thompson sampling for Bayesian optimization. Published

on arXiv.org, 2017.

At the end, in Chapter 7, conclusions drawn throughout the thesis are summarized and
recommendations for future work are given.
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COST FUNCTION DISTRIBUTION

FOR LQG SYSTEMS

Abstract — Linear-Quadratic-Gaussian (LQG) systems are well-understood and methods
to minimize the expected cost are readily available. Less is known about the statistical
properties of the resulting cost function. In this chapter we examine this LQG cost function,
deriving analytic expressions for its mean and variance. These expressions are derived
using two different methods, one using solutions to Lyapunov equations and the other
using only matrix exponentials. Both the discounted and the non-discounted cost function
are considered, as well as the finite-time and the infinite-time cost function. The derived
expressions are successfully applied to an example system to reduce the probability of the
cost exceeding a given threshold.

The wind turbine industry has a strong preference for linear control laws. That is why
this chapter focuses on the linear control methodology of Linear-Quadratic-Gaussian
(LQG) control. This technique is a step forward from the conventional PID controllers
that are applied, and is receiving recent interest from the wind energy community (Hur
and Leithead, 2017).

We start by studying related literature in Section 2.1, present the problem formulation
in Section 2.2 and derive the expressions that solve this problem in Section 2.3. Section 2.4
then shows how the equations can be applied to LQG systems, which is subsequently
done in Section 2.5. Supporting theorems for this chapter are given in Appendix A.

2.1. LITERATURE OVERVIEW
The LQG control paradigm is generally well-understood in literature. (See for instance
Anderson and Moore (1990), Skogestad and Postlethwaite (2005), Bosgra et al. (2008),
Åström (1970).) There are many methods available of calculating and minimizing the
expected costE[J ]. However, much less is known about the resulting distribution of the
cost function J . Yet in many cases (like in machine learning applications, in risk analysis

13
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and similar stochastic problems) knowledge of the full distribution of the cost function J ,
or at least knowledge of its varianceV[J ], is important. That is the focus of this chapter.
We derive analytical expressions for both the mean E[J ] and the variance V[J ] of the
cost function distribution for a variety of cases. This chapter is based on Bijl et al. (2016),
which is the first publication containing expressions for the varianceV[J ].

The cost function J is usually defined as an integral over a squared non-zero-mean
Gaussian process, turning its distribution into a generalized noncentral χ2 distribution.
This distribution does not have a known Probability Density Function (PDF), although its
properties have been studied before in literature, for instance in Rice (1944), Schwartz
(1970), Sain and Liberty (1971), and methods to approximate it are discussed in Mathai
and Provost (1992), Davies (1980). However, none of this theory has been applied, or can
directly be applied, to the LQG cost function.

In LQG control most methods focus on the expected costE[J ], but not all. For instance,
Minimum Variance Control (MVC) (see Åström (1970)) minimizes the variance of the
output y , while Variance Constrained LQG (VCLQG) (see Collins and Selekwa (1999),
Conway and Horowitz (2008)) minimizes the cost function subject to bounds on the
variance of the state x and/or the input u. Alternatively, in Minimal Cost Variance (MCV)
control (see Kang et al. (2014), Won et al. (2008)) the mean costE[J ] is fixed through an
equality constraint and the cost varianceV[J ] (or alternatively the cost cumulant) is then
minimized. However, no expression for the cost varianceV[J ] is given. So we will derive
one ourselves.

2.2. PROBLEM FORMULATION
We consider continuous linear systems subject to stochastic process noise. Formally, we
write these as

d x(t ) = Ax(t )d t +d w (t ), (2.1)

where w (t) is a vector of Brownian motions. (Note that (2.1) is not an LQG system, be-
cause it is lacking input. The extension to LQG systems will be discussed in Section 2.4.)
As a result, d w (t ) is a Gaussian random process with zero-mean and an (assumed con-
stant) covariance of V d t . Within the field of control (see for instance Skogestad and
Postlethwaite (2005)) this system is generally rewritten according to

ẋ(t ) = Ax(t )+v (t ), (2.2)

where v(t) is zero-mean Gaussian white noise with intensity V . That is,E[v(t)v T (τ)] =
V δ(t−τ), with δ(.) the Kronecker delta function. From a formal mathematical perspective
this simplification is incorrect, because v (t ) is not measurable with nonzero probability.
However, since this notation is common in the control literature, and since it prevents us
from having to evaluate the corresponding Itô integrals, we will stick with it. (See Øksendal
(1985) for how to properly deal with stochastic differential equations.)

We assume that the initial state x(0) = x0 has a Gaussian distribution satisfying

µ0 ≡E[x0] and Σ0 ≡E[x0xT
0 ]. (2.3)

Note that the variance of x0 is not Σ0, but actually equals Σ0 −µ0µ
T
0 . We will consider two

different cost functions: the infinite-time cost J and the finite-time cost JT , respectively
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defined as1

J ≡
∫ ∞

0
e2αt xT (t )Qx(t )d t , (2.4)

JT ≡
∫ T

0
e2αt xT (t )Qx(t )d t , (2.5)

where Q is a user-defined symmetric weight matrix. The parameter α can be positive or
negative. If it is positive, it is known as the prescribed degree of stability (see Anderson
and Moore (1990) or Bosgra et al. (2008)), while if it is negative (like in Reinforcement
Learning applications) it is known as the discount exponent. Integral (2.4) does not always
converge to a finite value, but it does so for the conditions specified by Theorem 2.2.

2.3. MEAN AND VARIANCE OF THE LQG COST FUNCTION
In this section we derive expressions for E[J ], E[JT ], V[J ] and V[JT ]. An overview of
derived theorems, as well as the corresponding requirements, is shown in Table 2.1.

Table 2.1: The theorems with which the mean and variance of J and JT can be found, as well as the requirements
for these theorems.

If α 6= 0 If α= 0 Requirements

E[JT ] Th. 2.1 Th. 2.3 A and Aα Sylvester

E[J ] Th. 2.2 α< 0 and Aα stable

V[JT ] Th. 2.4 Th. 2.6 A−α, A, Aα and A2α Sylvester

E[J ] Th. 2.5 α< 0 and Aα stable

2.3.1. NOTATION AND TERMINOLOGY

Concerning the evolution of the state, we define µ(t) ≡ E[x(t)], Σ(t) ≡ E[x(t)xT (t)]
and Σ(t1, t2) ≡E[x(t1)xT (t2)]. These quantities can be found through the theorems of
Appendix A.1.

We define the matrices Aα ≡ A +αI and similarly Akα ≡ A+kαI for any number k.
We also define X Q

kα and X̄ Q
kα to be the solutions of the Lyapunov equations

AkαX Q
kα+X Q

kαAT
kα+Q = 0, (2.6)

AT
kα X̄ Q

kα+ X̄ Q
kαAkα+Q = 0. (2.7)

We often have α= 0. In this case A0 equals A, and we similarly shorten X Q
0 to X Q . The

structure inherent in the Lyapunov equation induces interesting properties in its solutions
X Q

kα, which are outlined in Appendix A.2.

1The T -notation is rather overloaded here. It is customary to write both a transpose xT and a time period
T using the letter T , and we did not want to deviate from this convention. Keep in mind that, if you see a
vector/matrix with a T , then T denotes the transpose. Otherwise T represents the time period.



2

16 2. COST FUNCTION DISTRIBUTION FOR LQG SYSTEMS

We define the time-dependent solution X Q
kα(t1, t2) as

X Q
kα(t1, t2) =

∫ t2

t1

e Akαt Qe AT
kαt d t . (2.8)

This integral can be calculated efficiently by solving a Lyapunov equation. (See Theo-
rem A.7.) Often it happens that the lower limit t1 of X Q

kα(t1, t2) equals zero. To simplify

notation, we then write X Q
kα(t) ≡ X Q

kα(0, t). Another integral solution X̃ Q
k1α,k2α

(T ) is de-
fined as

X̃ Q
k1α,k2α

(T ) ≡
∫ T

0
e Ak1α(T−t )Qe Ak2αt d t . (2.9)

This quantity can be calculated (see van Loan (1978)) through

X̃ Q
α1,α2

(T ) = [
I 0

]
exp

([
Aα1 Q

0 Aα2

]
T

)[
0
I

]
. (2.10)

Considering terminology, we say that a matrix A is stable (Hurwitz) if and only if it has no
eigenvalue λi with a real part equal to or larger than zero. Similarly, we say that a matrix A
is Sylvester if and only if it has no two eigenvalues λi and λ j (with possibly i = j ) satisfying
λi =−λ j . This latter definition is new in literature, only defined before in Bijl et al. (2016).

2.3.2. THE EXPECTED COST
We now examine the expected costs E[J ] and E[JT ]. Expressions for these costs are
already known for various special cases. (See for instance Bosgra et al. (2008), Åström
(1970).) To provide a complete overview of the subject, we have included expressions
which are as general as possible.

Theorem 2.1. Consider system (2.2). Assume that α 6= 0 and that A and Aα are both
Sylvester. The expected valueE[JT ] of the finite-time cost JT (2.5) then equals

E[JT ] = tr

((
Σ0 −e2αTΣ(T )+ (

1−e2αT )(−V

2α

))
X̄ Q
α

)
. (2.11)

Proof. From (2.5) follows directly that

E[JT ] = tr

(∫ T

0
e2αtΣ(t )d t Q

)
= tr(Y (T )Q) , (2.12)

where Y (T ) is defined as the above integral. To find it, we multiply (A.8) by e2αt and
integrate it to get ∫ T

0
e2αt Σ̇(t )d t = AY (T )+Y (T )AT +

∫ T

0
e2αt V d t . (2.13)

The left part, through integration by parts, must equal∫ T

0
e2αt Σ̇(t )d t = (

e2αTΣ(T )−Σ0
)−2αY (T ). (2.14)
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As a result, Y (T ) must satisfy the Lyapunov equation

AαY (T )+Y (T )AT
α +

(
e2αT −1

2α
V +Σ0 −e2αTΣ(T )

)
= 0. (2.15)

Using Theorem A.8, we can now write Y (T ) as

Y (T ) = e2αT −1

2α
X V
α +X Σ0

α −e2αT X Σ(T )
α . (2.16)

Combining this with (2.12) and applying Theorem A.9 (with F = G = I ) completes the
proof.

Theorem 2.2. Consider system (2.2). Assume thatα< 0 and that Aα is stable. The expected
valueE[J ] of the infinite-time cost J (2.4) is then given by

E[J ] = tr

((
Σ0 − V

2α

)
X̄ Q
α

)
. (2.17)

Proof. If we examine (2.11) in the limit as T →∞, then this theorem directly follows. After
all, Theorem A.1 implies that, for stable Aα, e2αTΣ(T ) → 0 as T →∞.

Theorem 2.3. Consider system (2.2). Assume that α = 0 and that A is Sylvester. The
expected valueE[JT ] of the finite-time cost JT (2.5) is then given by

E[JT ] = tr
(
(Σ0 −Σ(T )+T V ) X̄ Q)

. (2.18)

Proof. If we consider (2.11) from Theorem 2.1 asα→ 0, then this theorem directly follows.

After all, we know from l’Hôpital’s rule that limα→0
1−e2αT

2α =−T .

2.3.3. THE COST VARIANCE
Next, we derive expressions for the variancesV[J ] andV[JT ], which is the main content
of this chapter. If we define ∆=Σ0 −X V , thenV[JT ] andV[J ] can be found through the
following theorems.

Theorem 2.4. Consider system (2.2). Assume that α 6= 0 and that A−α, A, Aα and A2α are
Sylvester. The varianceV[JT ] of the finite-time cost JT (2.5) is then given by

V[JT ] = 2tr
(
(∆X̄ Q

α (T ))2
)
−2

(
µT

0 X̄ Q
α (T )µ0

)2 +4tr
(

X V Q
(

X V e4αT X̄ Q
−α(T )− X̄ Q

α (T )

4α

+2X∆
2α X̄ Q

α (T )−2X̃
X∆

2αe AT
αT Q

3α,α (T )
))

. (2.19)

Proof. We will start our proof by evaluatingE[J 2]. If we write x(t1) as x1 and x(t2) as x2,
then we have

E[J 2] =E
[∫ T

0

∫ T

0
e2α(t1+t2)xT

1 Qx1xT
2 Qx2 d t2 d t1

]
. (2.20)
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Taking the trace and applying Theorem A.12 gives us

E[J 2] =
∫ T

0

∫ T

0

(
tr

(
e2αt1Σ(t1)Q

)
tr

(
e2αt2Σ(t2)Q

)+2tr
(
e2α(t1+t2)Σ(t2, t1)QΣ(t1, t2)Q

)
−2e2α(t1+t2)µT

1 Qµ1µ
T
2 Qµ2

)
d t2 d t1, (2.21)

where µ1 equals E[x(t1)] = e At1µ0 (see Theorem A.1) and similarly for µ2. There are
three terms in the above equation. We will denote them by T1, T2 and T3, respectively.
The first term T1 directly equals E[J ]2 (see Theorem 2.1). This is convenient, because
V[J ] =E[J 2]−E[J ]2, which means thatV[J ] equals the remaining two terms T2 +T3.

The third term T3 is, according to definition (2.8), equal to

T3 =−2

(∫ T

0
e2αtµT

0 e AT t Qe Atµ0 d t

)2

=−2
(
µT

0 X̄ Q
α (T )µ0

)2
, (2.22)

where X̄ Q
α (T ) can be evaluated through Theorem A.7. That leaves T2. To find it, we first

have to adjust the integrals. We note that T2 is symmetric with respect to t1 and t2. That
is, if we would interchange t1 and t2, the integrand would be the same. As a result, we do
not have to integrate over all values of t1 and t2. We can also only consider all cases where
t1 < t2, integrate over this area, and then multiply the final result by 2. This gives us

T2 = 4tr

(∫ T

0

∫ T

t1

e2α(t1+t2)Σ(t2, t1)QΣ(t1, t2)Q d t2 d t1

)
. (2.23)

Now, with t1 < t2, we can apply Theorem A.3 to substitute for Σ(t1, t2). If we subsequently
expand the brackets, and use the fact that X V and hence also ∆ is symmetric (see Theo-
rem A.5), then the above term turns into

T2 = 4tr
(∫ T

0

∫ T

t1

e2α(t1+t2)
(
e At2∆e AT t1Qe At1∆e AT t2Q +e A(t2−t1)X V QX V e AT (t2−t1)Q

+2e A(t2−t1)X V Qe At1∆e AT t2Q
)

d t2 d t1

)
. (2.24)

This expression again has three terms. We call them T2,1, T2,2 and T2,3, respectively. First
we find T2,1. We can again note that the integrand is symmetric with respect to t1 and t2,
meaning we can apply the opposite trick of the one we applied at (2.23). This gives us

T2,1 = 2tr

(∫ T

0

∫ T

0
e Aαt2∆e AT

α t1Qe Aαt1∆e AT
α t2Q d t2 d t1

)
= 2tr

((∫ T

0
∆e AT

α t Qe Aαt d t

) 2
)

= 2tr
(
(∆X̄ Q

α (T ))2
)

. (2.25)

The next term, T2,2, is not symmetric in t1 and t2. To bring both integration bounds back
to zero, we now substitute t2 for t2 + t1. Subsequently interchanging the integrals results
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in

T2,2 = 4tr
(∫ T

0

∫ T−t1

0
e2α(2t1+t2)e At2 X V QX V e AT t2Q d t2 d t1

)
= 4tr

(∫ T

0

(∫ T−t2

0
e4αt1 d t1

)
e AT

α t2Qe Aαt2 X V QX V d t2

)
= 4tr

(
e4αT X̄ Q

−α(T )− X̄ Q
α (T )

4α
X V QX V

)
. (2.26)

That leaves T2,3, which is the most involved term. We can apply the same substitution
and interchanging of integrals to find that T2,3 equals

T2,3 = 8tr

(∫ T

0

∫ T−t2

0
e2α(2t1+t2)e At2 X V Qe At1∆e AT (t2+t1)Q d t1 d t2

)
= 8tr

(∫ T

0
X V QX∆

2α(T − t2)e AT
α t2Qe Aαt2 d t2

)
. (2.27)

Expanding X∆
2α(T − t2) using Theorem A.7 turns this into

T2,3 = 8tr

(
X V Q

(
X∆

2α

∫ T

0
e AT

α t2Qe Aαt2 d t2 −
∫ T

0
e A3α(T−t2)X∆

2αe AT
αT Qe Aαt2 d t2

))
= 8tr

(
X V Q

(
X∆

2α X̄ Q
α (T )− X̃

X∆
2αe AT

αT Q
3α,α (T )

))
, (2.28)

where the final term X̃
X∆

2αe AT
αT Q

3α,α (T ) can be found through (2.10). If we now merge all terms
together, we find the result which we wanted to prove.

Theorem 2.5. Consider system (2.2). Assume thatα< 0 and that Aα is stable. The variance
V[J ] of the infinite-time cost J (2.4) is then given by

V[J ] = 2tr
(
(Σ0 X̄ Q

α )2
)
−2

(
µT

0 X̄ Q
α µ0

)2 +4tr

((
X Σ0

2α − X V
2α

4α

)
X̄ Q
α V X̄ Q

α

)
. (2.29)

Proof. As T → ∞, e AT
αT and e4αT become zero, X̄ Q

α (T ) becomes X̄ Q
α and hence (2.19)

reduces to

V[J ] = 2tr
(
(∆X̄ Q

α )2
)
−2

(
µT

0 X̄ Q
α µ0

)2 +4tr

(
X̄ Q
α X V Q

(
2X∆

2α−
X V

4α

))
. (2.30)

Through an excessive amount of elementary rewritings, using both Q =−AT
α X̄ Q

α − X̄ Q
α Aα

and Theorem A.10, the above can be rewritten to (2.29), which is a slightly more elegant
version of the above expression.

Theorem 2.6. Consider system (2.2). Assume that α = 0 and that A is Sylvester. The
varianceV[JT ] of the finite-time cost JT (2.5) is then given by

V[JT ] = 2tr
(
(∆X̄ Q (T ))2)−2

(
µT

0 X̄ Q (T )µ0

)2 +4tr
(

X V Q
(

X V
(
T X̄ Q −X X Q

(T )
)

+2X∆ X̄ Q (T )−2X̃ X∆e AT T Q (T )
))

. (2.31)
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Proof. We can evaluate (2.19) from Theorem 2.4 as α→ 0. While doing so, we may use
the relation

X̄
X̄ Q
−α

α (T ) = X̄ Q
α (T )−e4αT X̄ Q

−α(T )

4α
+ e4αT −1

4α
X̄ Q
−α, (2.32)

which follows from combining Theorems A.7 and A.10. From this, we find through
application of l’Hôpital’s rule that

lim
α→0

e4αT X̄ Q
−α(T )− X̄ Q

α (T )

4α
= T X̄ Q −X X Q

(T ). (2.33)

By using the above relation, the theorem directly follows.

2.3.4. FINDING E[JT ] AND V[JT ] USING MATRIX EXPONENTIALS
The method of using Lyapunov solutions to findE[JT ] andV[JT ] has a significant down-
side: if A or Aα is not Sylvester, the theorems do not hold. By solving integrals using
matrix exponentials, according to the methods described in van Loan (1978), we can work
around that problem.

Theorem 2.7. If we define the matrix C as

C =


−AT

2α Q 0 0 0
0 A V 0 0
0 0 −AT Q 0
0 0 0 A2α V
0 0 0 0 −AT

−2α

 , (2.34)

and write eC T as

eC T =

C e
11 · · · C e

15
...

. . .
...

C e
51 · · · C e

55

 , (2.35)

then we can findE[JT ] andV[JT ] through

E[JT ] = tr
(
(C e

44)T (
C e

12Σ0 +C e
13

))
, (2.36)

V[JT ] = 2tr
((

(C e
44)T (

C e
12Σ0 +C e

13

))2 −2(C e
44)T (C e

14Σ0 +C e
15)

)
−2

(
µT

0 (C e
44)T C e

12µ0

)2
. (2.37)

Proof. We first prove the expression forE[JT ]. If we insert (A.6) into (2.12), we find that

E[JT ] = tr
(∫ T

0
e2αt e AtΣ0e AT t Q d t +

∫ T

0

∫ t

0
e2αt e A(t−s)V e AT (t−s)Q d s d t

)
. (2.38)

We know from van Loan (1978) that

C e
44 = e A2αT , (2.39)

C e
12 =

∫ T

0
e−AT

2α(T−t )Qe At d t , (2.40)

C e
13 =

∫ T

0

∫ t

0
e−AT

2α(T−t )Qe A(t−s)V e−AT s d s d t . (2.41)
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From this (2.36) directly follows. Proving the expression forV[JT ] is done similarly, but
with more bookkeeping. First of all, C e

14 equals (see van Loan (1978))

C e
14 =

∫ T

0

∫ t

0

∫ s

0
e−AT

2α(T−t )Qe A(t−s)V e−AT (s−r )Qe A2αr dr d s d t , (2.42)

with a similar expression for C e
15. Next, we will find the terms T3 (see (2.22)) and T2

(see (2.23)), which together equalV[JT ]. We can directly see from (2.22) that T3 equals

T3 =−2
(
µT

0 (C e
44)T C e

12µ0

)2
. (2.43)

Then we consider T2 from (2.23). Instead of applying (A.6), we now use

Σ(t1, t2) = e At1Σ0e AT t2 +
∫ min(t1,t2)

0
e A(t1−s)V e AT (t2−s)d s, (2.44)

which is derived in an identical way. For ease of notation, we write Σ(t1, t2) =Σa +Σb , with
Σa and Σb the two parts in the above expression. Inserting Σ(t1, t2) into (2.23) then gives

T2 = 2tr
(∫ T

0

∫ T

0
e2α(t1+t2)

(
ΣT

a QΣaQ +2ΣT
a QΣbQ +ΣT

b QΣbQ
)

d t2 d t1

)
. (2.45)

The first term T2,aa here equals

T2,aa = 2tr

(∫ T

0

∫ T

0
e2α(t1+t2)e At2Σ0e AT t1Qe At1Σ0e AT t2 d t2 d t1

)
= 2tr

((∫ T

0
e2αt e AT t Qe AtΣ0 d t

)2
)

= 2tr
((

(C e
44)T C e

12Σ0
)2

)
= T2,aa . (2.46)

The second term T2,ab is given by

T2,ab = 4tr
(∫ T

0

∫ T

0

∫ min(t1,t2)

0
e2α(t1+t2)e At2Σ0e AT t1Qe A(t1−s)V e AT (t2−s)Q d s d t2 d t1

)
. (2.47)

We want the integration order to be d t2 d s d t1. If we note that the integration area is
described by 0 ≤ s ≤ (t1, t2) ≤ T , we can reorder the integrals. That is,

T2,ab = 4tr
(∫ T

0

∫ t1

0

∫ T

s
. . .d t2 d s d t1

)
(2.48)

= 4tr
(∫ T

0

∫ t1

0

∫ T

0
. . .d t2 d s d t1 −

∫ T

0

∫ t1

0

∫ s

0
. . .d t2 d s d t1

)
.

We now have two integrals, but we can solve both. If we split up the first one and rewrite
the second one, we get

T2,ab = 4tr
((∫ T

0

∫ t1

0
e2αt1 e AT t1Qe A(t1−s)V e−AT s d s d t1

)(∫ T

0
e2αt2 e AT t2Qe At2 d t2

)
Σ0

−
∫ T

0

∫ t1

0

∫ s

0
e2α(t1+t2)e AT t1Qe A(t1−s)V e AT (t2−s)Qe At2Σ0 d t2 d s d t1

)
= 4tr

(
(C e

44)T C e
13(C e

44)T C e
12Σ0 − (C e

44)T C e
14Σ0

)
. (2.49)
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Finally there is T2,bb . We first concern ourselves with the integration order and limits. By
rearranging integrals, and by using the symmetry between t1 and t2 as well as between s1

and s2, we can find that

T2,bb = 2tr
(∫ T

0

∫ T

0

∫ min(t1,t2)

0

∫ min(t1,t2)

0
. . . d s2 d s1 d t2 d t1

)
(2.50)

= 2tr
(∫ T

0

∫ t2

0

∫ T

0

∫ t1

0
. . . d s1 d t2 d s2 d t1 −2

∫ T

0

∫ t2

0

∫ s1

0

∫ t1

0
. . . d s1 d t2 d s2 d t1

)
.

After inserting the integrand, we can rewrite this to

T2,bb = 2tr
((∫ T

0

∫ t

0
e2αt e AT t Qe A(t−s)V e−AT s d s d t

)2

−2
∫ T

0

∫ t2

0

∫ s1

0

∫ t1

0
e2α(t1+t2)e AT (t1−s1)Qe A(t1−s2)V e AT (t2−s2)Qe A(t2−s1)V d s1 d t2 d s2 d t1

)
= 2tr

((
(C e

44)T C e
13

)2 −2(C e
44)T C e

15

)
. (2.51)

By combining all the results, we wind up with (2.37).

So now we have two methods of findingE[JT ] andV[JT ]. Which one is better? This
mainly depends on the time T . Our experiments have shown that, for small times T ,
using matrix exponentials results in a better numerical accuracy than using Lyapunov
solutions, but for large T the situation is exactly the opposite, and the numerical accuracy
of the matrix exponential method quickly deteriorates. Similar results have been obtained
by Wahlström et al. (2014), which examines the numerical accuracy of both algorithms
when finding X Q (T ).

2.4. APPLICATION TO AN LQG SYSTEM
So far we have only considered systems of the form (2.2), but in LQG systems there are
also input and output signals. However, in that case we can always rewrite the system
on the form (2.2). In this section we show how to do this. For more details we refer to
Anderson and Moore (1990), Skogestad and Postlethwaite (2005), Bosgra et al. (2008),
Åström (1970).

First, we consider a system ẋ(t ) = Ax(t )+Bu(t )+v(t ) with input. Its corresponding
cost function equals

J =
∫ ∞

0
e2αt (xT (t )Qx(t )+uT (t )Ru(t ))d t . (2.52)

It is well-known in literature (see for instance Kalman (1960)) that the optimal control law
minimizingE[J ] is a linear control law u(t ) =−F x(t ). If we assume that Q =QT ≥ 0 and
R = RT > 0, then the optimal gain matrix F equals

F = R−1B T X̂α, (2.53)

with X̂α the solution to the algebraic Riccati equation

AT
α X̂α+ X̂αAα+Q − X̂αBR−1B T X̂α = 0. (2.54)
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For this optimal gain matrix F (and for any other matrix F ) the system and cost function
can be written as

ẋ(t ) = (A−BF )x(t )+v (t ) = Âx(t )+v (t ), (2.55)

J =
∫ ∞

0
e2αt xT (t )

(
Q +F T RF

)
x(t )d t =

∫ ∞

0
e2αt xT (t )Q̂x(t )d t . (2.56)

This shows that the system is now in our original form (2.2).
A similar reduction can be performed when we are dealing with a noisy output equa-

tion y(t ) =C x(t )+w (t ), where w (t ) is zero-mean Gaussian white noise with intensity W .
To deal with this output equation, we take a state estimate x̂(t ) and update it through

˙̂x(t ) = Ax̂(t )+Bu(t )+K (y(t )−C x̂(t )). (2.57)

To minimize the state estimation error e(t ) = x̂(t )−x(t ), we need to choose the observer
gain K equal to

K = EC T W −1, (2.58)

where E is the solution to

AE +E AT +V −EC T W −1C E = 0. (2.59)

We need this state estimate in a new optimal control law u = −F x̂ . This reduces the
system equations to [

ẋ
˙̂x

]
=

[
A−BF −BF

KC A−BF −KC

][
x
x̂

]
+

[
v

K w

]
, (2.60)

which is again of the form we have seen earlier, albeit with a somewhat larger state vector.
Because of this, all the equations that were originally developed for system (2.2) are
applicable to LQG systems as well.

2.5. NUMERICAL EVALUATION
In this section we look at an example of how to apply the derived equations. In literature,
researchers almost always use the controller that minimizes the expected value of the
cost. This is done irrespective of the variance of the cost. But if the goal is to keep the cost
below a certain threshold, then this may not be the best approach.

Consider the two-state system

ẋ =
[

1 0
1/20 1

]
x +

[
1
0

]
u +v , (2.61)

where we will apply Q = I , R = I and α=−0.8 in the cost function. As control law we use
u =−F x . We assume that the state x is fully known, and hence only F needs to be chosen.
In practice this is often not the case and only a noisy measurement y will be available. To
solve this, we can apply the theory from Section 2.4 and subsequently choose the observer
gain K along with F . However, this process is identical to choosing F . So for simplicity of
presentation, we only consider selecting F .
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The optimal control matrix follows from (2.53) as Fopt =
[
1.6 9.9

]
. It minimizesE[J ]

atE[J (Fopt)] = 154.4. However, we can also minimizeV[J ] using a basic gradient descent
method. This gives the minimum-variance control matrix Fmv =

[
4.4 30.0

]
with mean

costE[J (Fmv)] = 187.5. This mean cost is significantly larger thanE[J ]opt, making it seem
as if this is a significantly worse control matrix.

However, now suppose that we do not care so much about the mean cost. All we want
is to reduce the probability that the cost J is above a certain threshold J̄ . That is, we aim
to minimize p(J > J̄ ) where we use J̄ = 1500, which is roughly ten times the mean. Using
250000 numerical simulations, with T = 20 s and d t = 0.01 s, we have found that

p(J (Fopt) > J̄ ) ≈ 0.091%, (2.62)

p(J (Fmv) > J̄ ) ≈ 0.059%. (2.63)

Hence the optimal controller has more than half as many threshold-violating cases as the
minimum-variance control law, which is a significantly worse result.



3
OPTIMAL CONTROL OF

DISCOUNTED-COST LQG SYSTEMS

Abstract — The linear quadratic Gaussian control paradigm is well-known in literature.
The strategy of minimizing the cost function is available, both for the case where the state is
fully known and where it is estimated through an observer. The situation is different when
the cost function has an exponential discount factor, also known as a prescribed degree of
stability. In this case, the optimal control strategy is only available when the state is fully
known. This chapter builds onward from that result, deriving an optimal control strategy
when working with an estimated state. Expressions for the resulting optimal expected cost
are also given. The result is verified through an experimental validation.

The previous chapter considered autonomous linear systems, and how the cost function
was distributed for these systems. In this chapter, based on Bijl and Schön (2017), we
consider the non-autonomous linear system

ẋ(t ) = Ax(t )+Bu(t )+v (t ),

y(t ) =C x(t )+Du(t )+w (t ), (3.1)

with x the state, u the input, y the output, v and w Gaussian white noise with respective
intensities V and W , and A, B , C and D the system matrices. We assume that the initial
state x0 is unknown but distributed according to a Gaussian distribution with µ0 =E[x0]
and Σ0 =E

[
x0x0

T
]
. Note that Σ0 is not the variance of x0.

Our goal is to control system (3.1) such as to minimize the discounted (exponential)
quadratic cost function

J (T ) =
∫ T

0
e2αt (

xT (t )Qx(t )+uT (t )Ru(t )
)

d t , (3.2)

with J (T ) the cost, α the discount exponent/prescribed degree of stability, and Q ≥ 0 and
R > 0 weight matrices. In particular, we will optimize the infinite-time expected cost E [J ],

25
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with
J = lim

T→∞
J (T ). (3.3)

This integral does not always converge, but the theorems in this chapter will specify when
it does.

Especially when the model may be inaccurate, as is the case for wind turbine applica-
tions, prescribing such a degree of stability can be valuable. In this chapter we derive the
optimal controller and observer gains for the continuous-time linear system (3.1) such
that the expected costE[J ] given in (3.3) is minimized.

We start this chapter off with a brief literature overview (Section 3.1) investigating
the status of literature on this subject and whether this particular problem hasn’t already
been solved. We then examine a few already known Theorems in Section 3.2 and expand
on this in Section 3.3. We verify the results with an experiment in Section 3.4 and state
conclusions in Section 3.5.

3.1. LITERATURE OVERVIEW
Linear-Quadratic-Gaussian (LQG) systems—linear systems with a quadratic cost function
subject to Gaussian noise—have been thoroughly investigated in the past. This was espe-
cially true near the 1960s, with for instance the publication of the Kalman filter Kalman
(1960), Kalman and Bucy (1961).

The discoveries from the decades afterwards have been summarized in various text-
books. Examples include the books by (Åström, 1970, Chapter 7), (Kwakernaak and Sivan,
1972, Chapter 5), (Grimble and Johnson, 1988, Chapter 1), (Anderson and Moore, 1990,
Chapters 3, 8), (Stengel, 1994, Chapter 6), (Trentelman et al., 2001, Chapter 10), (Skogestad
and Postlethwaite, 2005, Chapter 9) and (Bosgra et al., 2008, Chapter 4). All these books
examine the non-discounted cost function (with α= 0). Only Anderson and Moore (1990)
(Section 3.5) also looks at the discounted cost function, presenting results from an earlier
paper Anderson and Moore (1969). Here it was shown that discounting the cost function
is equivalent to prescribing a degree of stability.

The prescribed degree of stability is actually a relevant problem in that it is a general-
ization of the regular LQG paradigm with the non-discounted cost function. There is also
a variety of applications of this idea, such as fault tolerant flight control Ciubotaru et al.
(2013), spacecraft guidance Meng et al. (2016) and robot manipulators Takahashi and Sato
(2016). However, to the best of the authors knowledge there are still fundamental prop-
erties remaining to be established and our main contribution in this paper is to provide
one of those. The work Anderson and Moore (1969) only examined the situation where
the state is assumed to be known. If the state can only be observed through noisy output
measurements—a familiar problem for the non-discounted cost function—then no work
is available on jointly optimizing the controller and state estimator. The closest is the work
by Rusnak (2016), who strived to set up a state estimator with minimal mean squared
error, given a prescribed convergence rate. However, this work ignores uncertainty in
the initial state and does not examine the problem of jointly optimizing the controller
and observer gains. In fact, no mention is made on whether the separation principle still
holds when using the discounted cost function. Hence, the problem of jointly optimizing
the controller and observer gains, subject to a discounted cost function, appears to be an
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open problem.

3.2. A SUMMARY OF KNOWN THEOREMS
Before we start with the actual problem, we examine the cases for which the optimal
control law is already known. When doing so, we also aim to give the corresponding
expected cost, using expressions from Chapter 2. We begin with the situation where the
state is fully known, first examining the non-discounted cost (α= 0) and moving on to
the discounted cost (α 6= 0). Then we add an observer and do the same.

3.2.1. THE NON-DISCOUNTED CASE WITH FULLY KNOWN STATE
We examine the non-discounted case (α = 0) where the state x(t) is fully known (for
instance when C = I and W = 0). The solution of this problem is well-known.

Theorem 3.1. Consider system (3.1), where the state is assumed known. If (A,B) is stabi-
lizable, then the optimal control law minimizing the expected non-discounted costE[J ]
(i.e., with α= 0) is a linear control law u(t ) =−F x(t ), where

F = R−1B T X , (3.4)

and X is the solution to the Riccati equation

AT X +X A+Q −X BR−1B T X = 0. (3.5)

When V = 0, the corresponding expected cost equals

E[J ] =E[
x0

T X x0
]= tr (XΣ0) . (3.6)

When V 6= 0, thenE[J (T )] →∞, but the steady-state cost rate equals

lim
T→∞

dE[J (T )]

dT
= tr (X V ) . (3.7)

Proof. See any of the aforementioned books; for example Kwakernaak and Sivan (1972),
Theorem 3.9.

It is important to note that the noise V does not affect the optimal control law whatsoever.
The control strategy can be summarized as ‘Bring the state back to zero as efficiently
as possible, from any disturbance that may occur.’ Which exact disturbance occurs is
irrelevant here.

3.2.2. THE DISCOUNTED CASE WITH FULLY KNOWN STATE
Next, we add the discount exponent α. Note that α can be both positive (a prescribed
degree of stability) and negative (a discount exponent), but for ease of writing we always
call it a discount exponent. We also define Aα = A+αI .

Theorem 3.2. Consider system (3.1), where the state is assumed known. If (Aα,B) is
stabilizable, then the optimal control law minimizing the expected discounted costE[J ] is
a linear control law u(t ) =−Fαx(t ), where

Fα = R−1B T Xα, (3.8)
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and Xα is the solution to the Riccati equation

AT
αXα+XαAα+Q −XαBR−1B T Xα = 0. (3.9)

The corresponding expected cost (for both zero and nonzero V ) when α< 0 equals

E[J ] = tr

((−Xα

2α

)
(V −2αΣ0)

)
. (3.10)

When α≥ 0, thenE[J (T )] →∞ as T →∞.

Proof. The key insight (see Anderson and Moore (1990), Section 3.5) is to define

x̃(t ) = eαt x(t ),

ũ(t ) = eαt u(t ),

ṽ (t ) = eαt v (t ). (3.11)

Note that ṽ(t) is Gaussian white noise with a time-varying intensity Ṽ (t) = e2αt V . The
time-derivative of x̃(t ) now follows as

˙̃x(t ) = Aαx̃(t )+B ũ(t )+ ṽ (t ), (3.12)

where x̃(0) = x(0). At the same time, expression (3.2) for the cost J (T ) turns into

J (T ) =
∫ T

0

(
x̃T (t )Q x̃(t )+ ũT (t )Rũ(t )

)
d t . (3.13)

We can directly apply Theorem 3.1 to this situation, proving the Theorem except for (3.10).
This expression follows directly from Theorem 2.2.

It is important to note what ‘optimality’ means here. After all, we have process noise
continuously exciting the system. If α> 0, then the cost J will be infinite, regardless of the
control law used. A control law now is optimal when the corresponding expected cost
E[J (T )] is smaller than or equal to the expected costE[J ′(T )] corresponding to any other
control law, in the limit T →∞.

An interesting property of the above theorem is that the control law ensures that all
the closed-loop system eigenvalues are smaller than −α. (See Anderson and Moore (1990),
Section 3.5.) This is why α (when positive) is known as the prescribed degree of stability.
We do not directly place the eigenvalues like Kučera and Cigler (2010), but we do prescribe
them to satisfy λi <−α.

Generally, positive values of α result in more aggressive controllers (higher gains)
while negative values of α result in more lazy controllers (lower gains). Roughly put, when
α is negative, the controller does not bother putting in a large effort now to ‘fix’ future
states, because these future states will hardly matter anyway.
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3.2.3. THE NON-DISCOUNTED CASE WITH UNKNOWN STATE
We now consider the complete system (3.1), where the state is not anymore assumed
known. We do for now assume that α = 0. The common solution in literature to deal
with the unknown state is to set up an observer with state estimate x̂ , which is updated
according to

˙̂x(t ) = Ax̂(t )+Bu(t )+K
(

y(t )−C x̂(t )−Du(t )
)

, (3.14)

subject to some initial state estimate x̂(0). We also define the state estimation error as
e(t) = x(t)− x̂(t). To minimize this error (i.e., its variance) we can use the following
Theorem.

Theorem 3.3. Consider system (3.1). If (A,C ) is detectable, then the optimal observer gain
minimizing the steady-state error covariance is

K = EC T W −1, (3.15)

where E is the optimal steady-state error covariance, found through

AE +E AT +V −EC T W −1C E = 0. (3.16)

Proof. This is the famous Kalman-Bucy filter from Kalman and Bucy (1961). A proof can
also be found in Kwakernaak and Sivan (1972), Theorem 4.5.

Theorem 3.4. Consider system (3.1). If (A,B) is stabilizable and (A,C ) is detectable, then
the optimal control law minimizing the expected non-discounted cost (i.e., with α= 0) is a
linear control law u(t ) =−F x̂(t ), with F given by (3.4), x̂(t ) following from (3.14) and the
observer gain K taken as (3.15). The resulting expected steady-state cost rate is given by

lim
T→∞

dE[J (T )]

dT
= tr

(
X K W K T )+ tr (EQ) = tr (X V )+ tr

(
EF T RF

)
, (3.17)

with X the solution of (3.5) and E the solution of (3.16).

Proof. The optimal controller and observer gains follow from the separation principle.
See for instance Kwakernaak and Sivan (1972), Theorem 5.4. This leaves us only with the
proof for the expected steady-state cost rate. Though a proof is also given by Kwakernaak
and Sivan (1972), we derive one for ourselves here, so that we can use a similar proof
when dealing with the discount exponent α.

To find it, we first note that our system, with the control law and the observer, can be
written in an adjusted notation as[ ˙̂x(t )

ė(t )

]
=

[
A−BF −KC

0 A−KC

][
x̂(t )
e(t )

]
+

[
K w (t )

K w (t )+v (t )

]
. (3.18)

If we (re-)define

x̃(t ) =
[

x̂(t )
e(t )

]
, Ã =

[
A−BF −KC

0 A−KC

]
,

Ṽ =
[

K W K T K W K T

K W K T K W K T +V

]
, Q̃ =

[
Q +F T RF −Q

−Q Q

]
, (3.19)
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then we can apply Theorem 2.3 to find the expected steady-state cost rate. This becomes
(also through Theorem A.9)

lim
T→∞

dE[J (T )]

dT
= tr

(
X Ṽ

Ã
Q̃

)
= tr

(
Ṽ X̄ Q̃

Ã

)
. (3.20)

where we use the notation from Section 2.3.1 for X Ṽ
Ã

and X̄ Q̃
Ã

. So these parameters per
definition are the solutions of the Lyapunov equations

ÃX Ṽ
Ã
+X Ṽ

Ã
ÃT + Ṽ = 0, (3.21)

ÃT X̄ Q̃
Ã
+ X̄ Q̃

Ã
Ã+Q̃ = 0. (3.22)

We will initially use the first of these two expression, expanding (3.21) into

(A−BF ) X Ṽ
Ã,11

−KC X Ṽ
Ã,12

+X Ṽ
Ã,11

(A−BF )T −X Ṽ
Ã,12

C T K T +K W K T = 0, (3.23)

(A−BF ) X Ṽ
Ã,12

−KC X Ṽ
Ã,22

+X Ṽ
Ã,12

(A−KC )T +K W K T = 0, (3.24)

(A−KC ) X Ṽ
Ã,22

+X Ṽ
Ã,22

(A−KC )T +K W K T +V = 0. (3.25)

For the given values of F and K , we can directly find1 that X Ṽ
Ã,12

= 0. Subsequently,

the solution for (3.23) equals X Ṽ
Ã,11

= X (since (3.23) then equals (3.5)) and the solution

for (3.25) equals X Ṽ
Ã,22

= E (since (3.25) then equals (3.16)). It immediately follows that

lim
t→∞

dE[J ]

d t
= tr

(
X Ṽ

Ã
Q̃

)
= tr

(
X

(
Q +F T RF

)+EQ
)

. (3.26)

Through applying Theorem A.9, we directly find the first half of expression (3.17). To find
the second half, we need to apply the above methodology in an identical way to (3.22)
instead of (3.21). When doing so, we complete our proof.

3.3. OPTIMIZING THE DISCOUNTED COST FUNCTION
In this section we derive the main result: the optimal controller/observer gains for the
complete system. The following Theorem shows that the separation principle still holds,
if in an adjusted form, when using the discounted cost function.

Theorem 3.5. Consider system (3.1). If (Aα,B) is stabilizable and (Aα,C ) is detectable,
then the optimal control law minimizing the expected discounted cost E[J ] is a linear
control law u(t) = −Fαx̂(t), with Fα given by (3.8) and Xα by (3.9). Identically to (3.14),
x̂(t ) is given by the observer

˙̂x(t ) = Ax̂(t )+Bu(t )+Kα

(
y(t )−C x̂(t )−Du(t )

)
, (3.27)

1This actually also follows from the separation principle. We can note that X Ṽ
Ã,12

= limt→∞E
[

x̂(t )eT (t )
]

, and

the separation principle implies that this quantity becomes zero; see Anderson and Moore (1990), Section 8.2.
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where x̂0 is set to µ0, where the observer gain Kα is given by

Kα = EαC T W −1 (3.28)

and where Eα is the solution to the Riccati equation

AαEα+EαAT
α + (

V −2α
(
Σ0 −µ0µ0

T ))−EαC T W −1C Eα = 0. (3.29)

The corresponding expected cost for α< 0 equals

E [J ] = tr

((
−Xα

2α

)(
KαW K T

α −2αµ0µ0
T ))+ tr

((
−Eα

2α

)
Q

)
= tr

((
−Xα

2α

)
(V −2αΣ0)

)
+ tr

((
−Eα

2α

)
F T
α RFα

)
. (3.30)

When α≥ 0, thenE[J (T )] →∞ as T →∞.

Proof. This Theorem follows from Theorem 3.4. To see how, we need to carefully note the
differences between the two problems.

Consider the adjusted system (3.18). First of all, since x̂0 =µ0, the initial state satisfies

µ̃0 =E [x̃0] =E
[

x̂0

e0

]
=

[
µ0

0

]
,

Σ̃0 =E
[

x̃0x̃0
T ]=E[

x̂0x̂0
T x̂0ê0

T

ê0x̂0
T ê0ê0

T

]
=

[
µ0µ0

T 0
0 Σ0 −µ0µ0

T

]
. (3.31)

According to Theorem 3.2, the expected cost equals

E [J ] = tr

((−X̃α

2α

)(
Ṽ −2αΣ̃0

))
. (3.32)

This is the quantity that we need to optimize, contrary to Theorem 3.4 where we needed
to optimize tr

(
X̃ Ṽ

)
. To turn one situation into the other, we hence need to substitute

Ã by Ãα, which is equivalent to replacing A by Aα. Similarly, we must substitute Ṽ for(
Σ̃0 − Ṽ

2α

)
, which is equivalent to replacing W by −W

2α and V by
(
Σ0 −µ0µ0

T − V
2α

)
. In

addition, due to the top left term of Σ̃0, expression (3.23) also gets an extra term µ0µ0
T .

After these replacements and adjustments, the problems are identical. Elementary algebra
subsequently turns Theorem 3.4 into the desired result.

It is interesting to note that, for the discounted cost, the optimal controller gains stay the
same as compared to Theorem 3.2, and Theorem 3.2 was just a minor adjustment with
respect to Theorem 3.1. The controller still trades off aggressively controlling the state
(for high Q) with being frugal at applying input (for high R).

The situation is different for the observer. In the non-discounted case (Theorem 3.4)
it trades off aggressive adjustments of x̂ to compensate for process noise (for high V ) with
cautious adjustments due to the presence of measurement noise (for high W ). In the
discounted case, also the variance Σ0 −µ0µ0

T of the initial state matters. If the initial
state is highly uncertain (large variance) and if the present matters more than the future
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(highly negative α) then we get a more aggressively adjusting state estimator. Roughly
put, the state estimator wants to ‘fix’ the uncertainty in the state while things still matter.
This is contrary to the default effect of α: just like a highly negative value of α results in a
lazy controller, it generally also gives a lazy observer.

3.4. EXPERIMENTAL VERIFICATION
To check the derived equations, we can set up an experiment. Ideally, this experiment
is as basic as possible. Applying the derived equations to an industrial experiment is
hardly different from applying the known Theorem 3.4 (regular LQG control) to the same
experiment, so doing that will not provide any new insights.

We set up an experiment with the following parameters,

µ0 =
[

10
−8

]
, Σ0 =

[
1 0.5

0.5 2

]
+µ0µ0

T ,

A =
[

2 −1
0.5 −3

]
, B =

[
0.5
−1

]
,

C = [
0 1

]
, D = [

0
]

. (3.33)

In addition, we use V = 0.3I , W = 0.01, Q = I , R = 0.2 and α=−0.1. The system matrices
are mostly chosen randomly, albeit taken such that the system is both stabilizable and
detectable. The other parameters are set up such that all factors (the mean initial state, the
initial state variance, the process noise and the measurement noise) contribute roughly
equally to the final cost.

For the given set-up, we can calculate the optimal controller/observer gains. These
turn out to be

Fα = [
6.92 −1.41

]
, Kα =

[
80.2
9.54

]
. (3.34)

The resulting expected cost, according to (3.30), becomesE[J ] = 1093. We can verify this
through numerical simulations. After running 105 simulations, each time initializing the
system in a random initial state and applying the appropriate process/measurement noise
for T = 40 seconds, while keeping track of the cost J , the mean cost of all simulations was
1094. The tiny difference from the predicted mean can partly be explained by statistical
deviations, and partly by minor inaccuracies in the discretization of the simulation.
However, the result is still very close to the prediction, verifying (3.30).

We should also check whether the given controller settings indeed minimize the
discounted cost. To do so, we can make minor adjustments to the gains Fα and Kα and
investigate the resulting change in expected cost. The results of this are shown in Table 3.1.
Here we see that small adjustments to either of the gains, both positive and negative, will
only increase the expected costE[J ]. This confirms that the given controller parameters
are indeed optimal.

3.5. CONCLUSIONS
It is now possible to find the optimal controller and observer gains of an LQG system with
discounted cost using the expressions provided in Theorem 3.5. The explicit expressions
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Table 3.1: The effects of minor adjustments of elements of the optimal controller/observer gains Fα and Kα on
the expected costE[J ]. Note that the change in cost is always positive: the cost always increases. Numbers were
derived using (3.30).

Adjustment of Fα ∆Fα,1 =−0.1 ∆Fα,1 = 0.1 ∆Fα,2 =−0.1 ∆Fα,2 = 0.1

Effect onE[J ] ∆E[J ] = 0.23 ∆E[J ] = 0.22 ∆E[J ] = 0.41 ∆E[J ] = 0.41

Adjustment of Kα ∆Kα,1 =−0.5 ∆Kα,1 = 0.5 ∆Kα,2 =−0.1 ∆Kα,2 = 0.1

Effect onE[J ] ∆E[J ] = 0.059 ∆E[J ] = 0.058 ∆E[J ] = 0.087 ∆E[J ] = 0.088

for the expected cost are also provided. As a result, this chapter also serves as an overview
when it comes to this part of control engineering.

Future work on this subject can look into replacing the discount exponent α by a
discount matrix. This seems to be a mostly straightforward problem with fascinating
additional tuning possibilities. A more complicated matter would be to figure out how
a finite time window T affects the optimal controller/observer parameters for various
α. Yet another avenue for further research would be to look into time-varying systems,
similarly to Rusnak (2016), and verify whether the same results are still applicable then.





4
ONLINE SYSTEM IDENTIFICATION

THROUGH GAUSSIAN PROCESS

REGRESSION

Abstract — There has been a growing interest in using non-parametric regression meth-
ods like Gaussian Process (GP) regression for system identification. GP regression does
traditionally have three important downsides: (1) it is computationally intensive, (2) it
cannot efficiently implement newly obtained measurements online, and (3) it cannot deal
with stochastic (noisy) input points. In this chapter we present an algorithm tackling all
these three issues simultaneously. The resulting Sparse Online Noisy Input GP (SONIG)
regression algorithm can incorporate new noisy measurements in constant runtime. A
comparison has shown that it is more accurate than similar existing regression algorithms.
When applied to non-linear black-box system modeling, its performance is competitive
with existing non-linear ARX models.

The Gaussian Process (GP) (Rasmussen and Williams, 2006) has established itself as a
standard model for nonlinear functions. It offers a representation that is non-parametric
and probabilistic. The non-parametric nature of the GP means that it does not rely
on any particular parametric functional form to be postulated. The fact that the GP
is a probabilistic model means that it is able to take uncertainty into account in every
aspect of the model. This makes it a promising method to use for the identification of
nonlinear systems with strong uncertainties like wind turbines. However, this is not as
straightforward as it may seem. In this chapter we look at why that is the case and how
these problems can be overcome.

We start this chapter by describing the system identification set-up we aim to tackle
and why GP regression can be used for this in Section 4.1. Section 4.2 then examines
three important existing problems within GP regression, giving a quick summary of the
solutions discussed in literature. In Section 4.3 we expand on these methods, enabling

35
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GP regression to be applied in an online manner using noisy input points. This results in
the basic version of the new algorithm. Section 4.4 subsequently outlines various ways
of extending this algorithm, allowing it to be applied to system identification problems.
Experimental results, first for the basic algorithm (Algorithm 1) and then for its system
identification set-up (Algorithm 2) are shown in Section 4.5. Section 4.6 finally gives
conclusions and recommendations for future work along this direction.

4.1. SYSTEM IDENTIFICATION PROBLEM SET-UP

The nonlinear system identification problem amounts to learning a mathematical model
based on data that is observed from a dynamical phenomenon under study. Recently
there has been a growing interest of using the GP to this end and it has in fact allowed
researchers to successfully revisit the linear system identification problem and establish
new and significantly improved results on the impulse estimation problem (Pillonetto
and De Nicolao, 2010, Pillonetto et al., 2011, Chen et al., 2012). There are also older results
on nonlinear ARX type models (Kocijan et al., 2005) and new results on the nonlinear
state space models based on the GP (Svensson and Schön, 2017, Frigola et al., 2013, 2014).
We also mention the nice overview by Kocijan (2016).

When the basic GP model is used for regression, it results in a computational com-
plexity that is too high to be practically useful, stochastic inputs cannot be used and it
cannot be used in an online fashion. These three fundamental problems of basic GP
regression have been addressed in many different ways, which we return to in Section 4.2.
The nonlinear system identification problem typically requires us to solve these three
problems simultaneously. This brings us to our two main contributions of this chapter. (1)
We derive an algorithm allowing us to—in an online fashion—include stochastic training
points to one of the classic sparse GP models, the so-called FITC algorithm. (2) We adapt
the new algorithm to the nonlinear system identification problem, resulting in a novel
online algorithm for nonlinear system identification. The experimental results show that
the our new algorithm is indeed competitive compared to existing solutions.

The system identification formulation takes inspiration from the nonlinear autore-
gressive model with exogenous (ARX) inputs of the form

yk =φ(yk−1, . . . , yk−ny ,uk−1, . . . ,uk−nu ), (4.1)

where φ(·) denotes some nonlinear function of past inputs uk−1, . . . ,uk−nu and past
outputs yk−1, . . . , yk−ny to the system. To this end we develop a non-parametric and
probabilistic GP model which takes the vector

xk = (yk−1, . . . , yk−ny ,uk−1, . . . ,uk−nu ), (4.2)

as its input vector. The crucial part behind our solution from a system identification point
of view is that we continuously keep track of the covariances between respective output
estimates yk , . . . , yk−ny and inputs uk , . . . ,uk−nu . Every time we incorporate new training
data, the respective means and covariances of these parameters are further refined.
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4.2. LIMITATIONS OF GAUSSIAN PROCESS REGRESSION
Gaussian process regression is a powerful regression method but, like any method, it has
its limitations. In this section we look at its background, what exact limitations it has and
what methods are available in literature to tackle these. Also the assumptions made and
the notation used is introduced.

4.2.1. REGULAR GAUSSIAN PROCESS REGRESSION
GP regression (Rasmussen and Williams, 2006) is about probabilistically modeling a func-
tion f (x) given a number of n training points (measurements) (x1, y1), (x2, y2), . . . , (xn , yn).
Here, x denotes the training input point and y the measured function output. (For now
we assume scalar outputs. Section 4.4.1 looks at the multi-output case.) We assume that
the training outputs are corrupted by noise, such that yi = f (xi )+ε, with ε∼ N (0,σ2

n)
being Gaussian white noise with zero mean and variance σ2

n .
As shorthand notation, we merge all the training points xi into a training set X and

all corresponding output values yi into an output vector y . We now write the noiseless
function output f (X ) as f , such that y = f +ε, with ε∼N (0,Σn) and Σn =σ2

n I .
Once we have the training data, we want to predict the function value f (x∗) at a

specific test point x∗. Equivalently, we can also predict the function values f∗ = f (X∗) at a
whole set of test points X∗. Given that we model the function f (x) as a Gaussian process,
it follows that f∗ and f have a prior joint Gaussian distribution given by[

f 0

f 0∗

]
∼N

([
m(X )
m(X∗)

]
,

[
k(X , X ) k(X , X∗)
k(X∗, X ) k(X∗, X∗)

])
=N

([
m

m∗

]
,

[
K K∗

K T∗ K∗∗

])
, (4.3)

where in the second part of the equation we have introduced another shorthand notation.
Note here that m(x) is the prior mean function for the Gaussian process and k(x , x ′) is
the prior covariance function. The superscript 0 in f 0 and f 0∗ also denotes that we are
referring to the prior distribution: no training points have been taken into account yet.
In this chapter we make no assumptions on the prior mean/kernel functions, but our
examples will apply a zero mean function m(x) = 0 and a squared exponential covariance
function

k(x , x ′) =α2 exp

(
−1

2

(
x −x ′)T

Λ−1 (
x −x ′)) , (4.4)

with α a characteristic output length scale andΛ a diagonal matrix of characteristic input
squared length scales. For now we assume that these hyperparameters are known, but in
Section 4.4.3 we look at ways to tune them.

From (4.3) we can find the posterior distribution of both f and f∗ given y as[
f n

f n∗

]
∼N

([
µn

µn∗

]
,

[
Σn Σn∗(
Σn∗

)T
Σn∗∗

])
,[

µn

µn∗

]
=

[(
K −1 +Σ−1

n

)−1 (
K −1m +Σ−1

n y
)

m∗+K T∗ (K +Σn)−1
(

y −m
) ]

,[
Σn Σn∗(
Σn∗

)T
Σn∗∗

]
=

[ (
K −1 +Σ−1

n

)−1
Σn (K +Σn)−1 K∗

K T∗ (K +Σn)−1Σn K∗∗−K T∗ (K +Σn)−1 K∗

]
. (4.5)
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Note here that, while we use m and K to denote properties of prior distributions, we useµ
and Σ for posterior distributions. The superscript n indicates these are posteriors taking
n training points into account, and while a star ∗ subscript denotes a parameter of the
test set, an omitted subscript denotes a training parameter.

4.2.2. SPARSE GAUSSIAN PROCESS REGRESSION
An important limitation of Gaussian process regression is its computational complexity
of O (n3), with n the number of training points. This can be tackled through parallel
computing (Gal et al., 2014, Deisenroth and Ng, 2015) but a more common solution is
to use the so-called sparse methods. An overview of these is given by Candela and Ras-
mussen (2005), summarizing various contributions (Smola and Bartlett, 2001, Csató and
Opper, 2002, Seeger et al., 2003, Snelson and Ghahramani, 2006a) into a comprehensive
framework. With these methods, and particularly with the FITC method that we will apply
in this chapter, the runtime can be reduced to being linear with respect to n, with only a
limited reduction in how well the available data is being used.

All these sparse methods make use of so-called inducing input points Xu to reduce
the computational complexity. Such inducing input points are also used in the more
recent work on variational inference (Titsias, 2009, Titsias and Lawrence, 2010). However,
as pointed out by McHutchon (2014), these points are now not used for the sake of
computational speed but merely as ‘information store’. McHutchon (2014) also noted
that the corresponding methods have a large number of parameters to optimize, making
the computation of the derivatives rather slow. Furthermore, even though variations
have been developed which do allow the application of variational inference to larger
data sets (Hensman et al., 2013, Gal et al., 2014, Damianou et al., 2016), online methods
generally require simpler and faster methods, like NIGP, which is what we will focus on.

To apply sparse GP regression, we first find the posterior distribution of the inducing
outputs fu at the corresponding inducing input points Xu . This can be done in O (n3)
time through (4.5) (replacing f∗ by fu ) or in O (nn2

u) time through the FITC regression
equation [

f n

f n
u

]
∼N

([
µn

µn
u

]
,

[
Σn Σn

u(
Σn

u

)T
Σn

uu

])
,[

µn

µn
u

]
=

[
m +ΣnΣ−1

n

(
y −m

)
mu + (

Σn
u

)T (
Λ−1

n +Σ−1
n

)(
y −m

)] ,

Σn = (
Λ−1

n +Σ−1
n

)−1 +Σn (Λn +Σn)−1 Ku∆
−1K T

u (Λn +Σn)−1Σn ,

Σn
u =Σn (Λn +Σn)−1 Ku∆

−1Kuu ,

Σn
uu = Kuu∆

−1Kuu . (4.6)

Here we have used the shorthand notation Ku = k(X , Xu), Kuu = k(Xu , Xu) and ∆ =
Kuu +K T

u (Λn +Σn)−1 Ku , in which also Λn = diag
(
K −K T

u K −1
uu Ku

)
, with diag being the

function that sets all non-diagonal elements of the given matrix to zero. The FITC re-
gression equation is an approximation, based on the assumption that all function values
f (x1), . . . , f (xn ) are (a priori) independent given fu .

Once we know the distribution of fu , we calculate the posterior distribution of f∗.
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Mathematically, this method is equivalent to assuming that f and f∗ are conditionally
independent, given fu . It follows that[

f n
u

f n∗

]
∼N

([
µn

u
µn∗

]
,

[
Σn

uu Σn
u∗

Σn∗u Σn∗∗

])
,[

µn
u

µn∗

]
=

[
µn

u
m∗+K∗uK −1

uu

(
µn

u −mu
)] ,[

Σn
uu Σn

u∗
Σn∗u Σn∗∗

]
=

[
Σn

uu Σn
uuK −1

uu Ku∗
K∗uK −1

uuΣ
n
uu K∗∗−K∗uK −1

uu

(
Kuu −Σn

uu

)
K −1

uu Ku∗

]
. (4.7)

4.2.3. ONLINE GAUSSIAN PROCESS REGRESSION
A second limitation of GP regression is the difficulty with which it can incorporate new
training points. For regular GP regression, a new measurement n +1 can be added to the
existing set of n training points through a matrix update, resulting in an O (n2) runtime.
For sparse methods using inducing input (basis) points this can generally be done more
efficiently (Csató and Opper, 2002, Candela and Rasmussen, 2005, Ranganathan et al.,
2011, Kou et al., 2013, Hensman et al., 2013). The main downside is that most methods set
requirements on these inducing input points. However, the FITC and the PITC methods
can be set up in an online way without such constraints (Huber, 2013, 2014, Bijl et al.,
2015). We briefly summarize the resulting algorithm.

Suppose that we know the distribution of fu , given the first n training points. This
is written as f n

u . Next, consider a new measurement (xn+1, yn+1), whose notation we
will shorten to (x+, y+). To incorporate it, we first predict the posterior distribution of
f+ = f (x+) based on only the first n training points. Identically to (4.7), this results in[

f n
u

f n+

]
∼N

([
µn

u
µn+

]
,

[
Σn

uu Σn
u+

Σn+u Σn++

])
,[

µn
u

µn+

]
=

[
µn

u
m++K+uK −1

uu

(
µn

u −mu
)] ,[

Σn
uu Σn

u+
Σn+u Σn++

]
=

[
Σn

uu Σn
uuK −1

uu Ku+
K+uK −1

uuΣ
n
uu K++−K+uK −1

uu

(
Kuu −Σn

uu

)
K −1

uu Ku+

]
. (4.8)

If we subsequently incorporate the new measurement, identically to (4.5), then we get[
f n+1

u
f n+1+

]
∼N

([
µn+1

u
µn+1+

]
,

[
Σn+1

uu Σn+1
u+

Σn+1+u Σn+1++

])
,[

µn+1
u

µn+1+

]
=

[
µn

u +Σn
u+

(
Σn+++σ2

n

)−1 (
y+−µn+

)
σ2

n

(
Σn+++σ2

n

)−1
µn++Σn++

(
Σn+++σ2

n

)−1
y+

]
,[

Σn+1
uu Σn+1

u+
Σn+1+u Σn+1++

]
=

[
Σn

uu −Σn
u+(Σn+++σ2

n)−1Σn+u Σn
u+(Σn+++σ2

n)−1σ2
n

σ2
n(Σn+++σ2

n)−1Σn+u σ2
n(Σn+++σ2

n)−1Σn++

]
. (4.9)

This expression (or at least the part relating to fu ) is the update law for the FITC algorithm.
It tells us exactly how the distribution of f n+1

u (both µn+1
u and Σn+1

uu ) depends on x+ and
y+. With this distribution, we can subsequently always find the distribution of new test
point outputs f∗ in an efficient way through (4.7).
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4.2.4. USING STOCHASTIC INPUT POINTS
The third limitation is that the GP regression algorithm assumes that the input points are
deterministic. This assumption concerns both the training (measurement) points x and
the test points x∗. For noisy (stochastic) test points x∗, we can work around the problem
by applying moment matching (Deisenroth, 2010). This technique can subsequently also
be expanded for noisy training points (Dallaire et al., 2009), but the effectiveness is limited
because the method integrates over all possible a priori functions, and not over all possible
a posteriori functions. There are methods that include posterior distributions (Girard
and Murray-Smith, 2003) but these often only work for noisy test points and not for
noisy training points. Only the NIGP algorithm (McHutchon and Rasmussen, 2011) both
includes posterior distributions and works with noisy training points. This is the method
we will be expanding upon in this chapter.

It should be noted that the variational methods mentioned earlier can also deal with
stochastic input points, up to a certain degree. However, as also mentioned before, they
cannot do so as computationally efficient as the NIGP algorithm or the algorithm that
we will develop, so their applicability to online system identification remains limited.
Additionally, it is also possible to take into account the effects of noisy training points
by assuming that the noise variance varies over the input space; a feature called het-
eroscedasticity. This has been investigated quite in-depth (Goldberg et al., 1997, Le et al.,
2005, Wang and Neal, 2012, Snelson and Ghahramani, 2006b) but it would give more
degrees of freedom to the learning algorithm than would be required, and as a result these
methods have a reduced performance for the problems we consider. We will not consider
these methods further in this thesis.

4.3. EXPANDING THE ALGORITHM FOR STOCHASTIC TRAINING

POINTS
This section contains our main contribution: enabling the FITC algorithm to handle
stochastic training points in an online way. From a computational point of view, the novel
update laws given here are very simple and efficient, relative to other methods.

4.3.1. THE ONLINE STOCHASTIC MEASUREMENT PROBLEM

Consider the case where we know the distribution f n
u ∼N

(
µn

u ,Σn
uu

)
(initially we have

f 0
u ∼N

(
µ0

u ,Σ0
uu

)=N (mu ,Kuu)) and we obtain a new measurement at some unknown
input point x+. However, we do have a measurement x̂+ of this point, and we assume that
the discrepancy ε has a normal distribution. That is,

x̂+ = x++ε, (4.10)

with ε∼N (0,Σ+x ). As before, the true function output f+ = f (x+) is also unknown. Our
measurement only gives us values x̂+ and f̂+ approximating these and hence tells us that
x+ ∼N (x̂+,Σ+x ) and1 f+ ∼N ( f̂+,Σ+ f ). We assume that the noise on the input and the
output is independent, and hence that x+ and f+ are a priori not correlated.

1Note that f̂+ and y+ are identical, and so are Σ+ f and σ2
n . For the sake of uniform notation, we have renamed

them.
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Our main goal is to find the posterior distribution f n+1
u , given this stochastic training

point. This can be done through

p( f n+1
u |x̂+, f̂+, f n

u ) =
∫

X
p( f n+1

u |x+, x̂+, f̂+, f n
u )p(x+|x̂+, f̂+, f n

u )d x+. (4.11)

In the integral, the first probability p( f n+1
u |x+, x̂+, f̂+, f n

u ) is the update law for f n+1
u if x+

was known exactly. It directly follows from (4.9). The second probability p(x+|x̂+, f̂+, f n
u )

is the posterior distribution of x+, given both f n
u and the new measurement. Since this

latter term is more difficult to deal with, we examine it first.

4.3.2. THE POSTERIOR DISTRIBUTION OF THE TRAINING POINT
The posterior distribution of x+ can be found through Bayes’ theorem,

p(x+| f̂+, x̂+, f n
u ) = p( f̂+|x+, x̂+, f n

u )p(x+|x̂+, f n
u )

p( f̂+|x̂+, f n
u )

. (4.12)

Here p(x+|x̂+, f n
u ) = p(x+|x̂+) = N (x̂+,Σ+x ) and p( f̂+|x̂+, f n

u ) equals an unknown con-
stant (i.e., not depending on x+). Additionally,

p( f̂+|x+, x̂+, f n
u ) = p( f̂+|x+, f n

u ) =N
(
µn
+,Σn

+++Σ+ f

)
, (4.13)

where µn+ and Σn++ follow from (4.8). Note that both these quantities depend on x+ in
a non-linear way. Because of this, the resulting probability p(x+| f̂+, x̂+, f n

u ) will be non-
Gaussian. To work around this problem, we have to make some simplifying assumptions.
Similarly to Girard and Murray-Smith (2003), we linearize the Gaussian process f̂+ (which
depends on x+) around a point x̄+. That is, we assume that

p( f̂+|x+, f n
u ) =N

(
µn
+(x̄+)+ dµn+(x̄+)

d x+
(x+− x̄+) ,Σn

++(x̄+)+Σ+ f

)
. (4.14)

In other words, we assume that the mean varies linearly with x+, while the covariance is
constant everywhere. The solution for p(x+| f̂+, x̂+, f n

u ) is now Gaussian and follows as

p(x+| f̂+, x̂+, f n
u ) =N

(
x̂n+1
+ ,Σn+1

+x

)
,

x̂n+1
+ = x̂++Σn+1

+x

((
dµn+(x̄+)

d x+

)T (
Σn
++(x̄+)+Σ+ f

)−1
(

dµn+(x̄+)

d x+
(x̄+− x̂+)+ (

f̂+−µn
+(x̄+)

)))
,

Σn+1
+ =

((
dµn+(x̄+)

d x+

)T (
Σn
++(x̄+)+Σ+ f

)−1
(

dµn+(x̄+)

d x+

)
+Σ−1

+x

)−1

. (4.15)

We are left to choose a linearization point x̄+. The above equation is easiest to apply when
we choose x̄+ = x̂+, but when

(
f̂+−µn+(x̄+)

)
is large, this may result in inaccuracies due

to the linearization. It is generally more accurate to choose x̄+ as x̂n+1+ . However, x̂n+1+
is initially unknown, so it may be necessary to apply the above equation multiple times,
each time resetting x̄+ to the latest value of x̂n+1+ that was found, to find the most accurate
posterior distribution of x+.
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4.3.3. UPDATING THE INDUCING INPUT POINT FUNCTION VALUES

Using the above, we can solve (4.11). This is done by approximating the GP fu (x+) by its
Taylor expansion around x̂n+1+ . Element-wise we write this as

f n+1
ui

(x+) = f n+1
ui

(x̂n+1
+ )+ d f n+1

ui
(x̂n+1+ )

d x+

(
x+− x̂n+1

+
)

+ 1

2

(
x+− x̂n+1

+
)T d 2 f n+1

ui
(x̂n+1+ )

d x2+

(
x+− x̂n+1

+
)+ . . . . (4.16)

Within this Taylor expansion, Girard and Murray-Smith (2003) made the assumption that

higher order derivatives like
d 2 f n

u

d x2+
are negligible, remaining with just a linearization of the

GP. We do not make this assumption, but instead assume that Σ2+x
and higher powers of

Σ+x are negligible. (If the uncertainties in x+ are so large that this assumption does not
hold, then any form of Gaussian process regression is likely to fail.) This assumption is
not only more loose—resulting in an extra term in (4.16)—but also easier to verify.

An additional assumption we need to make is that x+ is independent of fu . This is
reasonable, as x+ is only contaminated by Gaussian white noise. Applying this, we can
solve (4.11) through both (4.15) and (4.16). The result equals

f n+1
u ∼N

(
µn+1

u ,Σn+1
uu

)
,

µn+1
ui

=µn+1
ui

(x̂n+1
+ )+ 1

2
tr

(
d 2µn+1

ui
(x̂n+1+ )

d x2+
Σn+1
+x

)
, (4.17)

Σn+1
ui u j

=Σn+1
ui u j

(x̂n+1
+ )+

(
dµn+1

u j
(x̂n+1+ )

d x+

)
Σn+1
+x

(
dµn+1

ui
(x̂n+1+ )

d x+

)T

+ 1

2
tr

((
d 2Σn+1

ui u j
(x̂n+1+ )

d x2+

)
Σn+1
+x

)
.

Here, the functions µn+1
ui

(x+) and Σn+1
ui u j

(x+) (for a given point x+) are given by (4.9), com-
bined with (4.8). Finding all the derivatives of these parameters can be a daunting task,
especially for non-scalar inputs x+, but the mathematics are relatively straightforward, so
for this we refer to the Appendix.

It is interesting to compare expression (4.17) with what was used by McHutchon and
Rasmussen (2011) in their NIGP algorithm. They did not include the term involving
d 2µn+1

ui
/d x2+. Later on, in Section 4.5.1, we will find that exactly this term causes the

new algorithm to perform better than the NIGP algorithm. As such, the above update
law (4.17) also serves as an improvement with respect to the NIGP algorithm.

4.3.4. THE SONIG ALGORITHM

Applying the equations developed so far is done through the Sparse Online Noisy Input GP
(SONIG) algorithm, outlined in Algorithm 1. This algorithm is computationally efficient,
in the sense that a single updating step (incorporating one training point) can be done in
constant runtime with respect to the number of training points already processed. The
runtime does depend on the number of inducing input points through O (n3

u), just like it
does for all sparse GP regression algorithms.
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Input:
A possibly expanding set of training points (x1, y1), . . . , (xn , yn) in which both x
and y are distorted by Gaussian white noise.

Preparation:
Either choose the hyperparameters based on expert knowledge, or apply the
NIGP hypertuning methods of McHutchon and Rasmussen (2011) on a subset
of the data (a few hundred points) to find the hyperparameters.
Optionally, apply the NIGP regression methods on this subset of data to obtain
an initial distribution of fu . Otherwise, initialize fu as N (mu ,Kuu).

Updating:
while there are unprocessed training points (xn+1, yn+1) do

1. Apply (4.15) to find the posterior distribution of the training point xn+1

(written as x+).
2. Use (4.17) to update the distribution of fu .
3. Optionally, use (4.18) and (4.19) to calculate the posterior distribution of
the function value f (x+) (written as f+).

end
Prediction:

Apply (4.7) to find the distribution f∗ for any set of deterministic test points. For
stochastic test points, use the expansion from Section 4.4.5.

Algorithm 1: The Sparse Online Noisy Input GP (SONIG) algorithm: an online version
of the FITC algorithm capable of dealing with stochastic (noisy) training points.
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4.4. EXTENSIONS OF THE SONIG ALGORITHM
In the previous section we have presented the basic idea behind the SONIG algorithm.
There are various further extensions that can be derived and implemented in the al-
gorithm. For instance, the algorithm can deal with multi-output functions f (x) (Sec-
tion 4.4.1), it can give us the posterior distribution of the output f+ as well as its cor-
relation with the input x+ (Section 4.4.2), we can implement hyperparameter tuning
(Section 4.4.3), we can add inducing input points online (Section 4.4.4) and we can make
predictions f∗ using stochastic test points x∗ (Section 4.4.5). Many of these extensions are
necessary to apply the SONIG algorithm for system identification. The exact SI algorithm
is finally summarized in Algorithm 2.

4.4.1. MULTIPLE OUTPUTS

So far we have approximated functions f (x) with only one output. It is also possible to
approximate functions f (x) with dy > 1 outputs. A common way in which this is done
in GP regression algorithms (Deisenroth and Rasmussen, 2011, Álvarez et al., 2012) is by
assuming that, given a deterministic input x , all outputs f1(x), . . . , fdy (x) are independent.
With this assumption, it is possible to keep a separate inducing input point distribution
f i

u ∼N
(
µi

u ,Σi
u

)
for each output fi (x). Hence, each output is basically treated separately.

When using stochastic input points (again, see Deisenroth and Rasmussen (2011))
the outputs do become correlated. We now have two options. If we take this correlation

into account, we have to keep track of the joint distribution of the vectors f 1
u , . . . , f

dy
u ,

effectively merging them into one big vector. This results in a vector of size nudy , giving
our algorithm a computational complexity of O (n3

ud 3
y ). Alternatively, we could also

neglect the correlation between the inducing input point distributions f i
u caused by

stochastic training points x+ ∼ N (x̂+,Σ+x ). If we do, we can continue to treat each
function output separately, giving our algorithm a runtime of O (n3

udy ). Because one of
the focuses of this chapter is to reduce the runtime of GP regression algorithms, we will
apply the second option.

When each output is treated separately, each output also has its own hyperparameters.
Naturally, the prior output covariance α2

i and the output noise σ2
ni

can differ per output
fi , but also the input length scalesΛi may be chosen differently for each output. In fact,
it is even possible to specify a fully separate covariance function ki (x , x ′) per output fi ,
though in this thesis we stick with the squared exponential covariance function.

Naturally, there are a few equations which we should adjust slightly in the case of
multivariate outputs. In particular, in equation (4.15), the parameter Σn++(x̄+) would
not be a scalar anymore, but become a matrix. And because of our assumption that the
outputs are independent, it would be a diagonal matrix. Similarly, the derivative dµn+/d x+
would not be a row vector anymore. Instead, it would turn into the matrix dµn+/d x+. With
these adjustments, (4.15) still holds and all other equations can be applied as usual.

4.4.2. THE POSTERIOR DISTRIBUTION OF THE MEASURED OUTPUT

In Section 4.3.3 we found the posterior distribution for fu . For some applications (like
the system identification set-up presented in Section 4.5.2) we also need the posterior
distribution of the measured function value f+, even though we do not exactly know to
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which input it corresponds. We can find this element-wise, using the same methods,
through

E[ f+]i =µn+1
+i

(x̂n+1
+ )+ 1

2
tr

(
d 2µn+1+i

(x̂n+1+ )

d x2+
Σn+1
+x

)
, (4.18)

V[ f+, f+]i , j =Σn+1
+i+ j

(x̂n+1
+ )+

(
dµn+1+i

(x̂n+1+ )

d x+

)
Σn+1
+x

(
dµn+1+ j

(x̂n+1+ )

d x+

)T

+ 1

2
tr

((
d 2Σn+1+i+ j

(x̂n+1+ )

d x2+

)
Σn+1
+x

)
.

Note here that Σn+1++ (x̂n+1+ ) is (by assumption) a diagonal matrix, simplifying the above
equation for non-diagonal terms. As such, the covariance between two different function
outputs f+i and f+ j only depends on the second term in the above expression.

It may occur that we also need to know the posterior covariance between the function
value f+ and the function input x+. Using the same method, we can find that

V[ f+, x+] =
(

dµn+1+ (x̂n+1+ )

d x+

)
Σn+1
+x

. (4.19)

This allows us to find the joint posterior distribution of x+ and f+.

4.4.3. APPLYING HYPERPARAMETER TUNING TO THE ALGORITHM
So far we have assumed that the hyperparameters of the Gaussian process were known a
priori. When this is not the case, they need to be tuned first. Naturally, this could be done
using expert knowledge of the system, it can also be done automatically.

McHutchon and Rasmussen (2011), with their NIGP method, offer an effective method
of tuning the hyperparameters, which also tells us the input noise variance Σ+x . However,
this method has a computational complexity of O (n3), with n still the number of training
points. As such, it can only be used for a small number of measurements and it cannot be
used online. NIGP seems not to be applicable to our problem.

However, Chalupka et al. (2013) compare various GP regression algorithms, including
methods to tune hyperparameters. One of their main conclusions is that the subset-of-
data (SoD) method—using a limited number of training points to tune hyperparameters—
provides a good trade-off between computational complexity and prediction accuracy.
As such, applying NIGP for hyperparameter tuning on a subset of data—say, the first few
hundred data points—seems to be a decent choice.

Chalupka et al. (2013) also conclude that, for the regression problem with known
hyperparameters, the FITC algorithm provides a very good trade-off between complexity
and accuracy. So after the SoD method has given us an estimate of the hyperparameters,
it will be an effective choice to use the online FITC algorithm with stochastic training
points (that is, the SONIG algorithm) as our regression method.

4.4.4. ADJUSTING THE SET OF INDUCING INPUT POINTS ONLINE
When using an online GP regression algorithm, it is often not known in advance what
kind of measured input points x the system will get. As such, choosing the inducing
input points Xu in advance is not always possible, nor wise. Instead, we can adjust the
inducing input points while the algorithm is running. There are ways to fully tune the set
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of inducing input points, like using the latent variable methods by Titsias (2009), Titsias
and Lawrence (2010), but those methods require the optimization of many parameters,
resulting in a computationally complex procedure. To keep the required computations
limited, we have to opt for a simpler method and add/remove inducing input points
based on areas of the input space we are interested in or have data at.

Suppose that we denote the current set of inducing input points by Xu , and that we
want to add an extra set of inducing input points Xu+ . In this case, given all the data that
we have, the distributions of fu and fu+ satisfy, identically to (4.7),[

fu

fu+

]
∼N

([
µu

µu+

]
,

[
Σuu Σuu+
Σu+u Σu+u+

])
,[

µu

µu+

]
=

[
µu

mu+ +Ku+uK −1
uu

(
µu −mu

)] ,[
Σn

uu Σn
uu+

Σn
u+u Σn

u+u+

]
=

[
Σn

uu Σn
uuK −1

uu Kuu+
Ku+uK −1

uuΣ
n
uu Ku+u+ −Ku+uK −1

uu

(
Kuu −Σn

uu

)
K −1

uu Kuu+

]
. (4.20)

With this combined set of old and new inducing input points, we can then continue
incorporating new training points without losing any data.

Additionally, though not always wise, it is also possible to remove unimportant induc-
ing input points. In this case, its entry can simply be removed from fu . Since it is possible
to both add and remove inducing input points, it is naturally also possible to shift them
around (first add new points, then remove old points) whenever deemed necessary.

The way in which we add inducing input points in the SONIG algorithm is as follows.
Whenever we incorporate a new training point with posterior input distribution x+ ∼
N

(
x̂n+1+ ,Σn+1+x

)
, we check if x̂n+1+ is already close to any existing inducing input point. To

be more precise, we examine the normalized squared distance(
x̂n+1
+ −xui

)T
Λ−1 (

x̂n+1
+ −xui

)
(4.21)

for each inducing input point xui . If there is no inducing input point whose normalized
squared distance is below a given threshold (often chosen to be roughly 1, but tuned to get
a satisfactory number of points), then it means that there is no inducing input point xui

close to our new training point x̂n+1+ . As a result, we add x̂n+1+ to our set of inducing input
points. This guarantees that each training point is close to at least one inducing input
point, which always allows the data from the measurement to be taken into account.

4.4.5. PREDICTIONS FOR STOCHASTIC TEST POINTS
For deterministic test points x∗ we can simply make use of (4.7) to compute predictions.
However, for stochastic test point x∗ ∼N

(
x̂∗,Σ∗x

)
it is more challening, since we have to

calculate the distribution of f∗ = f (x∗), requiring us to solve an integration problem. This
will not result in a Gaussian distribution, so once more we will apply moment matching.
Previously, we had to make additional assumptions, to make sure that the mean vector
and the covariance matrix could be solved for analytically. This time we do not have to.
Deisenroth (2010) showed that, for the squared exponential covariance function (and also
various other functions) the mean vector and the covariance matrix can be calculated
analytically. We can apply the same ideas in our present setting.
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For our results, we will first define some helpful quantities. When doing so, we should
note that in theory every output fk (x) can have its own covariance function kk (. . .), and
as such its own hyperparameters αk andΛk . (See Section 4.4.1.) Keeping this in mind, we
now define the vectors q k and matrices Qkl element-wise as

qk
i =

∫
X

kk (xui , x∗)p(x∗)d x∗

= α2
k√

|Σ∗x ||Σ−1∗x
+Λ−1

k |
exp

(
−1

2

(
xui − x̂∗

)T (
Λk +Σ∗x

)−1 (
xui − x̂∗

))
, (4.22)

Qkl
i j =

∫
X

kk (xui , x∗)kl (x∗, xu j )p(x∗)d x∗

= α2
kα

2
l√

|Σ∗x ||Σ−1∗x
+Λ−1

k +Λ−1
l |

exp

(
−1

2

(
xui −xu j

)T
(Λk +Λl )−1

(
xui −xu j

))

exp

(
−1

2

(
x̄kl

ui j
− x̂∗

)T ((
Λ−1

k +Λ−1
l

)−1 +Σ∗x

)−1 (
x̄kl

ui j
− x̂∗

))
, (4.23)

where we have defined

x̄kl
ui j

= (
Λ−1

k +Λ−1
l

)−1
(
Λ−1

k xui +Λ−1
l xu j

)
. (4.24)

With these quantities, we can find that

f∗ ∼N (µ∗,Σ∗),[
µ∗

]
k =

(
q k

)T (
K k

uu

)−1
µk

u ,

[Σ∗]k,k =α2
k − tr

((
K k

uu

)−1 (
K k

uu −Σk
u

)(
K k

uu

)−1
Qkk

)
+

(
µk

u

)T (
K k

uu

)−1
Qkk

(
K k

uu

)−1
µk

u − [
µ∗

]2
k ,

[Σ∗]k,l =
(
µk

u

)T (
K k

uu

)−1
Qkl

(
K l

uu

)−1
µl

u − [
µ∗

]
k

[
µ∗

]
l , (4.25)

where the latter expression is for the non-diagonal terms of Σ∗ (with k 6= l ). Note that the
first line of the above expression is in fact an approximation. In reality the distribution f∗
is not Gaussian. The other two lines, however, are the analytic mean vector and covariance
matrix. With these quantities, we can accurately predict the distribution of the output f∗
for stochastic test points x∗.

4.5. EXPERIMENTAL RESULTS
In this section we apply the developed algorithm to test problems and compare its per-
formance to existing state of the art solutions. First we apply the basic SONIG algorithm
(Algorithm 1) to approximate a sample function, allowing us to compare its performance
to other regression algorithms. The results of this are discussed in Section 4.5.1. Then
we apply the SONIG algorithm with all the extensions from Section 4.4 (Algorithm 2)
to identify a magneto-rheological fluid damper, the outcome of which is reported in
Section 4.5.2. All code for these examples, as well as for using the SONIG algorithm in
general, is available on GitHub, see Bijl (2016).
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Input:
A set of inputs u1,u2, . . . and outputs y1, y2, . . . of a system that is to be identified.
Both the input and the output can be disturbed by noise.

Preparation:
Define hyperparameters, either through the NIGP algorithm or by using expert
knowledge about the system. Optionally, also define an initial set of inducing
input points Xu .

Updating:
while there are unprocessed measurements yk+1 do

1. Set up xk+1 (shortened to x+) using its definition in (4.1). Find its prior
distribution using known covariances between system outputs
yk , . . . , yk−(ny−1) and (if necessary) system inputs uk , . . . ,uk−(nu−1). Also find
the prior distribution of the function output yk+1 (denoted as fk+1 or
shortened as f+).
2. Apply (4.15) to find the posterior distribution N

(
x̂k+1+ ,Σk+1+x

)
of x+.

Optionally, use this to update the posterior distribution of the system
outputs yk , . . . , yk−(ny−1) and system inputs uk , . . . ,uk−(nu−1).

3. Optionally, if x̂k+1+ is far removed from any inducing input point, add it to
the set of inducing inputs Xu using (4.20). (Or rearrange/tune the inducing
input points in any desired way.)
4. Calculate the posterior distribution of the inducing input vector fu for
each of the outputs ofφ using (4.17).
5. Calculate the posterior distribution of yk+1 using (4.18). Additionally,
calculate the covariances between yk+1 and each of the previous system
outputs yk , . . . , yk−(ny−1) and inputs uk , . . . ,uk−(nu−1) through (4.19).

end
Prediction:

For any deterministic set of previous outputs yk , . . . , yk−(ny−1) and inputs
uk , . . . ,uk−(nu−1), apply (4.7) to predict the next output yk+1. For stochastic
parameters, use the expansion from Section 4.4.5.

Algorithm 2: The steps required to identify nonlinear systems with measurement noise
in an online way using the SONIG method.
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4.5.1. TESTING THE SONIG ALGORITHM THROUGH A SAMPLE FUNCTION

To compare the SONIG algorithm with other algorithms, we have set up a basic single-
input single-output GP experiment. First, we randomly generate a sample function from a
Gaussian process with a squared exponential covariance function (see (4.4)). This is done
on the range x ∈ [−5,5], subject to the hyperparameters α= 1 and Λ= 1. Subsequently,
we take n training points at random places in the input range and distort both the input x
and the output y with zero-mean Gaussian white noise with standard deviation σx = 0.4
and σn = 0.1, respectively. We use n = 200 unless mentioned otherwise. To this data set,
we then apply the following algorithms.

(1) GP regression without any input noise and with the exact hyperparameters, given
above. This serves as a reference case: all other algorithms get noisy input points and
tuned hyperparameters.

(2) GP regression with input noise and with hyperparameters tuned through the maximum-
likelihood method.

(3) The NIGP algorithm of McHutchon and Rasmussen (2011). This algorithm has its own
method of tuning hyperparameters, including σx .

(4) The SONIG algorithm, starting with µ0
u = mu and Σ0

uu = Kuu , using the hyperparame-
ters given by (3). We use nu = 21 evenly distributed inducing input points.

(5) The same as (4), but now with more training points (800 instead of 200). Because
the SONIG algorithm is computationally more efficient than the NIGP algorithm, the
runtime of this is similar to that of (3), being roughly 2-3 seconds when using Matlab,
although this of course does depend on the exact implementation of the algorithms.

(6) NIGP applied on a subset of data (100 training points) to predict the distribution of
the inducing input points, followed by the SONIG algorithm applied to the remainder
(700) of the training set, further updating the inducing input points. The runtime of
this approach is again similar to that of (3), being 2-3 seconds.

(7) The FITC algorithm, using the hyperparameters of (2). This serves as a reference case.

For all these algorithms, we examine both the Mean Squared Error (MSE) of the
resulting prediction and the mean variance given by the regression algorithm. The latter
is basically the estimate by the regression algorithm of the MSE. By comparing it with the
real MSE, we learn about the integrity of the algorithm. As such, the ratio between these
two is an indication of the algorithm integrity. We do this whole process 400 times, each
time for a different randomly generated sample function from the Gaussian process. The
average of the results is subsequently shown in Table 4.1.

There are many things that can be noticed from Table 4.1. First of all, it is that for the
given type of functions, and for an equal number of training points, the SONIG algorithm
performs better than the NIGP algorithm. This is surprising, because the SONIG algorithm
can be seen as a computationally efficient approximation of the NIGP algorithm. Further
experiments have shown that this is mostly because the SONIG term takes into account
the second derivative of the mean in its approximation; see µn+1

ui
from (4.17). The NIGP

algorithm does not, and if SONIG also does not (detailed experiment results not included
here for sake of brevity) the performance of the two algorithms is comparable.
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Table 4.1: Comparison of various GP regression algorithms, applied to noisy measurements of 400 randomly
generated sample functions. For details, see the main text.

n MSE Mean variance Ratio

(1) GPR with exact hyperparameters and no input noise 200 0.87 ·10−3 0.85 ·10−3 1.02

(2) GPR with tuned hyperparameters 200 28.0 ·10−3 8.3 ·10−3 3.4

(3) NIGP with its own hyperparameter tuning 200 26.2 ·10−3 5.6 ·10−3 4.7

(4) SONIG using the hyperparameters of (3) 200 21.5 ·10−3 8.1 ·10−3 2.7

(5) SONIG using the hyperparameters of (3) 800 12.5 ·10−3 2.2 ·10−3 5.6

(6) NIGP on a subset, followed by SONIG on the rest 100/700 16.5 ·10−3 2.3 ·10−3 7.1

(7) FITC, using the hyperparameters of (2) 800 19.5 ·10−3 2.7 ·10−3 7.1

A second thing that can be noticed is that more training points provide a higher
accuracy. In particular, even the FITC algorithm (which does not take input noise into
account) with 800 training points performs better than the NIGP or SONIG algorithms
with 200 training points. It should be noted here that part of the reason is the type of
function used: for functions with a steeper slope, it is expected that the NIGP and SONIG
algorithms still perform better than FITC.

Finally, it is interesting to note that all algorithms, with the exception of regular
GP regression with the exact hyperparameters, are much more optimistic about their
predictions than is reasonable. That is, the ratio between the MSE and the mean variance
is way larger than the value of 1 which it should have. Ideally, the predicted variance of all
algorithms would be significantly higher.

Next, we will look at some plots. To be precise, we will examine algorithms (3) and
(4) closer, but subject to only n = 30 training points and nu = 11 inducing input points.
The predictions of the two algorithms, for a single random sample function, are shown in
Figure 4.1.

The most important thing that can be noticed here is that (for both methods) the pos-
terior standard deviation varies with the slope of the to-be-approximated function. When
the input is near −2, and the function is nearly flat, the standard deviation is small (well
below 0.1). However, when the input is near −3 or −1/2, the standard deviation is larger
(near 0.2). This is what can be expected, because measurements in these steep regions
are much more affected/distorted by the noise, and hence provide less information.

A second thing to be noticed is the difference between the two methods. Especially
for x > 2, where there are relatively few training points, the SONIG algorithm gives much
higher variances. There are two reasons for this. The first is inherent to sparse algorithms.
(The FITC algorithm would show a similar trend.) The second reason is inherent to the
SONIG algorithm. Whereas regular GP regression (and similarly the NIGP algorithm) uses
all training points together, the SONIG algorithm only uses data from previous training
points while incorporating a new training point. As a result, when there are relatively
few measurements in a certain region, and many of these measurements appear early
in the updating process, the accuracy in that region can be expected to be slightly lower.
However, as more training points are incorporated, which can be done very efficiently,
the problem will quickly disappear.
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Figure 4.1: Predictions of the NIGP algorithm (left) and the SONIG algorithm (right) after n = 30 training points
have been incorporated. Exact conditions are described in the main text.

4.5.2. IDENTIFYING THE DYNAMICS OF A FLUID DAMPER
In the next experiment we will apply the developed system identification algorithm (Al-
gorithm 2) to a practical problem. In particular, we model the dynamical behavior of a
magneto-rheological fluid damper. The measured data for this example was provided
by Wang et al. (2009) and supplied through The MathWorks Inc. (2015), which also dis-
cusses various system identification examples using the techniques from Ljung (1999).
This example is a common benchmark in system identification applications. It has for
instance been used more recently in the context of Gaussian Process State Space Models
(GP-SSM) by Svensson and Schön (2017) in their Reduced Rank GP-SSM (RR GP-SSM)
algorithm.

This example has 3499 measurements provided, sampled every ∆t = 0.05 seconds.
We will use the first 2000 measurements (10 seconds) for training and the next 1499
measurements (7.5 seconds) for evaluation. The MathWorks Inc. (2015) recommended to
use one past output and three past inputs to predict subsequent outputs. Based on this,
we learn a black-box model of the following functional form

yk+1 =φ(yk ,uk ,uk−1,uk−2). (4.26)

Hyperparameters were tuned by passing a subset of the data to the NIGP algorithm.
Rounded off for simplicity (which did not affect performance) they equaled

Λ= diag
(
702,202,102,102) , α2 = 702,

Σ+x = diag
(
22,0.12,0.12,0.12) , Σ+ f = 22. (4.27)

After processing a measurement yk+1, the SONIG algorithm provided us with a posterior
distribution of yk+1, yk , uk , uk−1 and uk−2. The marginal posterior distribution of yk+1, uk

and uk−1 was then used as prior distribution while incorporating the next measurement.
Inducing input points were added online, as specified in Section 4.4.4, which eventually
gave us 32 inducing input points. This is a low number, and as a result, the whole training
was done in only a few (roughly 10) seconds.
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After all training measurements had been used, the SONIG algorithm was given the
input data for the remaining 1499 measurements, but not the output data. It had to
predict this output data by itself, using each prediction yk to predict the subsequent yk+1.
While doing so, the algorithm also calculated the variance of each prediction yk , taking
this into account while predicting the next output using the techniques from Section 4.4.5.
The resulting predictions can be seen in Figure 4.2.

A comparison of the algorithm with various other methods is shown in Table 4.2.
We also added in regular GP regression and NIGP, applied to the ARX model (4.1), as
comparison. This table shows that the SONIG algorithm, when applied in its system
identification set-up, can clearly outperform other black-box modeling approaches. It
is better than regular GP regression at taking into account uncertainties and better than
NIGP mainly due to the reasons explained before. It should be noted here, however,
that this is all subject to the proper tuning of hyperparameters and the proper choice of
inducing input points. With different hyperparameters or inducing input point selection
strategies, the performance of the SONIG algorithm will degrade slightly, though it is still
likely to outperform other identification algorithms.

Figure 4.2: Prediction of the output of the magneto-rheological fluid damper by the SONIG algorithm, compared
to the real output. The grey area represents the 95% uncertainty region as given by the algorithm. It shows that
in the transition regions (like near t = 2s) which the algorithm is less well trained on, the uncertainty is larger.
As comparison, also the best non-linear ARX model predictions from The MathWorks Inc. (2015) are plotted. It
is interesting to note that this model makes very similar errors as the SONIG algorithm, indicating the errors are
mostly caused by distortions in the training/evaluation data.
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Table 4.2: Comparison of various system identification models and algorithms when applied to data from
the magneto-rheological fluid damper. All algorithms were given 2000 measurements for training and 1499
measurements for evaluation.

Algorithm RMSE Source

Linear OE model (4th order) 27.1 The MathWorks Inc. (2015)

Hammerstein-Wiener (4th order) 27.0 The MathWorks Inc. (2015)

NLARX (3rd order, wavelet network) 24.5 The MathWorks Inc. (2015)

NLARX (3rd order, tree partition) 19.3 The MathWorks Inc. (2015)

NIGP 10.2 This thesis

GP regression (GP-ARX) 9.87 This thesis

NLARX (3rd order, sigmoid network) 8.24 The MathWorks Inc. (2015)

RR GP-SSM 8.17 Svensson et al. (2016)

SONIG 7.12 This thesis

4.5.3. NOISY STATE MEASUREMENTS OF THE PITCH-PLUNGE SYSTEM
After this benchmark test, we can apply the SONIG algorithm to a wind turbine application.
We will consider the pitch-plunge system shown in Figure 4.3. This system has been
modeled by O’Neil and Strganac (1996), O’Neil et al. (1996). The specific purpose of
creating this model was to research nonlinear aeroelastic behavior of wings, which is
exactly what also takes place in wind turbines. Subsequently, a basic analysis of the
stability characteristics and control possibilities has been performed in Ko et al. (1997),
O’Neil and Strganac (1998), Ko et al. (1998). More advanced applications of this model
can be found in Lind and Baldelli (2005), van Wingerden (2008).

Figure 4.3: An airfoil with a trailing-edge flap. The exact system set-up is explained in the main text.

The system consists of an airfoil which is placed in an airflow with velocity U . The
airfoil can plunge as well as pitch. The plunge is indicated by the height h, where down-
wards is positive, and the pitch is described by the angle of attack with respect to the free
flow α. The blade is constrained by two springs: a vertical spring with spring constant kh

and a rotational spring with varying spring ‘constant’

kα(α) = kα
(
1+kα1α

1 +kα2α
2 +kα3α

3 +kα4α
4) . (4.28)

This causes the system to be nonlinear. If we define x = [
h α

]T
, then the equations of
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motion are given by

M ẍ + (C +U E) ẋ + (K (x)+U 2D)x =U 2Fβ. (4.29)

The matrices M , K (x), C , D , E and F equal

M =
[

m mxαb
mxαb Iα

]
, D =

[
0 ρbcLα
0 −ρb2cmα

]
, (4.30)

K (x) =
[

kh 0
0 kα(α)

]
, E =

[
ρbcLα ρb2cLα

( 1
2 −a

)
−ρb2cmα −ρb3cmα

( 1
2 −a

)] ,

C =
[

ch 0
0 cα

]
, F =

[−ρU 2bcLβ
ρU 2b2cmβ

]
.

The values of all parameters can be found in Table 4.3.

Table 4.3: Numerical values of the parameters of the pitch-plunge system.

Lengths Inertia Aerodynamics Springs (linear) Springs (nonlinear)

c =0.270m m=12.387 kg cLα =6.28 kh =2844.4 N/m kα1 =−22.1 rad−1

b=0.135m ICG =0.051 kgm2 cLβ =3.358 kα=2.82 Nm/rad kα2 =1315.5 rad−2

a=−0.6 Iα=0.065 kgm2 cmα =−0.628 ch =27.43 Ns/m kα3 =−8580 rad−3

xα=0.2466 ρ=1.225 kg/m3 cmβ
=−0.635 cα=0.180 Nms/rad kα4 =17289.7 rad−4

To this model, we will apply our system identification algorithm. Note that our system
has four states: h, α, ḣ and α̇. Or alternatively, the state consists of x and ẋ . There is also
one input, being β. To identify the system, we will discretize it with time step ∆t = 0.1s.
We can now approximate the system as

xk+1 ≈ f (xk , xk−1,βk ). (4.31)

This is the function that we will strive to approximate using the SONIG algorithm.
To get any data about the system, we need to excite it. For this we use a sinusoidal

input signal β(t ) = A sin(2π f t ), with amplitude A = 0.5rad and frequency f = 0.4Hz. To
make it a bit more challenging, we also add a disturbance to the input signal randomly
taken from the uniform interval [−0.06,0.06]. The resulting input signal for the first ten
seconds is shown in Figure 4.4.

You may argue here that only identifying the dynamical behavior of the system at one
input frequency is a bit too easy. In fact, to properly identify a system, you generally need
to excite it at a sufficient number of different frequencies. Only then can you identify
all the different dynamics that may be present in the system. That is also the case here.
We mainly pick one frequency for reasons of simplicity: it is easier to understand what
is going on during the learning process, and the reduced training time makes it easier
to play around with the algorithm. Naturally it is also possible to introduce more input
frequencies, but this will increase the training time required for the SONIG algorithm to
figure out sufficiently well what is going on.
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Figure 4.4: The first ten seconds of input β(t) provided to the pitch-plunge system during its identification
through the SONIG algorithm. It is a sinusoid with distortions added for extra excitations.

For the given input signal we run a simulation. This results in the state development
shown in Figure 4.5. This development already looks rather shaky. To make things harder
for our prediction algorithm, we will also add noise to these state values. Specifically, we
use Gaussian white noise with standard deviations of σh = 10−4m and σα = 6 ·10−4rad.

After the SONIG algorithm has been trained on the first fifty seconds of measurements,
it has only 27 inducing input points. With these inducing input points, we can make the
predictions shown in Figure 4.6. For these predictions, only the state x at time t = 50s
was given as well as the input β at any subsequent time.

In Figure 4.6 it is worthwhile to note that the variances of the estimates increase as
time passes. This makes sense. The further we go into the future, the more uncertain our
predictions become. What is more interesting is that, at some point, the uncertainties
just explode. At this point the algorithm basically tells us it does not have a clue anymore
what the state is likely to be.

The position of this big increase in variance depends on many factors. If the SONIG
algorithm gets more training data, then it becomes more certain about its predictions, so
this ‘uncertainty explosion’ takes place later. But if the input noise would become larger,
then the uncertainty increases and the jump happens sooner. Predicting in advance when
this variance increase takes place seems to be nearly impossible though. It depends on
too many factors.

After the big increase in the prediction variance, also the mean of the estimates is not
always sensible anymore, especially when predicting α. But this does raise the question,
‘What would have happened if that jump in variance had not occurred? Would the
mean of the estimates be more sensible then?’ We can figure this out if we manually
toggle down the variance. For example, we can manually tell the SONIG algorithm to
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Figure 4.5: The state development of the pitch-plunge system. The first fifty seconds are used for training and
the remaining ten seconds for validation. Measurements were taken at a wind speed of U = 10m/s.

Figure 4.6: The prediction of the state development of the pitch-plunge system for the final ten seconds. The
blue (lighter) line is the mean of the prediction, with the dark area indicating once the standard deviation and
the light area denoting twice the standard deviation. The black (darker) line is the true value. The uncertainty in
the predictions grows as we predict states further into the future. Eventually the algorithm gives a very high
variance, which is its way of saying it is unsure about what will happen. Its estimates may be correct (like in the
left plot) or incorrect (like in the right plot).
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Figure 4.7: The prediction of the state development of the pitch-plunge system for the final ten seconds, when
the SONIG algorithm is told to reduce the variance of its estimates by 5% after every time step.

reduce the variance of the state predictions by 5% after every time step. This seems like a
rather arbitrary thing to do, but it does provide us with more accurate results, shown in
Figure 4.7. So apparently it can sometimes be worthwhile to manually adjust the variance
of predictions made by the SONIG algorithm.

From this experiment we can conclude that the SONIG algorithm is capable of iden-
tifying nonlinear systems with multiple states that are subject to measurement noise.
Further research can look into what exactly the limits of the SONIG algorithm are. Can
the SONIG algorithm also identify more complicated systems?

This is actually a very subjective question. I believe that, if plenty of measurements and
computational resources are available, and if sufficient time is spent on properly tuning
the hyperparameters, then pretty much any system can be identified through the SONIG
algorithm. So the main question is not what the SONIG algorithm is capable of doing, but
how easy it is to apply, especially when time, measurements and computational resources
are limited. And that strongly depends on the background of the person applying the
SONIG algorithm.

4.6. CONCLUSIONS AND RECOMMENDATIONS
We can conclude that the presented SONIG algorithm works as intended. Just like the FITC
algorithm that it expands on, it is mainly effective when there are more measurements
than the NIGP algorithm (or regular GP regression) can handle. The SONIG algorithm can
then include the additional measurements very efficiently—incorporating each training
point in constant runtime—resulting in a higher accuracy than what the NIGP algorithm
could have achieved. However, even when this is not the case, the SONIG algorithm has
on average a better performance than the NIGP algorithm, though it still needs the NIGP
algorithm for hyperparameter tuning.

Though the SONIG algorithm can be used for any type of regression problem, it has
been successfully applied, in its system identification set-up, to a non-linear black-box
system identification problem. With the proper choice of hyperparameters and inducing
input points, it outperformed existing state-of-the-art non-linear system identification
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algorithms.
Nevertheless, there are still many improvements that can be made to the SONIG

algorithm. For instance, to improve the accuracy of the algorithm, we can look at reducing
some of the approximating assumptions, like the linearization assumption (4.14) or the
assumption that higher order terms of Σ+x are negligible. Since the second derivative of
µn+1

ui
from (4.17) already plays an important role, it is interesting to find what the effect

would be of incorporating Σ2+x
.

Another way to improve the accuracy of the algorithm is to increase the number
of inducing input points, but this will slow the algorithm down. To compensate, we
could look into updating only the few nearest inducing input points (with the highest
covariance) when incorporating a new training point. Experience has shown that updates
hardly affect inducing inputs far away from the training point (with a low covariance) so
this could lead to more efficient updates.

A final possible improvement would concern the addition of a smoothing step in the
algorithm. Currently, early measurements are used to provide more accuracy for later
measurements, but not vice versa. If we also walk back through the measurements, like in
a smoothing algorithm, a higher accuracy might again be obtained.



5
FIXED-STRUCTURE CONTROLLER

SYNTHESIS THROUGH

REINFORCEMENT LEARNING

Abstract — In industrial applications like wind turbines, fixed-structure controllers are
often desired. But for systems with large uncertainties, or for systems with mostly unknown
system dynamics, it is often unclear as to how to choose the controller parameters. In this
chapter we set up an algorithm that chooses the parameters of such a controller using only a
limited amount of system interaction data. The algorithm applies Gaussian process tools to
a reinforcement learning problem set-up to derive an approximation of the value function.
This approximation is expressed in the system state and in the controller parameters.
Then, by assuming a distribution of the initial state of the system, the value function
approximation is expressed only as a function of the controller parameters. By subsequently
optimizing this value function approximation, the optimal controller parameters with
respect to the value function approximation can be found. The effectiveness of the proposed
methodology has been shown in a simulation study.

A wind turbine is fundamentally a nonlinear system with large uncertainties. We consider
such a system

ż(t ) = f (z(t ),u(t )), (5.1)

where z is the state vector and u is the input vector. (We use z instead of the more
customary x because later on we will use x as input for Gaussian process regression.) In
addition, we assume that we have a fixed-structure control law

u(t ) =C (z(t ),θ), (5.2)

with θ a constant vector (i.e., not dependent on the time or the state) of to-be-determined
controller parameters.
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In this chapter we assume that it is possible to exactly measure the state z , while
the system f is unknown. That is, we may have some model f̄ such that ż ≈ f̄ (z ,u),
but this model differs from the true state transition function due to inaccuracies in
modeling, manufacturing inaccuracies, external influences like temperature, aging effects
like wear, and other reasons. The main question is how we can directly tune the controller
parameters θ, optimizing a given value function.

The contents of this chapter have been published in Bijl et al. (2014). The chapter
starts with a literature study (Section 5.1) broadly looking into methods of how to tackle
the problem. Section 5.2 discusses the theory behind the proposed algorithm. Once
the theory is in place, section 5.3 gives an overview of the algorithm. In section 5.4
an application of the algorithm is described. Section 5.5 closes off the chapter with
conclusions and a discussion of the strengths and weaknesses of the presented algorithm.

5.1. LITERATURE OVERVIEW
We first study general methods of dealing with uncertainties (Section 5.1.1) and then
focus on literature combining Gaussian process regression with reinforcement learning
(Section 5.1.2).

5.1.1. METHODS TO DEAL WITH UNCERTAINTIES

A conventional way of dealing with uncertainties is through robust control, as described
by Skogestad and Postlethwaite (2005). In this case hard bounds on the uncertainties
are assumed to be known. Subsequently a controller is designed that is guaranteed to
have a certain performance level for any possible system f within these bounds. This
works well if the uncertainties are relatively small. However, if the possible differences
between the model f̄ and the system f become big, creating a controller that has sufficient
performance for all possible systems f̄ is not always possible.

A different way to tackle this problem is by using system measurements. Subsequently,
it is possible to apply System Identification (SI) methods, as described by Verhaegen
and Verdult (2007), to develop a system model. This model is then used to develop a
controller. For linear systems, the theory on system identification is very well developed.
For nonlinear systems, this is less so. In this case it generally requires a lot of system data
before a model with sufficient accuracy is obtained. For industrial applications, obtaining
a sufficient amount of system data is not always possible, mainly due to financial reasons.
And if there is an insufficient amount of data, the identified system model will have
relatively large uncertainties. Next to this, applying SI with a small data set is likely to
result in model bias, as argued by Deisenroth and Rasmussen (2011). So in this case it
may be beneficial to skip the SI step altogether.

Not using a system model at all is something that is often done in Reinforcement
Learning (RL) applications. (See the work by Sutton and Barto (1998) for background
theory on RL.) For instance, in Q-learning by Watkins (1989) the RL algorithm directly
learns the Q-value of applying a certain input u (or action a) in a certain state z (or
s). From this, the optimal input u can be obtained. The problem with the Q-learning
algorithm and most other reinforcement learning algorithms, is that they are traditionally
designed for discrete-time systems with discrete state and action spaces.
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There are many RL algorithms that expand on this. For instance, Bertsekas and Tsit-
siklis (1996) describe algorithms that can be applied to systems with continuous state
and action spaces. They use various types of function approximators to deal with the
continuous states and actions in the (discrete-time) systems. When the value function is
approximated by a linear combination of basis functions, then the algorithm generally
works well. Most such algorithms have proven convergence and result in a reasonable
approximation of the value function, despite the limitations of the linear function ap-
proximator. Vrabie et al. (2013) describe an algorithm that expands these methods to the
continuous time domain, but this algorithm requires the system dynamics to be affine in
the input.

Another challenge is that RL often has the drawback of being data-inefficient. That is,
RL algorithms require a large number of trials to learn a particular task. For many indus-
trial problems in which system data is expensive to obtain, RL algorithms are therefore
not suitable. An exception to this rule occurs when the tools used to model Gaussian
Processes (GP) are implemented. These GP tools can be applied as function approximator,
and because they take into account the uncertainties of their approximations and cleverly
incorporate prior knowledge, they are generally known for their efficient use of input
data.

5.1.2. COMBINATIONS OF RL AND GP IN LITERATURE

Reinforcement learning and Gaussian processes have not been combined often in litera-
ture. Dearden et al. (1998) did approximate a Q-function by using probability distributions
for the Q-values. However, their algorithm worked for discrete state and action spaces, so
no Gaussian process tools had to be used.

The first significant instance of applying GP to RL problems was by Rasmussen and
Kuss (2004). Though promising, the proposed algorithm applies system identification
through GP, in which every state parameter is independently modeled by a separate GP.
This results in a highly computationally intensive algorithm. Next to that, the algorithm
requires a significant number of maximizations of a Gaussian process during each policy
iteration, which is also computationally problematic. This strongly limits the practical
applicability of the algorithm.

Another combination of GP and RL was by Engel et al. (2005). In their article the
authors come up with a method of determining the value function that is very similar to
the way that we will propose here. However, they have not looked at an efficient method of
selecting an action. Their suggestion is maximizing the Gaussian process value function
with respect to the input u at each time step. This comes down to solving a nonlinear
optimization problem at each time step, which is likely to be infeasible in practice.

Probably the most promising combination of GP and RL is by Deisenroth and Ras-
mussen (2011). Their PILCO algorithm (Probabilistic Inference for Learning Control)
uses Gaussian processes to learn a system model, instead of a value function. Because of
this, PILCO is very suitable for higher-dimensional problems, more so than the algorithm
presented in this chapter. However, PILCO only works for specific types of fixed-structure
controllers, which is a limitation. The algorithm presented in this chapter is able to tune
controller parameters for any fixed-structure state controller C (z ,θ).
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5.2. UNDERLYING THEORY
In this section we examine how to apply Gaussian processes to reinforcement learning
problems. In subsection 5.2.1 we present the problem from a reinforcement learning
perspective. We briefly introduce Gaussian process tools in subsection 5.2.2 and apply
them to our problem set-up in subsection 5.2.3. Finally, in subsection 5.2.4, we examine
how we can use our data to select controller parameters.

5.2.1. REINFORCEMENT LEARNING SET-UP
To be able to judge the effectiveness of certain controller parameters θ, we need an
optimality criterion. In reinforcement learning applications, a common choice is the
value function V , describing the value of a certain state z(t ) with respect to a given control
law. It does this according to

V (z(t ),θ) =
∫ ∞

t γτ−t r (z(τ),C (z(τ),θ))dτ∫ ∞
t γτ−t dτ

= (− log(γ))
∫ ∞

t
γτ−t r (z(τ),C (z(τ),θ))dτ, (5.3)

where γ< 1 is a constant discount factor and r is a reward function chosen to encourage
certain types of behavior. In the above relation, we have decided to divide by the (constant)
sum of the discount factors. This has (among others) the benefit that it will shorten some
of the subsequent equations.

Suppose now that a trial time step is performed. This experiment starts in state z(t ),
lasts T seconds (with T usually small) and puts the system in state z(t +T ). In this case
the expression for the value function can be rewritten to

V (z(t ),θ) = (− log(γ))
∫ t+T

t
γτ−t r (z(τ),C (z(τ),θ))dτ+γT V (z(t +T ),θ). (5.4)

Note that T in the term γT is not a transpose but an exponent. After all, γ is a scalar.
The above integral is usually not analytically solvable. In such a case it is often easier

to approximate the (varying) reward by a constant (mean) reward r̄ throughout the trial
time step T . As long as we take T to be small, such an approximation can be justified.
(The definition of ‘small’ naturally depends on the time constants of the system involved.)
The above equation then reduces to

V (z(t ),θ) = (1−γT )r̄ (z(t ),C (z(t ),θ))+γT V (z(t +T ),θ). (5.5)

This recursive relation, akin to the Bellman equation, will prove to be useful when Gaus-
sian process tools will be implemented.

5.2.2. THE NOTATION USED FOR GAUSSIAN PROCESS REGRESSION
In literature on reinforcement learning, it is customary to use a function approximator
to approximate the value function. We will do something similar here. We will assume
that the value function V is a Gaussian process, and consequentially approximate it using
the tools developed to describe Gaussian processes. An important advantage of using
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Gaussian processes is that we do not only get an estimate of the value function V , but
also of the uncertainty (i.e. the variance) of our approximation.

Let us briefly look at the notation that we use for Gaussian process regression. It is the
same notation as used by Rasmussen and Williams (2006). When we work with Gaussian
processes, we usually do measurements y of a function h(x), with x the (vector) input and
y the scalar output. (We use a function h(x) instead of the customary f (x), because we
already use f for the state transition function.) We assume that these measurements are
corrupted by white noise with intensity σ2

n . We can assemble all n sets of measurement
data (x , y) into a matrix X and a vector y like

X = [
x1 · · · xn

]
and y = [

y1 · · · yn
]T

. (5.6)

In the above definition, the indices indicate the measurement number. Subsequently, we
define a prior mean function m(x) and a prior covariance function k(x , x ′) for the output
values of the function h, where x and x ′ can be any inputs to h. Customary functions are
the zero mean function m(x) = 0 and the squared exponential covariance function

k(x , x ′) =λ2
f exp

(
−1

2
(x −x ′)TΛ−1(x −x ′)

)
, (5.7)

withΛ a diagonal matrix of (squared) length scales.
Now examine a point x∗ for which we want to estimate h(x∗), or alternatively the

corresponding (noise-corrupted) measurement y∗. From our assumptions it follows that[
y

y∗

]
∼N

([
m(X )
m(x∗)

]
,

[
k(X , X ) k(X , x∗)
k(x∗, X ) k(x∗, x∗).

]
+σ2

n I

)
, (5.8)

with N (., .) denoting a multivariate Gaussian distribution. If we use the fact that the
measurements y are known, then we can derive a distribution for y∗. Denoting k(X , X ) =
K , k(X , x∗) = K∗ and k(x∗, x∗) = K∗∗, we get

y∗|y ∼N
(
m(z∗)+K T

∗ (K +σ2
n I )−1(y −m(X )),K∗∗−K T

∗ (K +σ2
n I )−1K∗+σ2

n I
)

. (5.9)

5.2.3. APPLYING GAUSSIAN PROCESSES TO REINFORCEMENT LEARNING
Equation (5.9) is a familiar equation in the field of Gaussian process regression. However,
it cannot be directly applied to reinforcement learning problems. This is because in RL
we do not get (noisy) measurements of the value function V (x ,θ). Instead, at every trial
time step we find a relation between points in the value function. We can rewrite such a
relation, equation (5.5), to[

1 −γT ][
V (z i ,θ)
V (z f ,θ)

]
= [

(1−γT )r̄
]

, (5.10)

where, for the sake of compactness of notation, we have shortened the initial state z(t ) to
z i , the final state z(t +T ) to x f , and we have dropped the brackets after r̄ . If we do an
additional trial time step, then the above turns into

[
1 −γT1 0 0
0 0 1 −γT2

]
V (z i

1,θ1)

V (z f
1 ,θ1)

V (z i
2,θ2)

V (z f
2 ,θ2)

=
[

(1−γT1 )r̄1

(1−γT2 )r̄2

]
, (5.11)
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where the index denotes the trial number. In this way, we can expand the above equation
for any number of trial time steps, even when these trials have different durations T .

Next, we can write the above relation as MV = r̄ , with M , V and r̄ defined accord-
ingly. Subsequently, given that MV = r̄ , we can use Theorem 5.1 to find the posterior
distribution of V .

Theorem 5.1. Consider a random variable V ∼N (0,K ). If it is known that MV = r̂ , with
M of full row rank, and if we have obtained a noisy measurement r̄ of r̂ , distorted by
zero-mean Gaussian white noise with covariance Σn , then

V |r̄ ∼N (K M T (MK M T +Σn)−1r̄ ,K −K M T (MK M T +Σn)−1MK ). (5.12)

Proof. This can be proven through (5.9). The proof is based on a coordinate transforma-
tion of V . We define [

V ′
a

V ′
b

]
=V ′ = PV =

[
M
N

]
V , (5.13)

with the square matrix P defined as shown above. Here we choose N such that its rows
span the null space of the rows of M . This ensures that M N T = 0 and P is invertible. In
addition, the rows of N should all have unit length and be orthogonal, giving us N N T = I .

By applying V = P−1V ′, it follows that the relation MV = r̂ reduces to V ′
a = r̂ . That is,

V ′
a is measured, just like in equation (5.9) we had a measurement y . Identically, V ′

b is not

measured, just like y∗ was not measured. Noting that V ′ ∼N (0,PK P T ), we find

[
V ′

a
V ′

b

]
|r̄ ∼N

([
MK M T

(
MK M T +Σn

)−1
r̄

N K M T
(
MK M T +Σn

)−1
r̄

]
,

[
MK M T −MK M T

(
MK M T +Σn

)−1
MK M T

N K M T −N K M T
(
MK M T +Σn

)−1
MK M T

MK N T −MK M T
(
MK M T +Σn

)−1
MK N T

N K N T −N K M T
(
MK M T +Σn

)−1
MK N T

])
=N

(
PK M T (

MK M T +Σn
)−1

r̄ ,PK P T −PK M T (
MK M T +Σn

)−1
MK P T

)
.

(5.14)

Next, by transforming the result back, equation (5.12) is directly obtained.
Note that we have assumed that the mean function m(x) = 0, for the sake of keep-

ing the notation brief. If this is not the case, the mean function m(x) can directly be
incorporated. Also note that (5.12) is actually a generalization of (5.9). (That is, apart
from the assumption that m(x) = 0.) If M = [

I 0
]
, then (5.12) directly reduces back to

equation (5.9).

The above Theorem is a novel way of applying GP regression to linear constraints of func-
tion values for different input points, published about in Bijl et al. (2014). Something very
similar was already done by Engel et al. (2003, 2005), although the above generalization of
GP regression was not noted in that work. Similar things have been set up by Salzmann
and Urtasun (2010), who constrain the different output elements of a multi-output func-
tion for the same input point, and Jidling et al. (2017), where constraints on derivatives
can also be incorporated and built into the covariance function.
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According to the Theorem 5.1, Σn equals the covariance matrix of r̄ . In this chapter we
will use Σn = (1−γT )2σ2

n I , where σ2
n is the variance of the noise present when measuring

the mean reward r̄ . For our application, we can find the matrix K through a covariance
function k(z ,θ, z ′,θ′). In the case where we only have one trial time step, K equals

K =
[

k(z i
1,θ1, z i

1,θ1) k(z i
1,θ1, z f

1 ,θ1)

k(z f
1 ,θ1, z i

1,θ1) k(z f
1 ,θ1, z f

1 ,θ1)

]
. (5.15)

If we have performed n trial time steps, then K expands accordingly to a 2n×2n covariance
matrix.

It is customary to decouple the covariance function k(z ,θ, z ′,θ′) into kz (z , z ′)kθ(θ,θ′).
Subsequently, we can use a squared exponential function for both kz and kθ . This would
result in

k(z ,θ, z ′,θ′) =λ2
f exp

(
−1

2
(z − z ′)TΛ−1(z − z ′)− 1

2
(θ−θ′)TΛ−1

θ (θ−θ′)
)

. (5.16)

Now the framework is in place to give us an estimate of the value V (x∗,θ∗) for some
state z∗ and set of controller parameters θ∗. To get this estimate, we can add V (z∗,θ∗)
to the value vector V , add a corresponding column of zeros to the constraint matrix M
and add a column and row to K . Next, we can apply relation (5.12) to derive the posterior
distribution of V and hence of V (z∗,θ∗). If we do this for multiple points, we can plot
E [V (z ,θ)] with respect to z and/or θ.

It is interesting to note that the computational complexity of this method does not
depend on the size of Z . Instead, it depends on the size of r̄ . After all, the bottleneck in
equation (5.12) is the inversion of the matrix (MK M T +σ2

n I ). This matrix has size n ×n,
with n the number of time steps examined. So the runtime of this algorithm will be O (n3).

5.2.4. DETERMINING THE EXPECTED VALUE OF CONTROLLER PARAMETERS
With the method described previously, it is possible to approximate the value V (z ,θ), as a
function of the state z and a set of controller parameters θ. By maximizing V (z ,θ) with
respect to θ, for a constant z , it is possible to find the optimal set of controller parameters
for each state. That is, as much as is allowed by the accuracy of the approximation of
V (z ,θ).

However, for our problem we cannot let the controller parameters/gains vary with
each state. Instead, a controller with constant gains is required. Choosing the optimal θ
now takes place differently.

Suppose that, from experience, it is known that the prior state z is distributed ac-
cording to p(z). Then the set of optimal controller parameters θopt , that (per definition)
maximizes the expected value, is found through marginalization as

θopt ≡ argmax
θ

∫
Z

V (z ,θ)p(z)d z . (5.17)

Finding an analytic solution for this relation is generally not possible. However, if we use
a squared exponential covariance function like in equation (5.16), and if p(z) also has a
Gaussian distribution – that is, z ∼N (µz ,S) – then the integral in equation (5.17) can be
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solved analytically. The mathematics behind this are explained by Girard et al. (2003) and
Candela et al. (2003). Application results in

V̄ (θ) ≡ E
[
V (z ,θ)|z ∼N (µz ,S)

]= l T M T (MK M T +σ2
n I )−1r̄ , (5.18)

where the elements li of the column vector l depend both on the current controller
parameters θ and the respective experiment input data (zi ,θi ). To be precise, they are
given by

li = kS (zi ,θi ,µz ,θ)

≡λ2
f exp

(
−1

2
(zi −µz )T (Λ+S)−1(zi −µz )− 1

2
(θi −θ)Λ−1

θ (θi −θ)

) p|Λ|p|Λ+S| . (5.19)

Note that the subscript i now is an index, indicating a relation to the i th element of V
and its corresponding state zi and controller parameters θi . Also note that, for reasons of
notation, the conditioning on r̄ has been omitted.

The function V̄ (θ) is called the approximated controller quality function. This quality
function can subsequently be plotted with respect to the controller parameters θ. Such a
plot can then be used to gain more understanding of how the value of the system varies
with respect to the controller parameters. Additionally, it is possible to use an optimization
method to maximize this function, automatically tuning the controller parameters.

5.3. THE GP CONTROLLER TUNING ALGORITHM
The ideas and theories of the previous section can be assembled into a Gaussian pro-
cess controller tuning algorithm. To automatically tune the controller parameters, the
following steps need to be taken.

• Generate n measurements. Record the initial state x i , the final state x f , the weighted
average reward r̄ , the applied controller parameters θ and the experiment duration T .

• Assemble M and r̄ as shown in equation (5.11) and the matrix K as shown in equa-
tion (5.15).

• Optionally, tuning of hyperparameters like λ f , Λ and Λθ can be done through evi-
dence maximization (also known as relevance determination) as described by Ras-
mussen and Williams (2006) (chapter 5).

• Derive the approximated controller quality function V̄ (θ) through (5.18).

• Optimize V̄ (θ) with respect to θ to find the controller parameters.

The resulting algorithm has a relatively high computational complexity. This is because it
requires inversion of the matrix (MK M T +σ2

n I ), which is of size n ×n. The run-time of
the algorithm hence is O (n3). This makes the algorithm unsuitable for systems in which a
lot of data is available. In such cases conventional system identification algorithms can
be applied, or alternative algorithms like the one presented in Chapter 4. The algorithm
presented here is mainly suitable for nonlinear systems for which a limited data set is
available.
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5.4. APPLICATION IN AN EXPERIMENT
To test the performance of the algorithm, we apply it to a well-known problem: stabilizing
an inverted pendulum.

5.4.1. THE PROBLEM SET-UP
The equation of motion of an inverted pendulum is given by

mr 2α̈+ cα̇−mg sin(α) = u, (5.20)

where m is the mass (1 kg), r is the radius (1 m), α is the angle (in radians) with respect
to the vertical, c is the friction coefficient (0.5 kg m/s), g is the gravitational constant (10
m/s2) and u is the input to the system (in Nm).

The problem to be solved is the maximization of the value function of equation (5.3).
The parameter γ is set to 1/2, and as reward function we will use

r (z ,u) =−1

2

((α
ᾱ

)2
+

(
α̇

¯̇α

)2

+ 1

10

(u

ū

)2
)

. (5.21)

In this equation, ᾱ, ¯̇α and ū are normalizing constants. We define ᾱ as 45 degrees. We then
define ¯̇α= 140 deg/s, which is (approximately) the angular velocity that the pendulum
gets at α = 45◦ when released from a stationary position at α ≈ 0◦. Finally, we define
ū = 5

p
2 Nm, which is the input torque required to keep the pendulum stationary at

α= 45◦. In the reward function above, the first term is present to make the system move
the pendulum to the upright position, making α zero. The second term is to prevent
the system from making excessively violent movements, which are likely to result in an
overshoot. The third term is present to prevent the system from applying excessively large
inputs. Since it is not the priority to strongly limit the input, this term has a lower weight.

For this problem, we assume that (due to external reasons) we are restricted to a
PD controller architecture u =−Kpα−Kd α̇. If the proportional gain Kp is high enough
to overcome the gravitational force, and if the derivative gain Kd is positive (adding
some damping), the inverted pendulum is already stabilized. The question remains
which controller gains maximize the value function. Very aggressive controllers give high
velocities α̇ and inputs u, while very cautious controllers are slow at reducing α.

5.4.2. APPLICATION OF THE CONTROLLER TUNING ALGORITHM
To solve the problem, the algorithm of section 5.3 will be applied. First of all data is
generated. For the given system, a total of n = 200 trial time steps have been run. For
every trial time step, the system was given a random initialization[

α0

α̇0

]
∼N (µz ,S) =N

([
0
0

]
,

[
(ᾱ/2)2 0

0
(

¯̇α/2
)2

])
. (5.22)

Next to this, the design choice was made to let log(Kp ) and log(Kd ) be uniformly dis-
tributed, with log(Kp ) ∈ [5/2,9/2] and log(Kd ) ∈ [3/2,7/2]. Both Kp and Kd were kept
constant during a trial time step.

The duration of each trial time step was 0.1 seconds. For each time step, the initial
state z i and the final state z f was recorded, as well as an estimate r̄ of the average reward
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received during the time step. Also the controller parameters θ = [
Kp Kd

]T
were noted.

Based on this, the matrices M and K and the vector r̄ were set up.
The covariance function used was given in equation (5.16). For this covariance func-

tion, evidence maximization to tune the hyperparameters has been applied, using a
gradient descent method. Of course the exact results varied per algorithm execution,
because random inputs have been used. However, the general trends were the same per
test run. What we will look at here is a single test run that can be seen as an ‘average’ run.
The resulting matricesΛ andΛθ were

Λ=
[

0.68 0
0 35.9

]
and Λθ =

[
3.8 0
0 5.0

]
. (5.23)

After tuning, λ2
f became 0.22 and σ2

n became 2.0 ·10−6. Furthermore, it has been assumed

that the prior mean m(z) of the value function was a constant value µ. This constant µ
has also been tuned and was set to −0.86.

It is interesting to note that, should either Kp or Kd have no influence on the value
function, then the corresponding length parameter inΛθ would increase to infinity during
evidence maximization. Because of this, it is possible to determine which controller
parameters are useful and which ones have less effect. In this case all elements of Λθ
converged to a finite value, so all controller parameters have a significant effect on the
value.

Next, the approximated controller quality function V̄ (θ) was derived through relation
(5.18). When doing this, we assumed that our prior distribution of z was N (µz ,S), with
µz and S as defined in equation (5.22). The resulting approximation is shown in figure 5.1.

Some interesting things can be derived from figure 5.1. First of all, the optimal set of
parameters within the ascribed interval can be obtained. For this test run, V̄ (θ) was at
a maximum for log(Kp ) = 3.61 and log(Kd ) = 2.57. For these two controller parameters
the approximated value was V̄ (θ) =−0.0488. Other experiment runs gave log-gain values
that were on average 0.2 higher or lower, but the estimated value stayed at −0.0488, with
deviations of roughly 10−4.

Secondly, figure 5.1 also shows how well the controller performs for other parameter
combinations. If Kp and Kd are both small, or are both big, then the system will have a
reasonable performance. However, if Kp is large and Kd is small, then the system gets
oscillations, resulting in a low value. Similarly, if Kp is small and Kd is large, then the
system behaves sluggishly, again giving a low value. This is confirmed by figure 5.2, which
shows simulation runs for various values of Kp and Kd .

5.4.3. COMPARISON WITH ANALYTIC RESULTS
To find out more about the accuracy of the algorithm, it is useful to compare it with
analytic results. This is complicated, because the system that we examined was nonlinear.
However, it can be linearized. (In equation (5.20) replace sin(α) by α.) For this linear
system, it is possible to derive the value function V (z ,θ) analytically. Also the expected
value

E [V (z ,θ)|z ∼N (µ,S)] (5.24)

can be derived analytically. Numerically optimizing this with respect to θ gave us the true
optimal parameters for the linear system.
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Figure 5.1: A plot of the approximated value with respect to the controller gains Kp and Kd . The plot was made
based on 200 trial time steps. It is clear that the controller values have an optimum.

Figure 5.2: Simulation runs of the inverted pendulum for various values of Kp and Kd . The system was put in an
initial state of α0 = 30 deg and α̇0 = 0 deg/s. While some controllers are too passive, others are too aggressive,
resulting in oscillations. The optimal controller provides fast convergence without oscillations.
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The results were very similar to what our approximation predicted. The above quantity
was at a maximum when log(Kp ) = 3.58 and log(Kd ) = 2.46. The corresponding value that
was obtained was V (θ) =−0.0489. So, while the exact gains giving the maximum value
are slightly different from what we got from our approximation, this did not significantly
affect the system value.

An interesting question is, ‘What causes the difference between the approximation
given by our algorithm and the analytical results for the linear system?’ To find that out,
the parameter tuning algorithm can also be applied to the linear system. This has been
set up, and the results were not significantly different. This shows that the deviation was
mainly caused by inaccuracies in the approximation, and was not due to linearizing the
system.

5.5. CONCLUSIONS AND DISCUSSION
In this chapter an algorithm has been set up that can tune the parameters of a fixed-
structure controller, when applied to a system. It can be used for any system type and
no model of the system is required. Only a set of system experiment data is needed with
varying states and varying controller parameters. When applied to a test system, the
algorithm proved to be functional and to give accurate results, even when little system
data was available.

The algorithm is computationally quite intensive. The run-time is O (n3), with n the
number of trial time steps. It is therefore not suitable for systems with lots of measure-
ment data. Instead, the algorithm was designed for systems for which a limited amount
of measurement data is available. The algorithm uses this measurement data quite effi-
ciently. In a test case in which two controller gains needed to be tuned, the gains were put
close to the optimum using only 200 random trial time steps.

Other than the run-time, the main downside of the algorithm is that it requires com-
plete knowledge of the state z . This data is required by the covariance function k when
setting up the covariance matrix K . Possibly, the system may also have a reasonable per-
formance when, instead of the state z , some output vector y is passed to the covariance
function k. In this case the controller C would of course also reduce from a state controller
to an output controller. How well such a set-up would work is a possible subject for future
research.

Another very interesting topic for future research would be to enable the algorithm to
apply online learning. Currently, the algorithm takes a set of measurement data and uses
it to tune control parameters offline. When this can be done online, during the operation
of the system, then an extra set of applications opens up. One possibility here would be to
implement the techniques discussed in Section 4. However, these techniques also cannot
directly be applied to time-varying or parameter-varying systems. So this remains an
avenue for further research.
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A SEQUENTIAL MONTE CARLO

APPROACH TO BAYESIAN

OPTIMIZATION

Abstract — Bayesian optimization through Gaussian process regression is an effective
method of optimizing an unknown function for which every measurement is expensive. It
approximates the objective function and then recommends a new measurement point to try
out. This recommendation is usually selected by optimizing a given acquisition function.
After a sufficient number of measurements, a recommendation about the maximum is
made. However, a key realization is that the maximum of a Gaussian process is not a
deterministic point, but a random variable with a distribution of its own. This distribution
cannot be calculated analytically. Our main contribution is an algorithm, inspired by
sequential Monte Carlo samplers, that approximates this maximum distribution. Subse-
quently, by taking samples from this distribution, we enable Thompson sampling to be
applied to (armed-bandit) optimization problems with a continuous input space. All this is
done without requiring the optimization of a nonlinear acquisition function. Experiments
have shown that the resulting optimization method has a competitive performance at
keeping the cumulative regret limited.

Consider the problem of maximizing a continuous nonlinear reward function f (x) (or
equivalently minimizing a cost function) over a compact set X f . Here f (x) could for
instance be the DEL from Section 1.2.4 and X f be the set of possible controller parameters.
In the case where f (x) can be easily evaluated, where derivative data is available and
where the function is convex (or concave), the solution is relatively straightforward, as
is for instance discussed by (Boyd and Vandenberghe, 2004). However, we will consider
the case where convexity and derivative data are not known. In addition, every function
evaluation is expensive and we can only obtain noisy measurements of the function. In
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this case we need a data-driven approach to optimize the function. That is what this
chapter is about.

We open up with Section 6.1, formulating the exact problem and examining what solu-
tions to this problem are available in literature. We then present a new algorithm, inspired
by sequential Monte Carlo methods, that approximates the maximum distribution in Sec-
tion 6.2. We also analyze it and examine how we can use it to apply Thompson sampling.
Experimental results are presented in Section 6.3, with conclusions and recommendations
given in Section 6.4.

6.1. PROBLEM FORMULATION AND LITERATURE OVERVIEW
The main set-up of Bayesian optimization is as follows. We have an unknown continuous
function f (x). For this function, we can try out certain inputs x1, . . . , xn from the compact
set X f . After selecting a so-called trial input xk , we feed it into the function and obtain
a noisy measurement yk = f (xk )+ε, with ε=N

(
0,σ2

n

)
. We then use all measurements

obtained so far to make a Bayesian approximation of the function f (x), based on which
we choose the next trial input xk+1.

In particular, we can approximate f (x) through Gaussian process regression (Ras-
mussen and Williams, 2006). This gives us a mean µ(x) and a standard deviation σ(x) of
our estimate for f (x), which can then be used to determine xk+1. The resulting optimiza-
tion method is also known as Gaussian process optimization.

Bayesian methods like Gaussian process regression are known to efficiently deal
with data, requiring only little data to make relatively accurate approximations. This
makes these techniques suitable for a data-driven approach to problems in which data is
expensive.

The main question is how to choose the trial inputs xk . There are two different
problem set-ups here. In the first, after performing all n measurements, we have to give a
recommendation x̂∗ of what we believe is the true optimum x∗. The difference f ∗− f̂ ∗
between the corresponding function values f ∗ ≡ f (x∗) and f̂ ∗ ≡ f (x̂∗) is known as the
error or the instantaneous regret. As such, this problem set-up is known as the error
minimization set-up or also as the probabilistic global optimization problem. It is useful
in applications like sensor placement (Osborne, 2010) and controller tuning in damage-
free environments (Lizotte et al., 2007, Marco et al., 2016). These are all applications in
which every trial input (every experiment) has the same high set-up cost.

In the second problem set-up, our aim is to maximize the sum of all the rewards
f (x1), . . . , f (xn ), which is known as the value V . Equivalently, we could also minimize the
(cumulative) regret

n∑
k=1

(
f ∗− f (xk )

)= n f ∗−V. (6.1)

This set-up is known as the regret minimization set-up or also as the continuous armed
bandit problem. It is useful in applications like advertisement optimization (Pandey and
Olston, 2007) or controller tuning for damage minimization (see Section 6.3.4). These are
applications where the reward or cost of an experiment actually depends on the result
of the experiment. Early work on this is summarized by Jones et al. (1998). Because we
will look at applications from the latter category, we will focus on the regret minimization
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set-up. However, with the set-ups being similar, we also take error minimization strategies
into account.

6.1.1. EXISTING ERROR MINIMIZATION METHODS

Several Bayesian optimization methods already exist. Good overviews are given by Lizotte
(2008), Brochu et al. (2010), Shahriari et al. (2016), though we will provide a brief summary
here. The recurring theme is that, when selecting the next input xk , we optimize an
Acquisition Function (AF). In literature, the discussion mainly concerns selecting and
tuning an AF.

The first to suggest the Probability of Improvement (PI) acquisition function was
Kushner (1964). This function is defined as PI(x) = P( f (x) ≥ y+), where P(A) denotes
the probability of event A to occur and y+ denotes the highest value of the observation
obtained so far. This was expanded by Torn and Zilinskas (1989), Jones (2001) to the form
PI(x) =P( f (x) ≥ y++ξ), with ξ a tuning parameter trading off between exploration (high
ξ) and exploitation (zero ξ).

Later on, Mockus et al. (1978) suggested an AF which also takes the magnitude of
the potential improvement into account. It is known as the Expected Improvement (EI)
acquisition function EI(x) =E[

max(0, f (x)− y+)
]
. Similar methods were used by others.

For instance, multi-step lookahead was added by Osborne (2010), a trust region to ensure
small changes to the tried inputs xk was used by Park and Law (2015), and an additional
exploration/exploitation parameter ξ similar to the one used in the PI AF was introduced
by Brochu et al. (2010). An analysis was performed by Vazquez and Bect (2010).

Alternatively, Cox and John (1997) suggested the Upper Confidence Bound (UCB)
acquisition function UCB(x) =µ(x)+κσ(x). Here the parameterκ determines the amount
of exploration/exploitation, with high values resulting in more exploration. Often κ= 2
is used. The extreme case of κ= 0 is also known as the Expected Value (EV) acquisition
function EV(x) =µ(x). It applies only exploitation, so it is not very useful by itself. Methods
to determine the value of κ optimizing regret bounds were studied by Srinivas et al. (2012).

A significant shift in focus was made through the introduction of entropy search.
This method was first developed by Villemonteix et al. (2009), although Hennig and
Schuler (2012) independently set up a similar method and introduced the name entropy
search. A more efficient version of this method called predictive entropy search was
developed by Hernández-Lobato et al. (2014). The main idea for both these methods is
to look at the so-called maximum distribution: the probability pmax(x) ≡P(x = x∗) that
a certain point x equals the (unknown) optimum x∗, or for continuous problems the
corresponding probability density. We then focus on the relative entropy (the Kullback-
Leibler divergence) of the maximum distribution compared to the flat probability density
function over X f . Initially this relative entropy is zero, but the more information is gained,
the higher this relative entropy becomes. As such, it is useful to pick the trial point xk

which is expected to increase the relative entropy the most.
At the same time, portfolio methods were developed with the aim to optimally use a

whole assortment (a portfolio) of acquisition functions. These methods were introduced
by Hoffman et al. (2011), using results from Auer et al. (1995), Chaudhuri et al. (2009) and
subsequently expanded on by Shahriari et al. (2014), who suggested to use the change in
entropy as criterion to select recommendations.
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6.1.2. EXISTING REGRET MINIMIZATION METHODS

In the error minimization set-up, the focus is on obtaining as much information as
possible. The regret minimization set-up is more difficult, as it involves a trade-off
between obtaining information and incurring costs (regret). Here, most of the research
has focused on the case where the number of possible inputs x is finite. It is then known
as the armed bandit problem and has been analyzed by for instance Kleinberg (2004),
Grünewälder et al. (2010), de Freitas et al. (2012).

One of the more promising acquisition methods for the armed bandit problem is
Thompson sampling. This method was first suggested by Thompson (1933) and has
more recently been analyzed by Chapelle and Li (2011), Agrawal and Goyal (2012). It
is fundamentally different from other methods, because it does not use an acquisition
function. Instead, we select an input point x as the next trial point xk with probability
equal to the probability that x is the optimal input x∗. This is equivalent to sampling
xk from the maximum distribution pmax(x). Generally this distribution is not known
though. When only finitely many different input points x are possible, the solution is to
consider the vector f ≡ f (X ) of all possible function outputs. Using Bayesian methods,
we approximate f as a random variable, take a sample f̂ from it, find for which input
point x this sample has its maximum, and subsequently use that input x as the next trial
point xk .

This method has proven to work well when the number of input points is finite. When
there are infinitely many possible input points, like in continuous problems, it is impos-
sible to sample from f . This means that a new method to sample from the maximum
distribution pmax(x) is needed. However, in literature this maximum distribution is not
studied much at all. The idea of it was noted (but not evaluated) by Lizotte (2008). The
maximum distribution was calculated by Villemonteix et al. (2009) through a brute force
method. An expansion to this was developed by Hennig and Schuler (2012), who used a
method from Minka (2001) to approximate the minimum distribution. Though the ap-
proximation method used is quite accurate, it has a runtime of O

(
n4

)
, making it infeasible

to apply to most problems. An alternative method was described by Hernández-Lobato
et al. (2014) who approximated function samples of a Gaussian process through a finite
number of basis functions and then optimized these function samples to generate sam-
ples from the maximum distribution. Though effective, this method requires solving a
nonlinear optimization problem for each sample, which is computationally expensive
and subject to the risk of finding only a local optimum.

It is exactly for this reason that a computationally more efficient method of approxi-
mating the maximum distribution, for instance through numerical methods, can be very
useful. So in the upcoming section we look at how such an algorithm can be set up.

6.2. FINDING THE MAXIMUM DISTRIBUTION

This section discusses the set-up of an algorithm to find/approximate the distribution
of the maximum of a Gaussian process. We then apply this algorithm to implement
Thompson sampling.
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6.2.1. A GAUSSIAN PROCESS AND ITS MAXIMUM
Consider a continuous function f (x) on a compact set X f . We assume that we have taken
n measurements yi = f (xi )+ε, where ε∼N

(
0,σ2

n

)
is Gaussian white noise. We merge

all the measurement (training) input points xi into a set X and all the measured output
values yi into a vector y .

Now suppose that we want to predict the (noiseless) function values f∗ = f (X∗) at
a given set of test input points X∗. In this case we can use the GP regression equation
from (Rasmussen and Williams, 2006). We use a mean function m(x) and a covariance
function k(x , x ′), and we shorten m(Xa) to ma and k(Xa , Xb) to Kab for any subscripts a
and b, as usual. (The subscript for the training set is omitted.) We then have

f∗ ∼N
(
µ∗,Σ∗∗

)
, (6.2)

µ∗ = m∗+K T
∗ (K +Σn)−1 (

y −m
)

,

Σ∗∗ = K∗∗−K T
∗ (K +Σn)−1 K∗.

A Gaussian process can be seen as a distribution over functions. That is, we can take
samples of f∗ and plot those as if they are functions, as is for instance done in Figure 6.1
on page 80. These sample functions generally have their maximums at different locations
x∗. This implies that x∗ is a random variable, and hence has a distribution pmax(x). An
example of this is shown in Figure 6.2.

The distribution pmax(x) cannot be analytically calculated, but it can be approximated
through various methods. The most obvious one is through brute force: for a finite
number of test input points X∗, we take a large number of samples f∗, for each of these
samples we find the location of the maximum, and through a histogram we determine the
distribution of x∗. This method is far from ideal as it is computationally very intensive,
even for low-dimensional functions. However, since f (x) is assumed continuous, it is
guaranteed to converge to the true maximum distribution for a sufficient number of
points X∗ and samples f∗.

For larger problems the brute force method is too computationally intensive, moti-
vating the need for a way of approximating the maximum distribution. Methods to do
so already exist, like those used by Hennig and Schuler (2012), Hernández-Lobato et al.
(2014). However, these methods are all also computationally intensive for larger problems,
and so a different way to approximate pmax(x) would be beneficial.

6.2.2. APPROXIMATING THE MAXIMUM DISTRIBUTION
We consider a new algorithm, inspired by Sequential Monte Carlo (SMC) samplers, to
find the maximum distribution pmax(x). Note that the algorithm presented here is not an
actual SMC sampler, but merely uses techniques also found in SMC samplers. For more
background, see Del Moral et al. (2006), Owen (2013).

The main idea is that we have np so-called particles at positions x1, . . . , xnp . Each of
these particles has a corresponding weight w1, . . . , wnp . Eventually these particles are
supposed to converge to the maximum distribution, at which time we can approximate
this distribution through kernel density estimation as

pmax(x) ≈
∑np

i=1 w i kx (x , x i )∑np

i=1 w i
, (6.3)
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with kx (x , x ′) some manually chosen kernel. It is common to make use of a squared
exponential kernel with a small length scale.

Initially we distribute these particles x i at random positions across the input space.
That is, we sample the particles x i from the flat distribution q(x) = c. Note that, because
we have assumed that the input space X f is compact, the constant c is nonzero.

To learn more about the position of the maximum, we will challenge existing par-
ticles. To challenge some existing particle x i , we first sample a number nc of random
challenger particles x i

c1
, . . . , x i

cnc
from a proposal distribution q ′(x). We then set up the

joint distribution
f (x i )
f (x i

c1
)

...
f (x i

cnc
)

∼N



µ(x i )
µ(x i

c1
)

...
µ(x i

cnc
)

 ,


Σ(x i , x i ) Σ(x i , x i

c1
) · · · Σ(x i , x i

cnc
)

Σ(x i
c1

, x i ) Σ(x i
c1

, x i
c1

) · · · Σ(x i
c1

, x i
cnc

)
...

...
. . .

...
Σ(x i

cnc
, x i ) Σ(x i

cnc
, x i

c1
) · · · Σ(x i

cnc
, x i

cnc
)


 , (6.4)

and subsequently generate a sample
[

f̂ i f̂ i
c1

· · · f̂ i
cnc

]T
from it. Finally, we find the

largest element from this vector. If this element equals f̂ i , we do nothing. If, however, it
equals f̂ i

c j
, then we have f̂ i

c j
> f̂ i . In this case there is a challenger that has ‘beaten’ the

current particle and it takes its place. In other words, we replace the particle x i by x i
c j

.
The challenger particle also has a weight associated with. In SMC methods this weight

is usually given by

w i
c =

q(x i
c )

q ′(x i
c )

. (6.5)

However, to speed up convergence, we use a proposal distribution q ′(x) based on the
ideas of mixture importance sampling and defensive importance sampling. Specifically,
we use

q ′(x) =αpmax(x)+ (1−α)q(x). (6.6)

Here, α is manually chosen (often roughly 1
2 ) and pmax(x) is approximated through the

mixture proposal distribution (6.3), based on the current particle distribution. To generate
a challenger particle x i

c j
, we hence randomly (according to the particle weights) select

one of the particles xk . Then, in a part α of the cases, we sample x i
c j

from kx (x , xk ), while

in the remaining (1−α) part of the cases, we sample x i
c j

from q(x). If we sample our
challenger particles in this way, it is computationally more efficient to use the weight

w i
c j
=

q(x i
c j

)

αkx (x i
c j

, xk )+ (1−α)q(x i
c j

)
. (6.7)

Based on this set-up, we will challenge every existing particle once. This is called one
round of challenges. Afterwards, we apply systematic resampling to make sure all particles
have the same weight again. We repeat this until the distribution of particles has mostly
converged.

We call the resulting algorithm the Monte Carlo Maximum Distribution (MCMD)
algorithm. Pseudo-code for it is given in Algorithm 3.
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Data: A Gaussian process, user-defined parameters np , nc , α and a kernel kx (x , x ′).
Result: An approximate distribution pmax(x) of the optimal input x∗, given

through (6.3).
Initialization:

for i ← 1 to np do
Sample x i from q(x). Assign w i = 1.

end
end
Iteration:

repeat
Apply systematic resampling to all particles.
for i ← 1 to np do

for j ← 1 to nc do
Select a random particle xk , taking into account weights wk .
if we select a challenger based on xk (probability α) then

Sample a challenger particle x i
c j

from the kernel kx (x , x j ).

else
Sample a challenger particle x i

c j
from the flat distribution q(x).

end
end

Sample a vector
[

f̂ i f̂ i
c1

· · · f̂ i
cnc

]T
based on (6.4) and find its

maximum.
if the maximum equals f̂ i

c j
> f̂ i then

Replace particle x i by its challenger x i
c j

.

Set the new weight w i according to (6.7).
end

end
until a sufficient number of rounds has passed;

end
Algorithm 3: The Monte Carlo maximum distribution algorithm. Self-normalized im-
portance sampling, mixture importance sampling and systematic resampling are used.
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6.2.3. ANALYSING THE LIMIT DISTRIBUTION OF THE ALGORITHM

The distribution of the particles converges to a limit distribution. But does this limit
distribution equal the true maximum distribution? We can answer this question for a few
special cases.

First consider the case where nc →∞. In this case, the algorithm is equivalent to the
brute force method of finding the maximum distribution. Assuming that a sufficient num-
ber of particles np is used, it hence is guaranteed to find the true maximum distribution
directly, in only a single round of challenges.

Using nc →∞ challenger particles is infeasible, because generating a sample from (6.4)
takes O (n3

c ) time. Instead, we consider a very simplified case with nc = 1 and α= 0. Addi-
tionally, we consider the discrete case, where there are finitely many possible input points
x1, . . . , xn . With finitely many points, we can use the kernel kx (x , x ′) = δ(x −x ′), with δ(. . .)
the delta function. In this simplified case, we can analytically calculate the distribution
that the algorithm converges to.

Consider the given Gaussian process. Let us denote the probability P( f (xi ) > f (x j )),
based on the data in this Gaussian process, as Pi j . Here we have

Pi j =P( f (xi ) > f (x j )) =Φ
(

µ(xi )−µ(x j )√
Σ(xi , xi )+Σ(x j , x j )−2Σ(xi , x j )

)
, (6.8)

whereΦ(. . .) is the standard Gaussian cumulative density function. Through this expres-
sion we find the matrix P element-wise. Additionally, we write the part of the particles
that will eventually be connected to the input xi as pi . In this case, the resulting vector p
(with elements pi ) can be shown to satisfy

(
P −diag(1nP )

)
p = 0, (6.9)

where 1n is an n ×n matrix filled with ones, and diag(. . .) is the function which sets all
non-diagonal elements to zero. If we also use the fact that the sum of all probabilities
1T p equals 1, we can find p for this discrete problem.

If the algorithm would converge to the true maximum distribution in this simplified
case (with nc = 1) then we must have pi = pmax(xi ). In other words, the vector p would
then describe the maximum distribution. However, since we can calculate the values pi

analytically, while it is known to be impossible to find pmax(xi ) like this, we already know
that this is not the case. pi must be different from pmax(xi ), and the algorithm hence
does not converge to the maximum distribution when nc = 1. However, the example from
Figure 6.2 on page 81 does show that the algorithm gives a fair approximation. The limit
distribution of the algorithm is generally less peaked than the true maximum distribution,
which means it contains less information about where the maximum is (lower relative
entropy) but overall its predictions are accurate. Furthermore, the difference will decrease
when the variance present within the Gaussian process decreases, or when we raise nc .

To summarize, nc can be seen as a trade-off between accuracy and computational
efficiency. A large value of nc will give a better result, but requires more computations.
But we will see that even nc = 1 gives decent performance.
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6.2.4. APPLYING THE MCMD ALGORITHM FOR THOMPSON SAMPLING
We can now use the MCMD algorithm to apply Thompson sampling in a Gaussian process
optimization setting. To do so, we sample an input point x from the approximated
maximum distribution pmax(x) whenever we need to perform a new measurement.

The downside of this method is that samples are not drawn from the true maximum
distribution, but only from an approximation of it. However, the upside is that this
approximation can be obtained by making simple comparisons between function values.
No large matrix equations need to be solved or nonlinear function optimizations need to
be performed, providing a significant computational advantage over other methods that
approximate the maximum distribution.

6.3. EXPERIMENT RESULTS
Here we show the results of the presented algorithms. First we study how the MCMD
algorithm works for a fixed one-dimensional Gaussian process. Then we apply it through
Thompson sampling to the same problem, expand to a two-dimensional problem and
finally apply it to a real-life application.

6.3.1. EXECUTION OF THE MCMD ALGORITHM
Consider the function

f (x) = cos(3x)− 1

9
x2 + 1

6
x. (6.10)

From this function, we take 20 noisy measurements, at random locations in the interval
[−3,3], withσn = 0.3 as standard deviation of the white noise. We then apply GP regression
with a squared exponential covariance function with predetermined hyperparameters.
The subsequent GP approximating these measurements is shown in Figure 6.1.

We can apply the MCMD algorithm to approximate the maximum distribution pmax(x)
of this Gaussian process. This approximation, during successive challenge rounds of the
algorithm with α= 1

2 and nc = 1, is shown in Figure 6.2. (We always use nc = 1 in these
experiments, because it allows us to analytically calculate the limit distribution. For actual
applications larger values are recommended.) In this Figure we see that the algorithm has
mostly converged to the limit distribution after nr = 10 rounds of challenges, but this limit
distribution has a slightly higher entropy compared to the true maximum distribution.

6.3.2. APPLICATION TO AN OPTIMIZATION PROBLEM
We will now apply the newly developed method for Thompson sampling to Bayesian opti-
mization. We will compare it with the UCB, the PI and the EI acquisition functions. After
some tuning their parameters were set to κ= 2 and ξ= 0.1, which gave the best results
that could be obtained for these algorithms. To optimize these acquisition functions, we
use a multi-start optimization method, because otherwise we occasionally wind up with
a local optimum of the acquisition function, resulting in a detrimental performance. We
do not compare our results with entropy search or portfolio methods, because they are
designed for the error minimization set-up.

The first problem we apply these methods to is the optimization of the function f (x)
from (6.10). We use n = 50 input points x1, . . . , xn and look at the obtained regret. To
keep the memory and runtime requirements of the GP regression algorithm somewhat
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Figure 6.1: An example Gaussian process. The circles denote the measurements from which the GP was
generated. The thick line denotes the (posterior) mean of the GP and the grey area represents the 95% certainty
region. The three thinner lines are samples from the GP distribution. It is worthwhile to note that they have
their maximum values (the crosses) at very different positions.

limited, given the large number of experiments that will be run, we will apply the FITC
approximation described by Candela and Rasmussen (2005), implemented in an online
fashion according to Bijl et al. (2015). As inducing input points, we use the chosen input
points, but only when they are not within a distance du (decreasing from 0.3 to 0.02
during the execution of the algorithm) of any already existing inducing input point. For
simplicity the hyperparameters are assumed known and are hence fixed to reasonable
values. Naturally, it is also possible to learn hyperparameters on-the-go as well, using the
techniques described by (Rasmussen and Williams, 2006).

The result is shown in Figure 6.3. In this particular case, it seems that Thompson
sampling and the PI AF applied mostly exploitation: they have a better performance on
the short term. On the other hand, the UCB and EI acquisition functions apply more
exploration: the cost of quickly exploring is higher, but because the optimum is found
sooner, it can also be exploited sooner.

It should also be noted that all algorithms occasionally wind up in the wrong optimum
(near x = 2) every now and then. This can be seen from the fact that the regret graph does
not level out. For this particular problem, the UCB AF seems to be the best at avoiding
the local optimums, but it still falls for them every now and then. As noted earlier, only
Thompson sampling has the guarantee to escape local optimums given infinitely many
measurements.
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Figure 6.2: The maximum distribution for the Gaussian process shown in Figure 6.1. The black/grey lines
represent the approximate maximum distribution after 1,2, . . . ,10 rounds of challenges for np = 10000 particles.
The thick line is the limit distribution of the particles as derived in Section 6.2.3. The peaked line is the true
maximum distribution, found through brute force methods.

Figure 6.3: The cumulative regret (6.1) of the various Bayesian optimization algorithms for the function in (6.10).
Results shown are the mean performance of fifty complete runs of each algorithm.
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6.3.3. EXTENSION TO A TWO-DIMENSIONAL PROBLEM
Next, we apply the optimization methods to a two-dimensional problem. We will mini-
mize the well-known Branin function from (among others) Dixon and Szegö (1978). Or
equivalently, we maximize the negative Branin function,

f (x1, x2) =−
(

x2 −
51x2

1

40π2 + 5x1

π
−6

)2

−10

(
1− 1

8π

)
cos(x1)−10, (6.11)

where x1 ∈ [−5,10] and x2 ∈ [0,15]. This function is shown in Figure 6.4. We can find
analytically that the optimums occur at

(−π, 491
40

)
,
(
π, 91

40

)
and

(
3π, 99

40

)
, all with value − 5

4π .
The performance of the various optimization methods, averaged out over fifty full runs,

is shown in Figure 6.5. Here we see that Thompson sampling now performs significantly
better at keeping the regret small compared to the UCB (κ= 2), the PI and the EI (ξ= 2)
acquisition functions. We can find the reason behind this, if we look at which trial points
the various algorithms select. When we do (not shown here), we see that all acquisition
functions often try out points at the border of the input space, while Thompson sampling
does not. In particular, the acquisition functions (nearly) always try out all four corners of
the input space, including the very detrimental point (−5,0). It is this habit which makes
these acquisition functions perform worse on this specific problem.

Other than this, it is also interesting to note that in all examined runs, all optimization
methods find either two or three of the optimums. So while multiple optimums are always
found, it does regularly happen that one of the three optimums is not found. All of the
methods have shown to be susceptible to this. In addition, the three acquisition functions
have a slightly lower average recommendation error than Thompson sampling, but since
all optimization methods find various optimums, the difference is negligible. On the
flip side, an advantage of using the MCMD algorithm is that it can provide us with the
posterior distribution of the maximum, given all the measurement data. An example of
this is shown in Figure 6.6.

6.3.4. OPTIMIZING A WIND TURBINE CONTROLLER
It is time to test our algorithm on an application: data-based controller tuning for load
mitigation within a wind turbine. More specifically, we use a linearized version of the
so-called TURBU model, described by van Engelen and Braam (2004). TURBU is a fully
integrated wind turbine design and analysis tool. It deals with aerodynamics, hydrody-
namics, structural dynamics and control of modern three bladed wind turbines, and as
such gives very similar results as an actual real-life wind turbine.

We will consider the case where trailing edge flaps have been added to the turbine
blades. These flaps should then be used to reduce the vibration loads within the blades.
To do so, the Root Bending Moment (RBM) of the blades is used as input to the control
system.

To determine the effectiveness of the controller, we look at two quantities. The first is
the DEL (see Section 1.2.4). The second quantity to optimize is the mean rate of change
of the input signal. The reason here is that the lifetime of bearings is often expressed in
the number of revolutions, or equivalently in the angular distance traveled, and dividing
this distance traveled by the time passed will result in the mean rate of change of the flap
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Figure 6.4: The (negative) Branin function, defined by (6.11). Its three optimums can be clearly noted.

Figure 6.5: The cumulative regret (6.1) of the various Bayesian optimization algorithms for the Branin func-
tion (6.11). Results shown are the mean performance of fifty complete runs of each algorithm.
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Figure 6.6: The probability distribution of the maximum of the GP approximating the Branin function, after
generating measurements according to Thompson sampling. The three optimums have been identified, some
stray particles still reside in the lesser explored regions, and no particles remain in the part of the input space
that has been explored but was found suboptimal.

angle. The eventual performance score for a controller will now be a linearly weighted
sum of these two parameters, where a lower score is evidently better.

As controller, we apply a proportional controller. That is, we take the RBM in the
fixed reference frame (so after applying a Coleman transformation; see van Solingen and
van Wingerden (2015)) and feed the resulting signal, multiplied by a constant gain, to the
blade flaps. Since the wind turbine has three blades, there are three gains that we can
apply. The first of these, the collective flap mode, interferes with the power control of
the turbine. We will hence ignore this mode and only tune the gains of the tilt and yaw
modes. Very low gains (in the order of 10−8) will result in an inactive controller which
does not reduce the RBM, while very high gains (in the order of 10−5) will react to every
small bit of turbulence, resulting in an overly aggressive controller with a highly varying
input signal. Both are suboptimal, and the optimal controller will have gains somewhere
between these two extreme values.

To learn more about the actual score function, we can apply a brute force method
– just applying 500 random controller settings – and apply GP regression. This gives us
Figure 6.7. Naturally, this is not possible in real life as it would cause unnecessary damage
to the wind turbine. It does tell us, however, that the score function is mostly convex and
that there does not seem to exist any local optimums apart from the global optimum.

The results from the Bayesian optimization experiments, which are remarkably similar
to earlier experiments, are shown in Figure 6.8. (We used κ= 1 and ξ= 0.005 here.) They
once more show that Thompson sampling has a competitive performance at keeping the
regret limited.
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Figure 6.7: An approximation of the wind turbine controller score with respect to the controller gain. This
approximation was made by taking 500 random points and applying a GP regression algorithm to the resulting
measurements.

Figure 6.8: The cumulative regret (6.1) of the various Bayesian optimization algorithms for the wind turbine
controller. Results shown are the mean performance of fifty complete runs of each algorithm.



6

86 6. A SEQUENTIAL MONTE CARLO APPROACH TO BAYESIAN OPTIMIZATION

6.3.5. APPLYING THE METHODS TO A WIND TUNNEL TEST
To see whether Gaussian process optimization works in real life as well, we can check
out its performance in a wind tunnel experiment. For this, a two-bladed wind turbine
with controllable flaps on the wind turbine blades was available, depicted in Figure 6.9.
A two-bladed wind turbine works slightly different from a three-bladed turbine, but the
differences are not significant to how GPO is applied.

Figure 6.9: The wind turbine used in the experiment, placed in the open-jet wind tunnel of the Delft University
of Technology. Note the trailing edge flaps near the turbine blade tips.

One thing that was very different was the absence of turbulence. The open-jet wind
tunnel that was used has been set up with the specific goal of minimizing turbulence. As
a result, setting up a controller to reduce the effects of turbulence, like in the previous
experiment, did not work so well. The optimal strategy was quite close to ‘Do nothing,
because there is no turbulence.’

Instead, the focus was on optimizing the cyclic loads due to other factors, like tower
shadow. For this, we gave a cyclic (sinusoidal) input signal to the wind turbine blade flaps,
expressed in the azimuth ψ of the respective blade. That is, we used

u(t ) = A sin
(
ψ+φ)

, (6.12)

where A is the amplitude and φ is the phase shift of the input signal. Equivalently, we can
also rewrite the above to the form

u(t ) = θ1 sin
(
ψ

)+θ2 cos
(
ψ

)
. (6.13)

The challenge now is to tune θ1 and θ2 such that the damage equivalent load is minimized.
In this experiment, we did not take the loads on the bearing into account, because
restricting the control signal to a sinusoidal form already removes the risk of winding up
with an overly aggressive controller.
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Because of limited wind tunnel time, only Thompson sampling has been applied for
n = 15 measurements. These measurements, together with the resulting approximation
of the damage equivalent load, is shown in Figure 6.10 (left). The corresponding belief
about where the optimal parameters are is shown in Figure 6.10 (right). These parameters
were close to the parameters found by colleagues Navalkar et al. (2016), who set up an
identical control law and tuned it using iterative feedback tuning.

Figure 6.10: The results of the wind turbine experiment, with the approximated damage equivalent load mean
(left) and the belief of where the optimal controller settings would be (right). A total of n = 15 measurements
were performed using Thompson sampling before ‘something’ changed and the entire wind turbine behaved
differently. During these experiments, the Thompson sampling algorithm first tried a few not-so-optimal
controller settings, but quickly managed to find a better operating region and stay within it. During these
experiments, it got more and more certain of where the optimal operating point would be.

6.4. CONCLUSIONS AND RECOMMENDATIONS
We have introduced the MCMD algorithm, which uses particles to approximate the
distribution of the maximum of a Gaussian process. This particle approximation can
then be used to set up a Bayesian optimization method using Thompson sampling.
Such optimization methods are suitable for tuning the parameters of systems with large
amounts of uncertainty in an online data-based way. As an example, we have tuned the
controller parameters of a wind turbine (both in a simulation and in a wind tunnel test) to
reduce the fatigue load using performance data that was obtained during the operation
of the wind turbine.

The main advantage of Thompson sampling with the MCMD algorithm is that it does
not require the optimization of a nonlinear function to select the next trial point. In
addition, it has shown to have a competitive performance at keeping the cumulative
regret limited. However, we cannot conclude that Thompson sampling, or any other
optimization method, works better than its competitors. Which method works well
depends on a variety of factors, like how much the method has been fine-tuned to the
specific function that is being optimized, as well as which function is being optimized
in the first place. Also the number of trial points used matters, where a lower number
gives the advantage to exploitation-based methods, while a higher number benefits the
more exploration-based methods. It is for this very reason that any claim that a Bayesian
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optimization works better than its competitors may be accepted only after very careful
scrutiny.

A recommendation for future work for this algorithm would be to study convergence
rates. At the moment of publishing Bijl et al. (2017a), no results were known about
convergence rates of Thompson sampling applied to problems with a continuous input
space. However, with the work of Basu and Ghosh (2017) this is starting up. There is
bound to be more to discover.



7
CONCLUSIONS AND

RECOMMENDATIONS

In this final chapter we look back to the questions that we asked in the Introduction and
evaluate the answers to them. We also look at possible directions for future work.

7.1. CONCLUSIONS
There were three types of questions that we posed. We look into them one by one.

7.1.1. LINEAR-QUADRATIC-GAUSSIAN SYSTEMS
In Chapters 2 and 3 we looked at LQG systems. The first question that we asked was the
following.

Question 1a: Within LQG control, how can we reduce the probability that the
cost exceeds a given threshold?

Chapter 2 provided us with analytical methods to calculate both the mean and the vari-
ance of the cost J of LQG systems for a variety of cases: finite time versus infinite time cost
functions and discounted versus non-discounted cost functions. Using these expressions,
it is possible to reduce the number of times that the cost exceeds a given threshold, for
instance by minimizing the cost variance.

Question 1b: In LQG control, how can we prescribe a degree of stability while
also optimally applying a state estimator?

This question was answered in Chapter 3. It is possible to prescribe a degree of stability
by adding a positive discount exponent to the cost function. When doing so, we can find
an optimal control law minimizing the expected discounted cost. When the state is not
known, it can be estimated through a state estimator, where it is possible to tune the gains
to again minimize the expected cost.

89



7

90 7. CONCLUSIONS AND RECOMMENDATIONS

7.1.2. ONLINE SYSTEM IDENTIFICATION THROUGH GAUSSIAN PROCESSES
The second main question that we asked ourselves concerned system identification.

Question 2: How can Gaussian process regression be used for online black-box
modeling of a nonlinear multi-variable system like a wind turbine?

The main challenge of answering this question was that we needed to enable Gaussian
process regression to deal with online updates, sparse methods and noisy input points
simultaneously. Though promising methods like latent variable methods already exist,
these methods have a large number of parameters to optimize, making the computation
of the derivatives rather slow.

As a result, an extension of the NIGP method was developed, called the SONIG algo-
rithm. Through various extensions, it was capable of identifying the dynamics of non-
linear systems, outperforming existing state-of-the-art non-linear system identification
algorithms. It has also shown to be capable of identifying the dynamics of a pitch-plunge
system.

7.1.3. FIXED-STRUCTURE CONTROLLER TUNING
The final question we posed in the Introduction concerned the tuning of fixed-structure
controllers. This was split up into two subquestions.

Question 3a: How can Gaussian process regression be used to approximate and
optimize the cost function of a system with a fixed-structure control law?

In Chapter 5 we found a method to do so. This method was also capable of incorporating
knowledge of the state, which turned out to be useful for short experiment durations, in
which the initial state has a significant influence on the cost occurred. However, taking
into account state data did require a large number of experiments. When the number
of experiments, and specifically the damage (cost) obtained during these experiments,
needs to be limited, we run into our final subquestion.

Question 3b: How can the gains of a fixed-structure control law be tuned online,
in such a way as to minimize the damage sustained by the wind turbine?

This question was tackled in Chapter 6, where we looked into methods of efficiently
choosing which controller gains to try out next. To do so, a novel way of determining
the maximum of a Gaussian process was set up: the Monte Carlo maximum distribution
algorithm. This SMC-inspired method approximates the maximum distribution of a
Gaussian process. Using it, it is now possible to apply Thompson sampling to Bayesion
optimization problems with a continuous input space. The resulting optimization method
has shown to have a competitive performance at keeping the cumulative regret (i.e., the
wind turbine fatigue damage) limited.

Overall, this thesis has provided a variety of methods through which uncertainty can
be taken into account while analyzing and controlling wind turbines.
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7.2. RECOMMENDATIONS
Research is never finished. There are still several new avenues that can be explored.

For LQG systems, these avenues mainly lie in the application. There is much ongoing
research about applying LQG controllers to wind turbines. The techniques developed in
Chapters 2 and 3 can potentially improve these controllers. How that works in detail will
strongly depend on the way that the LQG controllers are actually applied, so this is left for
the specific researchers and companies involved.

For Gaussian process regression, though a significant amount of process has been
made in the last decade, there is still a huge challenge in efficiently incorporating large
data sets in making predictions. Methods using inducing input points are promising, but
for high-dimensional problems the number of inducing input points often also grows
exponentially with the dimension, resulting in longer run-times. If, while incorporating
a new measurement, we only update the inducing input points with a large covariance
with respect to that measurement, then significant gains in the run-time will likely be
obtained. How to do so in detail is a question for future research.

The most promising technique developed in this thesis is Thompson sampling applied
to fixed-structure controller optimization. This technique has been shown to work on
optimizing the controller parameters of a scaled wind turbine in a wind tunnel. There are
many ways through which this technique can be improved further.

• It may happen during an experiment that we immediately realize that the controller
parameters used will result in a high cost. In that case, stopping the experiment
prematurely would be wise. How can the results of this experiment then still be
incorporated? Probably the obtained DEL during the experiment can still be used,
if the relatively short experiment duration is taken into account by increasing the
measurement noise present in the DEL.

• It may also be necessary to apply ‘safe exploring’. That is: only try controller gains for
which you are nearly certain that they will not result in instability. To do so, we could
add the restriction to only try controllers for which the probability p(DEL > threshold),
that the DEL falls above a given threshold, is sufficiently small. This is similar to the
ideas proposed by Sui et al. (2015), Berkenkamp et al. (2016). Alternatively, we could
initialize the GP approximating the DEL with a very high mean function. All these ideas
are likely to slow down the exploration of the space of possible controller gains, since
‘novel’ gains far from anything that has been tried before cannot be experimented with
anymore, but this is the cost required for reducing the chance at obtaining instability.

• Finally, it is known that the dynamics of a wind turbine can change during the aging
of the turbine. Currently the algorithm assumes that the cost function is a function
that only depends on the controller gains and does not vary over time. It is possible
to take a slowly time-varying function into account, for instance by adding extra
measurement noise variance to older measurements. Or, when inducing input points
are used, by adding a small amount of extra variance to the inducing function values
as time passes. How much this should be done is a question for further research. Is it
something that needs to be specified in advance, or can the amount of shifting of the
cost function also be determined automatically from measurement data?

Looking at these ideas for future research, it is clear that GP regression and Bayesian
optimization have the potential for an interesting future in the field of wind energy.





A
SUPPORTING THEOREMS

This appendix contains mathematical theorems necessary to derive some of the main
results in this thesis.

A.1. EVOLUTION OF THE STATE
Consider a linear system described by

ẋ(t ) = Ax(t )+v (t ), (A.1)

with x(t ) the state, A the system matrix, and v(t ) zero-mean Gaussian white noise with
intensity V . (For details, see Section 2.2.) Solving (A.1) for x(t ) results in

x(t ) = e At x0 +
∫ t

0
e A(t−s)v (s)d s. (A.2)

We use this to derive statistical properties for x(t). We assume here that the initial
state x(0) = x0 has a Gaussian distribution satisfying µ0 ≡E[x0] and Σ0 ≡E[x0xT

0 ], so
that its variance equals Σ0 −µ0µ

T
0 . The statistical properties we will find are well-known

(see for instance Bosgra et al. (2008)), but they are included to give a good overview of
existing theory.

Theorem A.1. When x(t) satisfies system (A.1), with the corresponding assumptions on
x(0) and v , then x(t ) is a Gaussian random variable satisfying

µ(t ) ≡E[x(t )] = e Atµ0, (A.3)

Σ(t ) ≡E[x(t )xT (t )] = e At (Σ0 −X V )e AT t +X V . (A.4)

Proof. Because x(t ) is the sum of Gaussian variables, it will have a Gaussian distribution
at all times t . From (A.2), its mean equals

µ(t ) ≡E[x(t )] = e AtE[x0] = e Atµ0. (A.5)
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The expected squared value is found similarly through

Σ(t ) = e AtE[x0xT
0 ]e AT t +

∫ t

0

∫ t

0
e A(t−s1)E[v (s1)v T (s2)]e AT (t−s2)d s1 d s2

= e AtΣ0e AT t +
∫ t

0
e A(t−s)V e AT (t−s) d s. (A.6)

(The reduction ofE[v (s1)v T (s2)] to V δ(s1 − s2) is formally an application of the Itô isome-
try, as explained in Øksendal (1985).) Next, by substituting s by t −τ, we find that

Σ(t ) = e AtΣ0e AT t +
∫ t

0
e AτV e AT τd s (A.7)

= e AtΣ0e AT t +X V (t ) = e At (Σ0 −X V )e AT t +X V ,

where in the end we have also applied Theorem A.7.

Theorem A.2. The expected squared value Σ(t ) satisfies

Σ̇(t ) = AΣ(t )+Σ(t )AT +V. (A.8)

Proof. The derivative of (A.4) equals

Σ̇(t ) = A
(
e At (Σ0 −X V )e AT t

)
+

(
e At (Σ0 −X V )e AT t

)
AT

= A
(
Σ(t )−X V )+ (

Σ(t )−X V )
AT

= AΣ(t )+Σ(t )AT − (
AX V +X V AT )

. (A.9)

Applying AX V +X V AT +V = 0 completes the proof.

Theorem A.3. For t1 < t2 we have

Σ(t1, t2) = e At1 (Σ0 −X V )e AT t2 +X V e AT (t2−t1). (A.10)

Furthermore, Σ(t1, t2) =Σ(t2, t1)T and Σ(t , t ) =Σ(t ).

Proof. The proof is identical to that of Theorem A.1.

A.2. PROPERTIES OF LYAPUNOV EQUATION SOLUTIONS
This section is about solutions to Lyapunov equations. It uses the notation described in
Section 2.3.1.

Theorem A.4. There is a unique solution for X Q , and identically for X̄ Q , if and only if the
matrix A is Sylvester.

Proof. In literature it is known (see Bartels and Stewart (1972)) that the Sylvester Equation
AX + X B = Q has a unique solution if and only if A and −B do not have a common
eigenvalue. Substituting B = AT directly proves the theorem.
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Theorem A.5. Assume that A is Sylvester. In this case X Q is symmetric if and only if Q is
symmetric.

Proof. If we take the Lyapunov equation AX Q +X Q AT +Q = 0 and subtract its transpose,
we find that

A
(
X Q − (X Q )T )+ (

X Q − (X Q )T )
AT + (Q −QT ) = 0. (A.11)

This equation has a unique solution (Theorem A.4) directly implying that Q =QT if and
only if X Q = (X Q )T .

Theorem A.6. Assume that A is stable. Then A is Sylvester and the Lyapunov equation
AX Q +X Q AT +Q = 0 has a unique solution X Q which equals

X Q =
∫ ∞

0
e At Qe AT t d t . (A.12)

Proof. The assumption that A is stable directly implies that A is Sylvester and hence
(Theorem A.4) that X Q exists and is unique. Now we only need to prove (A.12). Because A
is stable, we know that limt→∞ e At = 0. We can hence write Q as

Q =−
[

e At Qe AT t
]∞

0

=−
∫ ∞

0

d

d t

(
e At Qe AT t

)
d t

=−
∫ ∞

0

(
Ae At Qe AT t +e At Qe AT t AT

)
d t (A.13)

=−A

(∫ ∞

0
e At Qe AT t d t

)
−

(∫ ∞

0
e At Qe AT t d t

)
AT .

The equation above is a Lyapunov equation with the quantity between brackets as its
unique solution X Q .

Theorem A.7. When A is Sylvester, X Q (t1, t2) can either be found by solving the Lyapunov
equation

AX Q (t1, t2)+X Q (t1, t2)AT +e At1Qe AT t1 −e At2Qe AT t2 = 0 (A.14)

or by first finding X Q and then using

X Q (t1, t2) = e At1 X Q e AT t1 −e At2 X Q e AT t2 . (A.15)

Proof. We first prove (A.14) through

e At1Qe AT t1 −e At2Qe AT t2 =−
[

e At Qe AT t
]t2

t1

=−
∫ t2

t1

d

d t

(
e At Qe AT t

)
d t

=−A

(∫ t2

t1

e At Qe AT t d t

)
−

(∫ t2

t1

e At Qe AT t d t

)
AT

=−AX Q (t1, t2)−X Q (t1, t2)AT . (A.16)
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To prove (A.15) too, we will use Q =−AX Q −X Q AT and the matrix property e At A = Ae At

to find that

e At1Qe AT t1 −e At2Qe AT t2 =−A
(
e At1 X Q e AT t1 −e At2 X Q e AT t2

)
−

(
e At1 X Q e AT t1 −e At2 X Q e AT t2

)
AT . (A.17)

The above expression actually equals (A.14), except that the part between brackets is
replaced by X Q (t1, t2). Because A is Sylvester, the expression has a unique solution
X Q (t1, t2), which must equal the part between brackets.

Theorem A.8. Assume that A is Sylvester and that AC = C A. For any Q and V we then
have

X CQ+V =C X Q +X V . (A.18)

Proof. Per definition, AX Q +X Q AT +Q = 0 and AX V +X V AT +V = 0. Left-multiplying
the first expression by C and adding it to the second gives us

A
(
C X Q +X V )+ (

C X Q +X V )
AT + (CQ +V ) = 0. (A.19)

This is a Lyapunov equation with X CQ+V as its solution.

Theorem A.9. Assume that A is Sylvester. For matrices F and G satisfying AF = F A and
AT G =G AT , and for any Q and V , we have

tr
(
QF X V G

)= tr
(
X̄ Q FV G

)
. (A.20)

Proof. This is directly proven by

tr
(
QF X V G

)= tr
(
(−AT X̄ Q − X̄ Q A)F X V G

)
= tr

(
(−AT X̄ Q F X V G − X̄ Q AF X V G)

)
= tr

(
(−G X̄ Q F X V AT −G X̄ Q F AX V )

)
= tr

(
G X̄ Q F (−X V AT − AX V )

)
= tr

(
X̄ Q FV G

)
. (A.21)

Theorem A.10. Assume that both A and Aα are Sylvester. For X Q , X Q
α , X X Q

α and X X Q
α we

have

X X Q

α = X Q
α −X Q

2α
= X X Q

α . (A.22)

Proof. Per definition, we have

(A+αI )X Q
α +X Q

α (A+αI )T +Q = 0, (A.23)

AX Q +X Q AT +Q = 0. (A.24)
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By subtracting the two equations, and by using Aα = A +αI , we can get either of two
results

A(X Q
α −X Q )+ (X Q

α −X Q )AT +2αX Q
α = 0, (A.25)

Aα(X Q
α −X Q )+ (X Q

α −X Q )AT
α +2αX Q = 0. (A.26)

Next, we divide the above equations by 2α. The resulting Lyapunov equations have (A.22)
as their solution.

A.3. POWER FORMS OF GAUSSIAN RANDOM VARIABLES
This last section examines the expected value of various power forms of Gaussian random
variables.

Theorem A.11. Consider a Gaussian random variable x with mean µ and expected
squared value Σ≡E[x xT ]. For symmetric matrices P and Q we have

E[xT P x xT Qx] = tr(ΣP )tr(ΣQ)+2tr(ΣPΣQ)

−2µT PµµT Qµ. (A.27)

Proof. We know from Kendrick (1981) (Appendix F.3) that, for symmetric P and Q, and
for a zero-mean process y = x −µwith covariance Y =E[y y T ] =Σ−µµT , we have

E[y T P y y T Q y] = tr(Y P )tr(Y Q)+2tr(Y PY Q). (A.28)

If we apply this result to the expansion of

E[xT P x xT Qx] =E[(y +µ)T P (y +µ)(y +µ)T Q(y +µ)] (A.29)

and rewrite the result, (A.27) follows.

Theorem A.12. Consider Gaussian random variables x and y with joint distribution[
x
y

]
∼N

([
µx

µy

]
,

[
Kxx Kx y

Ky x Ky y

])
. (A.30)

Also defineΣab = Kab+µaµb
T , where the subscripts a and b can be substituted for x and/or

y. For symmetric matrices P and Q we now have

E[xT P x y T Q y] = tr(Σxx P )tr(Σy yQ)+2tr(Σy x PΣx yQ)

−2µx
T Pµxµy

T Qµy . (A.31)

Proof. This follows directly from Theorem A.11 with

x ′ =
[

x
y

]
, P ′ =

[
P 0
0 0

]
, Q ′ =

[
0 0
0 Q

]
. (A.32)





B
DERIVATIVES FOR THE SONIG

ALGORITHM

The SONIG update law (4.17) contains various derivatives of matrices. Using (4.8) and (4.9)
we can find them. To do so, we first define the scalar quantity

P =Σn
+++σ2

n = K+++σ2
n −K+uK −1

uu

(
Kuu −Σn

uu

)
K −1

uu Ku+. (B.1)

We also assume that m(x) = 0 for ease of notation. (If not, this can of course be taken into
account.) The derivatives of µn+1

u and Σn+1
uu can now be found element-wise through

dµn+1
u

d x+ j

=Σn
uuK −1

uu

(
dKu+
d x+ j

P−1 (
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n
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n
u

)
− Ku+P−1 dK+u
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n
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)
,
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=Σn
uuK −1

uu

(
d 2Ku+

d x+ j d x+k

P−1 (
y+−K+uK −1
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u

)+ dKu+
d x+ j

dP−1

d x+k

(
y+−K+uK −1

uuµ
n
u

)
−dKu+

d x+ j

P−1 dK+u

d x+k

K −1
uuµ

n
u + dKu+

d x+k

dP−1

d x+ j

(
y+−K+uK −1

uuµ
n
u

)
+Ku+

d 2P−1

d x+ j d x+k

(
y+−K+uK −1

uuµ
n
u

)−Ku+
dP−1

d x+ j

dK+u

d x+k

K −1
uuµ

n
u (B.2)

−dKu+
d x+k

P−1 dK+u

d x+ j

K −1
uuµ

n
u −Ku+

dP−1

d x+k

dK+u

d x+ j

K −1
uuµ

n
u −Ku+P−1 d 2K+u

d x+ j d x+k

K −1
uuµ

n
u

)
,
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dΣn+1
uu

d x+ j

=−Σn
uuK −1

uu
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dKu+
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P−1K+u +Ku+
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These expressions contain various additional derivatives. To find them, we need to choose
a covariance function. (The above expressions are valid for any covariance function.) If
we use the squared exponential covariance function of (4.4), we can derive

dKui+
d x+

=α2 exp
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2

(
xui −x+

)T
Λ−1 (
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