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Abstract: We provide a method which allows for online updating of sparse Gaussian Process
(GP) regression algorithms for any set of inducing inputs. This method is derived both for
the Fully Independent Training Conditional (FITC) and the Partially Independent Training
Conditional (PITC) approximation, and it allows the inclusion of a new measurement point
xn+1 in O(m2) time, with m denoting the size of the set of inducing inputs. Due to the online
nature of the algorithms, it is possible to forget earlier measurement data, which means that
also the memory space required is O(m2), both for FITC and PITC. We show that this method
is able to efficiently apply GP regression to a large data set with accurate results.

1. INTRODUCTION

Gaussian Process (GP) regression (see Rasmussen and
Williams [2006]) is a regression method which is gaining
in popularity. Through statistical methods, it provides
an estimate of a function f(x) based on a limited set
of possibly noisy training points (x, y). GP regression is
known for providing relatively accurate estimates with
only few training data. In addition, it also provides data
about the certainty of these estimates.

The most significant downside of GP regression is its
computational complexity. Applying conventional GP re-
gression requires O(n3) runtime and O(n2) memory space,
where n is the number of training points. This prevents GP
regression from being applied in its original form to any
data set larger than roughly a thousand data points.

The conventional way to work around this problem is
to apply sparse GP regression, reducing the runtime to
O(nm2) and the memory space required to O(nm), where
the user-defined m is the size of the set of the so-called
inducing input points. A higher number m means a better
accuracy, but also more computational requirements. A
good overview of sparse GP regression is provided by Can-
dela and Rasmussen [2005]. They show that sparse GP
regression in its essence comes down to using a set of
inducing inputs, while making assumptions on the prior
distribution of the function values f(x). By doing so,
various other contributions by Smola and Bartlett [2001],
Csató and Opper [2002], Seeger et al. [2003] and Snelson
and Ghahramani [2006] are merged into a comprehensive
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framework. From this, it can be concluded that especially
the Partially Independent Training Conditional (PITC)
algorithm, being a generalization of the Fully Independent
Training Conditional (FITC) algorithm, is a promising
sparse GP algorithm. We will introduce both these algo-
rithm later on.

Another downside of GP regression is that incorporating a
new data point xn+1 into the data set X is relatively inef-
ficient. Traditionally, this would require the recalculation
of the inverse of the n × n kernel matrix K, resulting in
a runtime of O(n3) per added measurement. As a result,
several methods of applying sparse GP regression in an
online way have been introduced. An early paper on this
was written by Csató and Opper [2002], who (also see Can-
dela and Rasmussen [2005]) use a Deterministic Training
Conditional (DTC) approximation. Others expanded on
this work, like Ranganathan et al. [2011] who update and
downdate a Cholesky factorization of the kernel matrix K
to find the most efficient Subset of Data (SoD) approxima-
tion, and Kou et al. [2013], who use an FITC approxima-
tion but constrain themselves to inducing inputs chosen
from the set of training inputs. Others use rather different
techniques, like Hensman et al. [2013] who use stochastic
variational inference. None of the algorithms presented in
these papers are generally applicable to any set of inducing
inputs, nor do they consider the PITC assumption.

The contribution of this paper is to generalize the sparse
online GP regression techniques, allowing online updating
of the FITC and PITC algorithms and giving a compre-
hensive overview. To accomplish this, we first use Sec-
tion 2 to introduce the (sparse) GP regression algorithms
mentioned in Table 1. Section 3 then examines how to
apply online updating to these algorithms, with as little
computational requirements as possible. In Section 4 we
show an example of these new techniques being applied,
while Section 5 offers conclusions and recommendations.



Table 1. Computational requirements for the var-
ious examined algorithms, sorted by number of
simplifying assumptions. (O is not written out ex-
plicitly.) The runtime is the total runtime of adding
the first n measurement points. m is the number of
inducing input points and n∗ the number of output
points, where we assume that m < n∗ < n. For the
PITC algorithm we assume that the subsets Xi do

not grow larger than m data points.

Preparation time Prediction time Memory

Algorithm Offline Online Offline Online Offline Online

GP (2.1) n3 n3 n2n∗ n2n∗ n2 n2

Sp. GP (2.2) n3 n3 mn2
∗ mn2

∗ n2 n2

PITC (2.4) nm2 nm2 mn2
∗ mn2

∗ nm m2

FITC (2.3) nm2 nm2 mn2
∗ mn2

∗ nm m2

2. SPARSE GAUSSIAN PROCESSES

This section provides a brief overview of sparse GP regres-
sion. We start with a brief introduction to GP regression,
followed by the main assumption underlying its sparse ver-
sion. Then we examine the FITC and PITC assumptions.

2.1 Gaussian processes

In Gaussian process regression, we aim to approximate
a function f(x). To do so, we perform measurements
fi = f(xi) at various training points xi, which we merge
into a set X. (We ignore measurement noise, but Ras-
mussen and Williams [2006] show how it can be taken into
account.) Using this data, we can predict the value f(x∗)
at some test point x∗ or, more general, we can predict the
values of f(X∗) for a set of n∗ test points X∗.

To accomplish this, we assume a priori that the vectors
f(X) and f(X∗) (often shortened to f and f∗, respec-
tively) have a known joint Gaussian distribution. That is,[

f
f∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
k(X,X) k(X,X∗)
k(X∗, X) k(X∗, X∗)

])
= N

([
m(X)
m(X∗)

]
,

[
Kff Kf∗
K∗f K∗∗

])
, (1)

where the mean function m(x) and the covariance function
k(x,x′) are user-defined and depend only on a few hyper-
parameters. We assume these hyperparameters are known.
If not, we refer to Chalupka et al. [2013] for a comparison
of hyperparameter tuning methods and Huber [2014] for
an additional hyperparameter tuning method using sigma
points.

If we know f , then our prior distribution p(f ,f∗) tells
us that the posterior distribution of f∗ is given (see Ras-
mussen and Williams [2006]) by the normal distribution

p(f∗|f) =
p(f ,f∗)

p(f)
= N (µ∗,Σ∗), (2)

µ∗ = m(X∗) +K∗fK
−1
ff (f −m(X)), (3)

Σ∗ = K∗∗ −K∗fK−1ff Kf∗. (4)

This is the main equation behind GP regression in its
simplest form.

2.2 The inducing input assumption

The problem with GP regression is that we need to find
the inverse of the n×n matrix Kff at a cost of O(n3). If we
want to take all the available data into account, then there
is no way of getting around this. The trick is therefore to
reduce the amount of data, such that we retain most of our
accuracy, but significantly reduce our calculation time.

There are two approximating assumptions through which
this is generally accomplished. The first such assumption
will be referred to as the inducing input assumption. The
idea, as is also clearly outlined by Candela and Rasmussen
[2005], is to use a set of m inducing inputs Xu with
corresponding function values fu. We then assume that
f and f∗ are conditionally independent given fu. That is,
we assume that

p(f ,f∗|fu) = p(f |fu)p(f∗|fu). (5)

Here we need to choose the positions of the inducing inputs
ourselves. We could for instance set them equal to the test
inputs X∗, spread them out evenly across our input range,
tune them as is done by Snelson and Ghahramani [2006], or
cleverly choose them from our training points as proposed
by Cao et al. [2013]. How to select the positions of the
inducing inputs is a research subject by itself, which we
will not go into depth on here.

The inducing input assumption effectively adjusts the
prior distribution p(f ,f∗,fu). To find the new prior
distribution, we can use the relation

p(f ,f∗,fu) = p(f |fu)p(f∗|fu)p(fu). (6)

All the probabilities in the above expression are Gaussian
exponentials. The product of Gaussian exponentials is
again a Gaussian exponential. So by inserting the exponen-
tials (using (2)) and subsequently working out the results,
we can find that the prior equals

p(f ,f∗,fu) = N

([
m(X)
m(X∗)
m(Xu)

]
,

[
Kff Qf∗ Kfu

Q∗f K∗∗ K∗u
Kuf Ku∗ Kuu

])
. (7)

Here we have borrowed the notation Qab from Candela
and Rasmussen [2005]. That is, we define Qab, for any a
and b, as

Qab = KauK
−1
uuKub. (8)

So what we have done through our assumption is basi-
cally replace the covariance Kf∗ with a different matrix
Qf∗ = KfuK

−1
uuKu∗. This confirms that f and f∗ can now

only ‘communicate’ through fu.

Using this new prior, we can directly find the posterior
distribution of f∗. It equals

p(f∗|f) = N (µ∗,Σ∗), (9)

µ∗ = m(X∗) +Q∗fK
−1
ff (f −m(X)), (10)

Σ∗ = K∗∗ −Q∗fK−1ff Qf∗. (11)

We can obtain this distribution directly through f with
the above equation. However, another option is to first
find the posterior distribution of fu as

p(fu|f) = N (µu,Σu), (12)

µu = m(Xu) +KufK
−1
ff (f −m(X)), (13)

Σu = Kuu −KufK
−1
ff Kfu, (14)



and then use this distribution to find the posterior distri-
bution of f∗. This can be done through marginalization

p(f∗|f) =

∫
p(f∗|fu)p(fu|f) dfu. (15)

Because we are only dealing with Gaussian exponentials,
the above integral can be solved analytically. We can hence
find µ∗ and Σ∗, expressed in µu and Σu, as

µ∗ = m(X∗) +K∗uK
−1
uu (µu −m(Xu)), (16)

Σ∗ = K∗∗ −K∗uK−1uu (Kuu − Σu)K−1uuKu∗. (17)

Note that, if we insert the values for µu and Σu, then the
above expressions immediately reduce to (10) and (11).

2.3 The FITC assumption

To get more computational gains, we need to make a
second approximating assumption. We will make the same
assumption here as was done by Snelson and Ghahramani
[2006]. We assume that, given fu, also all function values
f are independent with respect to each other. That is,

p(fi, fj |fu) = p(fi|fu)p(fj |fu), (18)

for every i 6= j. We call this assumption the Fully Indepen-
dent Training Conditional (FITC) assumption, which is a
term from Candela and Rasmussen [2005]. This assump-
tion gives us a new effective prior distribution p(f ,f∗,fu)
which, similarly to (7), equals

N



m(x1)

...
m(xn)
m(X∗)
m(Xu)

 ,

Kf1f1 · · · Qf1fn Qf1∗ Kf1u

...
. . .

...
...

...
Qfnf1 · · · Kfnfn Qfn∗ Kfnu

Q∗f1 · · · Q∗fn K∗∗ K∗u
Kuf1 · · · Kufn Ku∗ Kuu


 . (19)

Do note that we only make this assumption for the
elements of f and not for those of f∗. After all, we do
not need to invert K∗∗. So we have only replaced Kff by

K̃ff = Qff + diag(Kff −Qff ) = Qff + Λff , (20)

Λff = diag(Kff −Qff ), (21)

while K∗∗ remains unchanged. The ‘diag(P )’ function here
denotes the diagonal matrix whose elements along the
diagonal equal the corresponding elements of P . All other
elements are set to zero.

With these assumptions, the posterior distribution of f∗,
being p(f∗|f) = N (µ̃∗, Σ̃∗), is described through

µ̃∗ = m(X∗) +Q∗f K̃
−1
ff (f −m(X)), (22)

Σ̃∗ = K∗∗ −Q∗f K̃−1ff Qf∗. (23)

Similarly, our new distribution for fu is given by

µ̃u = m(Xu) +Kuf K̃
−1
ff (f −m(X)), (24)

Σ̃u = Kuu −Kuf K̃
−1
ff Kfu. (25)

The problem is that we still need to invert an n× n
matrix. Luckily, we can rewrite the above expressions
through repeated use of the matrix inversion lemma (see
for instance the work by Hager [1989] and Higham [2002]).

It follows that we can also find µ̃u and Σ̃u through

µ̃u = m(Xu) + Σ̃uK
−1
uuKufΛ−1ff (f −m(X)), (26)

Σ̃u = Kuu(Kuu +KufΛ−1ffKfu)−1Kuu. (27)

As a result, we again have

µ̃∗ = m(X∗) +K∗uK
−1
uu (µ̃u −m(Xu)), (28)

Σ̃∗ = K∗∗ −K∗uK−1uu (Kuu − Σ̃u)K−1uuKu∗. (29)

In the above expressions, the only n× n matrix which we
need to invert is Λff , which is a diagonal matrix, resulting
in a significant reduction in computational complexity;
also see Table 1.

The algorithm which we have obtained so far is not new. It
was proposed in a different form as ‘Sparse Pseudo-input
Gaussian Processes’ (SPGP) by Snelson and Ghahramani
[2006] and rewritten to a form similar to ours, called FITC
GP, by Candela and Rasmussen [2005]. However, both
these papers stopped with the above expressions, while
we continue to look at how they can be implemented in an
online fashion.

2.4 The PITC assumption

The PITC algorithm (see e.g. [Candela and Rasmussen,
2005]) is an extension of the FITC algorithm. Instead of
making the FITC assumption, we now make the PITC
assumption. That is, we split the training set X up into
subsets X1, X2, . . . , Xp, where all sets Xi (with 1 ≤ i ≤ p)
together cover X, but Xi ∩ Xj = ∅ for i 6= j. We split
the output vector f in the same way into f1, . . . ,fp. The
PITC assumption now is that, given fu, all outputs fi
and fj are independent with respect to each other, but
different outputs within a single subset output vector fi
are not independent with respect to each other.

With this assumption, most of our equations stay the
same. In fact, if we write Kfifj as

Kfifj = k(Xi, Xj), (30)

then (19) still holds. Similarly to (20), we replace Kff by

K̃ff = Qff + blockdiag (Kff −Qff ) = Qff + Λ̃ff , (31)

except that we now use the block-diagonal matrix Λ̃ff

instead of the diagonal matrix Λff . This matrix has p

matrices Λ̃fifi along its diagonal, where

Λ̃fifi = Kfifi −Qfifi = Kfifi −KfiuK
−1
uuKufi . (32)

Note that, if every set Xi consists of a single vector xi,
then the block-diagonal matrix Λ̃ff reduces back to the
diagonal matrix Λff and PITC reduces back to FITC. On
the other hand, if there is only one subset Xi which equals
X, then PITC reduces back to the algorithm of Section 2.2
with only the inducing input assumption.

The resulting PITC distribution for fu is similarly to (26)
and (27) given by

µ̃u = m(Xu) + Σ̃uK
−1
uuKuf Λ̃−1ff (f −m(X)), (33)

Σ̃u = Kuu(Kuu +Kuf Λ̃−1ffKfu)−1Kuu, (34)

which is computationally efficient, because the only n× n
matrix to be inverted is the block-diagonal matrix Λ̃ff .

3. ONLINE UPDATING

The previous section considered already known theorems.
This section presents new results. In particular, we will
examine the case where we continuously get new measure-
ment data. That is, we get a new sample (xn+1, fn+1),



causing X, f and Kff to grow. In the framework of the
previous paragraph, all that we needed for prediction of µ∗
and Σ∗ were µu and Σu. So that poses the question: how
can we update µu and Σu to incorporate new measurement
data in the most efficient way?

3.1 Updating for sparse GPs

If we have only made the main inducing input assump-
tion, we will need to keep track of all data of all our
measurements. In particular, we will need to maintain the
matrix inverse K−1ff . To incorporate our new measurement

(xn+1, fn+1), we can use the block matrix inversion theo-
rem by Hager [1989], which states that[
A B
C D

]−1
=

[
A−1 +A−1B∆−1CA−1 −A−1B∆−1

∆−1CA−1 ∆−1

]
, (35)

where ∆ = (D − CA−1B). We can apply this with

A = Kf1:nf1:n = Kff , B = Kf1:nfn+1
= Kff+ , (36)

C = Kfn+1f1:n = Kf+f , D = Kfn+1fn+1
= Kf+f+ , (37)

where the subscript f1:n (or short, f) denotes the previ-
ously known data points f1 up to fn, while the subscript
fn+1 (or short, f+) denotes the new data point. (We do not
have a short notation for f1:(n+1).) The above expression
now directly gives us an update law for Kff of runtime
O(n2) per update.

Subsequently, we can update Σu. An ‘easy’ way to do so
would be to insert K−1ff directly into (14), but this would

result in a runtime of O(mn(m + n)). A more efficient
update rule can be derived if we apply (35) to (14) first.
This would give us

Σ1:(n+1)
u = Σ1:n

u − (Kuf+ −KufK
−1
ff Kff+) (38)

(Kf+f+ −Kf+fK
−1
ff Kff+)−1(Kf+u −Kf+fK

−1
ff Kfu).

This equation has a runtime of O((m+ n)2).

Finally, we can update µu. If we assume, for ease of
notation, that m(x) = 0, then we can find that

µ1:(n+1)
u = µ1:n

u + (Kuf+ −KufK
−1
ff Kff+) (39)

(Kf+f+ −Kf+fK
−1
ff Kff+)−1(f+ −Kf+fK

−1
ff f).

Again, this follows from applying (35) to (13). If we do
want to incorporate a mean function m(x) in the above
expression, then this is possible by replacing µu by (µu−
m(Xu)) and f by (f −m(X)).

3.2 Updating for FITC

We will now apply online updating to the FITC algorithm.
After n measurements, the (assumed known) matrix Σ̃u

equals (see (27))

Σ̃1:n
u = Kuu

(
Kuu +Kuf1:nΛ−1f1:nf1:n

Kf1:nu

)−1
Kuu. (40)

After adding the new measurement fn+1, the matrix

Σ̃
1:(n+1)
u becomes

Kuu

(
Kuu +Kuf1:(n+1)

Λ−1f1:(n+1)f1:(n+1)
Kf1:(n+1)u

)−1
Kuu.

(41)
We now again shorten the subscript f1:n to f and fn+1 to
f+ for ease of notation. If we also use that Λff is a diagonal

matrix, we can expand the above relation for Σ̃
1:(n+1)
u to

Kuu

(
Kuu+KufΛ−1ffKfu+Kuf+Λ−1f+f+

Kf+u

)−1
Kuu. (42)

At this point we introduce a theorem by Miller [1981]. It
states that, when A and A + B are nonsingular matrices
and B is a rank 1 matrix, then

(A+B)−1 = A−1 − A−1BA−1

1 + tr(A−1B)
. (43)

We can use this theorem if we apply

A = K−1uu

(
Kuu +KufΛ−1ffKfu

)
K−1uu = (Σ̃1:n

u )−1,

B = K−1uuKuf+Λ−1f+f+
Kf+uK

−1
uu = Pn+1, (44)

with Pn+1 defined as shown above. Note that Pn+1 is
indeed a rank one matrix because Λf+f+ is a scalar.
Application of the theorem results in

Σ̃1:(n+1)
u = Σ̃1:n

u − Σ̃1:n
u Pn+1Σ̃1:n

u

1 + tr
(

Σ̃1:n
u Pn+1

) . (45)

This expression allows us to efficiently update Σ̃u upon
the arrival of new measurement data.

For µu we can derive an expression in a similar way. If we
briefly assume that m(x) = 0, for simplicity of notation,
we can see from (26) that

µ̃1:(n+1)
u = Σ̃1:(n+1)

u K−1uuK
1:(n+1)
uf

(
Λ
1:(n+1)
ff

)−1
f1:(n+1)

= Σ̃1:(n+1)
u (Σ̃1:n

u )−1µ̃1:n
u (46)

+ Σ̃1:(n+1)
u K−1uuKuf+Λ−1f+f+

f+.

From this it follows that the update law for µ̃n
u is given by

µ̃1:(n+1)
u =

I − Σ̃1:n
u Pn+1

1 + tr
(

Σ̃1:n
u Pn+1

)
 µ̃1:n

u (47)

+ Σ̃1:(n+1)
u K−1uuKuf+Λ−1f+f+

f+.

In case we do have a non-zero mean function m(x), we can
incorporate it by replacing µ̃u by (µ̃u −m(Xu)) and f+
by (f+ −m(xn+1)).

The online FITC algorithm has the same computational
complexity as the offline FITC algorithm (see Table 1).
The online algorithm has as advantage that it does not
need to remember previous measurement data. After all,
all data is stored and maintained within µ̃u and Σ̃u. As
a result, it only requires O(m2) memory space, instead of
O(nm) for the offline algorithm.

Once µ̃u and Σ̃u are known, the posterior distribution
of f∗ can directly be found through (28) and (29) in
O(mn∗(m + n∗)) time, with n∗ still the number of test
points in X∗.

3.3 Updating for PITC

Next, we examine how a similar update scheme can be set
up for the PITC algorithm. For this, we consider the case
where we add a measurement n+1 to the subset Xp, which
will grow from size np to np + 1. Note that, instead of Xp,
we could have chosen any subset Xi of X with 1 ≤ i ≤ p.

Similarly to (40), we know that Σ̃1:n
u for PITC equals

Σ̃1:n
u = Kuu

(
Kuu + Σp

i=1KufiΛ̃
−1
fifi

Kfiu

)−1
Kuu, (48)



where we sum over the matrices Λ̃fifi corresponding to
each subset Xi. If we apply the above for n + 1 measure-
ments instead of n, we can rewrite the result to

Σ̃1:(n+1)
u =

((
Σ̃1:n

u

)−1
+ P̃n+1

)−1
, (49)

where we have defined P̃n+1 as

P̃n+1 = K−1uu

(
Kufp,1:(np+1)

Λ̃−1fp,1:(np+1)fp,1:(np+1)
Kfp,1:(np+1)u

−Kufp,1:np
Λ̃−1fp,1:npfp,1:np

Kfp,1:npu

)
K−1uu . (50)

Hence, we see that, when adding a measurement fn+1 to
fp, we only need data from Xp. The other points do not

influence the update of Σ̃u.

At this point, you may have lost track of what the
notation Λ̃fp,1:(np+1)fp,1:(np+1)

means and what the matrix

exactly consists of. The subscript fp,1:(np+1) indicates that
we consider all measurements fp from the subset Xp,
including the new measurement fn+1 which we just added.

As a result, Λ̃fp,1:(np+1)fp,1:(np+1)
equals[

Λ̃fpfp Λ̃fpf+

Λ̃f+fp Λ̃f+f+

]
=

[
Kfpfp −Qfpfp Kfpf+ −Qfpf+
Kf+fp −Qf+fp Kf+f+ −Qf+f+

]
, (51)

where we have again shortened the subscript fp,1:np
to fp,

while our new measurement is denoted by f+.

When we look at definition (50), we can detect two

problems to solve. The first is that we need to know Λ̃−1fpfp
.

An efficient solution is to keep track of Λ̃−1fpfp
as long as

new measurements are added. (If no new measurements

are added to a subset Xi, we may forget Λ̃fifi .) An update

law for Λ̃−1fpfp
can be found directly through (35).

A second problem is that, even when Λ̃−1fpfp
is known, it

still takes O(mnp(m + np)) time to evaluate (50). If we
instead apply (35) to rewrite it, we can find that

P̃n+1 = K−1uu

(
Kuf+ −KufpΛ̃−1fpfp

Λ̃fpf+

)(
Λ̃f+f+ (52)

− Λ̃f+fpΛ̃−1fpfp
Λ̃fpf+

)−1 (
Kf+u − Λ̃f+fpΛ̃−1fpfp

Kfpu

)
K−1uu ,

which only takes O
(
(m+ np)2

)
time to evaluate.

We should note at this point that P̃n+1 is a rank one
matrix. Hence, we can again apply the theorem by Miller
[1981]. Similarly to (45), this results in

Σ̃1:(n+1)
u = Σ̃1:n

u − Σ̃1:n
u P̃n+1Σ̃1:n

u

1 + tr
(

Σ̃1:n
u P̃n+1

) . (53)

Deriving an update law for µ̃1:(n+1)
u is done similarly

to what was done in (46). However, we also need to
apply some methods which we used in deriving (39). The
resulting expression will be

µ̃1:(n+1)
u =

I − Σ̃1:n
u P̃n+1

1 + tr
(

Σ̃1:n
u P̃n+1

)
 µ̃1:n

u (54)

+ Σ̃1:(n+1)
u K−1uu (Kuf+ −KufpΛ̃−1fpfp

Λ̃fpf+)

(Λ̃f+f+ − Λ̃f+fpΛ̃−1fpfp
Λ̃fpf+)−1(f+ − Λ̃f+fpΛ̃−1fpfp

fp).

The above expressions have a few interesting properties.
First of all, if we define all subsets Xi such that they have

size ni = 1, then we basically use FITC instead of PITC.
As a result, Λ̃fpf+ and Λ̃f+fp become zero. This turns

the PITC matrix P̃n+1 from (52) into the FITC matrix
Pn+1 from (44). All other PITC expressions turn into their
respective FITC counterparts as well. On the other hand, if
we only have one subset Xi, which hence equals X, then we
basically have not made any second sparse GP assumption.
As a result, Λ̃fpfp becomes Kff − Qff , and it follows
that (53) and (54) turn into (38) and (39), respectively,
though proving this would be a lengthy process.

4. EXAMPLE

In this section we will show the effectiveness of the derived
algorithms at identifying a simple system. For small deter-
ministic systems, few data samples are required to learn
the system dynamics and hence regular GP regression is
applicable. For very large systems, many data samples are
required, but also many inducing input points (a large
value of m) are needed, which makes sparse GP regression
less applicable. As such, the ideal example to show the
effectiveness of sparse GP regression is to use a small
system involving large uncertainty, such that a large data
set is required to learn the system dynamics.

The example system is borrowed from Huber [2014] and is
described by

x(k + 1) =
x(k)

2
+

25x(k)

1 + x(k)2
cos(x(k)) + ε, (55)

where, to get a large uncertainty, we have set ε ∼ N (0, 10).
We start at x(0) = 0 and calculate the state x at each
subsequent timestep. These state transitions are then
used in various different GP regression algorithms to
learn the above state transition function. We use both
regular GP, FITC and PITC, where the latter two have
m = 31 inducing input points, uniformly distributed over
the interval [−7.5, 7.5]. We use the squared exponential
covariance function with all hyperparameters set to unity.

The three algorithms are compared by calculating the
Mean Squared Error (MSE) with respect to the exact
state transition function (without noise) on the interval
[−7.5, 7.5]. We do this comparison in two ways. First we
do an ‘equal data’ comparison, where we give all three
algorithms the same n = 4 000 data points. (This is the
maximum number of data points before the regular GP
algorithm runs into memory problems.) Naturally, FITC
and PITC run faster than regular GP, so to keep things
fair, we also do an ‘equal runtime’ comparison, where we
give the regular GP algorithm n = 4 000 data points
and subsequently give FITC and PITC the same runtime,
letting these online algorithms add data points until their
time is up. The results of all these experiments, obtained
with Matlab on a simple home PC, are shown in Table 2.

From Table 2 we can see that, given the same amount
of data, regular GP regression is more accurate than
PITC, which in turn is more accurate than FITC. This
corresponds to the amount of simplifying assumptions
that are made. However, the differences are small. In
fact, due to the randomness involved in the simulations,
occasionally regular GP regression performed worse than
the other two algorithms.



Table 2. Comparison of the accuracy of the differ-
ent algorithms for various numbers of data points.
The results shown are averaged results of 300 in-
dependent simulations. The PITC algorithm used
subsets of size m = 31. After each m data points,

all prior data points were forgotten.

Algorithm Runtime Data points MSE

GP 4.32 s 4 000 0.102

PITC
1.40 s 4 000 0.104
4.32 s 12 017 0.035

FITC
0.43 s 4 000 0.106
1.23 s 12 017 0.036
4.32 s 42 668 0.011

On the flip side, FITC and PITC execute significantly
faster than regular GP regression. Because of the online
nature of these algorithms, the additional available run-
time can be used to incorporate more data points. When
this is done, both FITC and PITC perform much better
than regular GP regression. In addition, FITC performs
better than PITC for the simple reason that it can incor-
porate more data in the same amount of time, even though
it uses that data slightly less efficiently.

5. CONCLUSIONS AND RECOMMENDATIONS

In this paper we have derived expressions which allow for
an efficient online implementation of the FITC and PITC
algorithms. These algorithms are in particular effective
when a large set of data needs to be learned, for instance
to approximate the system dynamics of a highly stochastic
system. Given the same amount of data, the FITC and
PITC algorithms have a slightly lower accuracy than
regular GP regression. However, because of their faster
runtime, they can incorporate much more data in the same
time, while using less memory. As a result we have shown
that, when computational requirements are the limiting
factor, FITC and PITC result in much more accurate
estimates than regular GP regression.

Furthermore, due to the online way in which these algo-
rithms have been derived in this paper, it is possible to in-
corporate additional data as long as there is still available
runtime. In addition, incorporating such data does not put
any additional requirements on memory, since all data is
contained within the parameters µ̃u and Σ̃u. This makes
the online versions of the FITC and PITC algorithms
very suitable for application in systems with large sets
of measurement data, especially when new measurement
data is constantly being added.

There are still various subjects for future research, to
improve these algorithms further. For instance, no fine-
tuning has been done of either the hyperparameters or the
positions of the inducing inputs. It would be interesting to
see if the methods used by Snelson and Ghahramani [2006]
can be applied in an online way, without having to start
incorporating data from scratch. Expanding on this, also
the online addition of inducing input points (increasing
m), whenever this would result in a better performance,
would be an interesting subject for future research.

Another subject for future research is to find an optimal or
near-optimal way of forming subsets Xi within the PITC
algorithm. It is expected that putting highly correlated
measurements into the same subset will increase the algo-
rithm accuracy. After all, then the off-diagonal terms in
Kfifi are likely to have higher values, which means less
data is lost due to the PITC assumption. Currently, we
have lumped m subsequent measurements into a single
subset, assuming that subsequent measurements are corre-
lated. However, through some sort of clustering algorithm,
it may be possible to increase the accuracy of the PITC
algorithm even further.
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