
Tracking student skills real-time through a
continuous-variable dynamic Bayesian net-
work
Hildo Bijl
Utrecht University of Applied Sciences
info@hildobijl.com

The field of Knowledge Tracing is focused on predicting the success rate of a student for a given skill.
Modern methods like Deep Knowledge Tracing provide accurate estimates given enough data, but being
based on neural networks they struggle to explain how these estimates are formed. More classical methods
like dynamic Bayesian networks can do this, but they cannot give data on the accuracy of their estimates
and often struggle to incorporate new observations in real-time due to their high computational load.

This paper presents a novel method, Performance Distribution Tracing (PDT), in which the distribu-
tion of the success rate is traced. It uses a dynamic Bayesian network with continuous random variables
as nodes. By tracing the success rate distribution, there is always data available on the accuracy of any
success rate estimation. In addition, it makes it possible to combine data from similar/related skills to
come up with a more informed estimate of success rates. This makes it possible to accurately predict
exercise success rates, even when an exercise requires a combination of different skills to solve. And
through the use of the right conjugate priors, all distributions are available in analytical form, allowing
efficient online updates upon new observations.

An application to an engineering physics course has shown that the PDT algorithm works well in
real-life settings. Students mainly appreciate the overview given of their learning process as well as the
corresponding practice recommendations.

Keywords: Education, Knowledge Tracing, Bayesian Networks, Data Mining

1. INTRODUCTION

When a teacher/tutor interacts with a student, the teacher tracks (often subconsciously) the stu-
dent’s progress. There is always an idea in the back of the teacher’s mind, ‘The student is good
with these skills and less good with these other skills.’ This tracking is subject to three important
properties.

1. Success rate estimates are done real-time, taking into account student learning effects.
2. The teacher can clarify the origin and certainty/accuracy of said estimates.
3. The estimates take into account links between a large variety of skills.

The goal of this paper is to set up an algorithm that satisfies the above three requirements,
effectively automating part of what the teacher does. The resulting success rate estimates can

1

then be used to (among others) provide recommendations to students on what skills to practice
and which exercises are on the right level to do so, even further automating the tutoring process.
This is then applied to an educational setting.

There is a long history behind skill tracking and digital tutoring systems. Most work relates
to Knowledge Components (KCs), as described by Koedinger et al. (2012). A distinction can be
made between explicit KCs (facts/principles) and implicit KCs (skills). Often skills are practiced
and tested through exercises, and the fundamental question then is, ‘What is the chance that the
student will do the next exercise correctly?’ This probability is known as the success rate and
the study of tracking/estimating it is known as Knowledge Tracing (KT). Overviews are given
by Sapountzi et al. (2019) and Liu et al. (2021) though a brief summary is provided below.

Classical work on KT revolves around Bayesian Knowledge Tracing (BKT) (Corbett and An-
derson, 1994). This method directly estimates the success rate, constantly updating this estimate
on each subsequent exercise execution using a hidden Markov model. Probabilities of the stu-
dent slipping (failing despite having mastery) or guessing (succeeding while not having mastery)
are taken into account (Baker et al., 2008) as well as potentially the exercise difficulty (Pardos
and Heffernan, 2011). Extensions exist for further individualization towards students (Yudelson
et al., 2013; Yudelson, 2021).

Instead of using probabilistic models, an alternative set of methods uses logistic models. The
fundamentals have been presented by Cen et al. (2006) in the Learning Factors Analysis (LFA)
method. By using weight factors to account for the difficulty of a KC, the ease of learning
of a KC and various other parameters, and by inserting the result into a logistic function, the
success rate for a KC is estimated. Extensions/variants include Performance Factor Analysis
(PFA) (Pavlik Jr et al., 2009) and Knowledge Tracing Machines (KTM) (Vie and Kashima,
2019).

The methods above mainly work for individual KCs, struggling to take into account links be-
tween KCs. This so-called domain knowledge can be taken into account in two ways: prespeci-
fied or learned by the algorithm. With the introduction and growing popularity of Massive Open
Online Courses (MOOCs) (Kaplan and Haenlein, 2016) the amount of data that can be used
for KT has increased significantly. As a result, more advanced methods like Deep Knowledge
Tracing (DKT) have appeared, with fundamental work done by (Piech et al., 2015). In DKT re-
current neural networks are used to model students’ performance as they work through a course.
Though this method requires a large amount of data, and is prone to overfitting (Guo et al.,
2021), it does not require domain knowledge: the algorithm determines for itself which links
between KCs exist. Possible extensions include taking into account the learning curve (Yang
et al., 2021). A downside is that neural networks struggle to explain their estimates and their
accuracy, while such accountability is becoming increasingly more important in machine learn-
ing applications (Kim and Doshi-Velez, 2021). Hence, to satisfy requirement 2, it is generally
better to directly use existing domain knowledge, especially since such domain knowledge in
education is generally readily available.

The most common way to take into account domain knowledge is through Bayesian net-
works. When a learning effect should also be considered, these networks are extended to Dy-
namic Bayesian Networks (DBNs) as outlined by Levy and Mislevy (2016). There are various
example applications of DBNs to education (Käser et al., 2017; Reichenberg, 2018; Cui et al.,
2019; Levy, 2019; Sheidaei et al., 2022). Though giving very promising results, many of these
implementations require numerically complex evaluations, often through methods like Gibbs
sampling. This prevents the real-time updating of success rate estimates (requirement 1). On

2

top of this, all considered DBNs model skill acquisition as binary variables: there either is or
isn’t mastery. A claim ‘There is 40% chance of mastery’ hence does not have any accuracy data
attached to it. Do we simply not know much about the student and hence loosely guess ‘40%’?
Or has an extensive set of data shown that the student successfully demonstrates a skill 40% of
the time? It is left unclear, violating requirement 2.

In this paper a new method is proposed called Performance Distribution Tracing (PDT). In
PDT the nodes of the DBN are not binary variables (mastery or not) whose chance is estimated,
but continuous random variables (the success rates) whose distribution is constantly updated.
By choosing the right conjugate priors, it is possible to update the success rate distributions
analytically in real-time, satisfying requirement 1. And since the distributions of the success
rates are known, it gives information on the certainty of the resulting success rate estimates
(requirement 2). On top of that, knowing the success rate distributions also allows combining
data from multiple sources – for instance multiple KCs/skills – facilitating the use of domain
knowledge (requirement 3).

This paper is set up as follows. Chapter 2 studies tracing the success rate distribution of a
student for a single skill. In Chapter 3 these methods are extended to take into account exercises
involving multiple skills. This is further extended in Chapter 4, studying links between various
skills and how these links can be taken into account to get more informed success rate estimates.
The PDT method has been incorporated into a tutoring app that has been applied to a basic engi-
neering course. Results of this are discussed in Chapter 5. The paper closes off with conclusions
and recommendations in Chapter 6.

2. MODELING THE PROFICIENCY OF A SINGLE SKILL

Consider any single skill A (an implicit knowledge component) that a student might do. This
skill A could be as basic as ‘multiply two small numbers’ or as advanced as ‘perform a complex
engineering mechanics calculation’. For this skill, we want to track the student’s performance,
incorporating new observations and making predictions on future executions.

2.1. MATHEMATICALLY DESCRIBING THE PROBABILITY OF SUCCESS

Key to modeling the student’s proficiency at skill A is the success rate: the chance a that a
student performs it successfully. Existing KT methods see a as a deterministic variable that
must be found. However, this provides no data on the confidence with which a is known: is it a
rough guess or a near-certain estimate?

This problem is solved if we describe the success rate by a random variable a. (The underline
notation denotes random variables.) In this case a is not described by a single value, but by
its distribution, expressed through its Probability Density Function (PDF) fa(a). Examples of
success rate PDFs are shown in Figure 1. Note that a only takes values between 0 and 1 because
it is a probability. We hence always have fa(a) = 0 for a < 0 or a > 1.

Describing the PDF of a success rate a is done through basis functions. Specifically, we use
the probability density functions of the beta distribution (Johnson et al., 1995, chapter 25) as
basis functions. We define the basis functions gi,n(a), for some order n, as

gi,n(a) = (n+ 1)

(
n

i

)
ai (1− a)n−i . (1)

3

Figure 1: Three example distributions fa(a) plotted from 0 to 1. They all have an expected value
of 0.6, denoting a 60% estimated success rate, but their peakedness and hence their degree of
certainty varies.

Note that the above function is the PDF of a beta distribution with parameters α and β satisfying
α = i + 1 and β = n− i + 1. Using the above function as basis function, we write the PDF of
a as

fa(a) =
n∑

i=0

cigi,n(a) = cTgn(a). (2)

Note that the coefficient vector c is the vector with all coefficients ci and identically the basis
function vector gn(a) is the vector function containing all basis functions gi,n(a). Obviously,
not all functions can be described through this basis form, but by choosing our priors in the right
way (as conjugate priors) the PDFs we encounter do fit this form. It effectively allows us to
reduce a complete function to a set of coefficients.

There are some interesting consequences to describing the distribution of a in this way.
Because fa(a) is a PDF, its integral must equal one. Hence,∫ 1

0

fa(a) da =

∫ 1

0

(
n∑

i=0

cigi,n(a)

)
da =

n∑
i=0

ci

(∫ 1

0

gi,n(a) da

)
=

n∑
i=0

ci = 1. (3)

Note that we have used the fact that the integral over the beta distribution PDF gi,n(a) equals 1.
The above shows that the sum of all the coefficients must always equal one, and that there are
hence only n degrees of freedom in the n + 1 coefficients. If the coefficients add up to one, the
coefficients are said to be normalized. If the coefficients are not normalized, then it is always
possible to normalize them by dividing each coefficient by the sum of all coefficients. In practice
this is often done, as well as ensure that all coefficients remain non-negative, to compensate for
potential numerical inaccuracies in computers.

4

Given fa(a) we can also calculate the expected probability of success. This is given by

E[a] =
n∑

i=0

ci

(∫ 1

0

agi,n(a) da

)
=

n∑
i=0

ci
i+ 1

n+ 2
. (4)

More generally, any moment E[am] can be calculated through

E[am] =
n∑

i=0

ci
(n+ 1)!

(n+m+ 1)!

(i+m)!

i!
. (5)

Instead of looking at the success rate a, we can also study the failure rate 1−a. The distribution
of the failure rate, described by f1−a(a), can be found by reversing the order of the coefficients
ci. That is,

f1−a(a) =
n∑

i=0

cn−igi,n(a). (6)

This concludes all the relevant properties of our basis function description. It is time to apply it.

2.2. UPDATING THE SKILL SUCCESS RATE DISTRIBUTION

Initially, when no data is present on a skill A, we start with the flat prior fa(a) = 1. This
corresponds to a coefficient vector of c = [1]. The order of this coefficient vector is hence 0:
there is no information yet.

Next suppose that, after a student has done k−1 exercises for some skill A, the performance
distribution fa(a|Dk−1) is known. Here, Dk−1 denotes all data related to the first k − 1 exercise
executions. In other words, the coefficient vector c is known up to this point. If the student then
performs an exercise again (execution k), which is either a success or a failure, how is this data
incorporated?

The posterior distribution is given through Bayes’ law as

fa(a|Dk) =
p(Dk|a,Dk−1)fa(a|Dk−1)

p(Dk|Dk−1)
. (7)

Note that, if the last exercise execution was successful, then p(Dk|a,Dk−1) = a, while on a
failure it equals p(Dk|a,Dk−1) = 1 − a. Also note that p(Dk|Dk−1) is a constant. Assuming
that afterwards we normalize our coefficient vector c, which we always do, we can safely ignore
it.

The posterior distribution fa(a|Dk) described above is once more a performance distribution
in basis form. That means we can describe it through a new set of coefficients. If the old
distribution has order n, the new distribution can be shown to have order n∗ = n + 1 with
coefficients (for 0 ≤ i ≤ n∗)

c∗i =

{
ici−1 on success,

(n+ 1− i)ci on failing,
(8)

where afterwards we apply normalization to the coefficients to get their sum to equal one once
more. (The full derivation of the above is omitted for reasons of brevity, but follows directly
from (7).) Note that c∗ (the star superscript) denotes the coefficients of the updated distribu-
tion, incorporating the latest observation: this notation will be used more often in this paper.
Through this update law, we can continuously incorporate more data, allowing the performance
distribution to become more peaky over time.

5

2.3. INFERRING THE SUCCESS RATE FOR THE NEXT EXECUTION

The above has assumed that the actual value of the success rate a is a constant: it may be
unknown, but it does not vary over time. In reality this is not the case. After every exercise the
student may have learned something new, or possibly misinterpreted something. The value of a
hence slowly shifts, upwards or downwards. This is known as the learning effect (Newell and
Rosenbloom, 1993).

To account for the learning effect, we use (as is customary in KT) multiple random variables:
we define ak as the probability of success of execution k of skill A. Initially we know (as our
prior) the distribution fa1(a). After the first exercise, this will be updated using (8) as fa1(a|D1).
But what does this tell us about the probability of success a2 of the second execution?

To be able to say anything about a2, we must first assume a joint prior between subsequent
skill executions ak and ak+1: how similar are their success rates? Normally in KT, when the
success rates a are modeled as binary random variables, this is done through a simple probability
table. Instead, because we have continuous random variables, we must set up a joint prior
probability density function. A convenient conjugate joint prior is

fak,ak+1
(ak, ak+1) =

gns
T (ak)gns(ak+1)

ns + 1
, (9)

where ns is known as the smoothing order. (This name will be explained later.) The shape
of this prior is shown in Figure 2. Note that the shape is symmetric with respect to ak and
ak+1. It may be sensible to skew this prior to encourage ak+1 to be (on average) larger than ak,
since students generally get better at a skill with more practice instead of worse. However, for
simplicity reasons this has not been done.

Figure 2: The joint prior for two subsequent skill success rates ak and ak+1, for smoothing order
ns = 10. Note that, given a value of ak, the value of ak+1 will very likely be similar. Higher
smoothing orders ns give a more peaked ridge at the diagonal line, and hence assume a stronger
correlation between ak and ak+1.

The above prior can be used to infer the distribution of ak+1 from the distribution of ak. For
this, we must first use the definition of the conditional distribution to write

fak,ak+1
(ak, ak+1|Dk) = fak+1

(ak+1|ak, Dk)fak(ak|Dk). (10)

6

Note that, given ak, the data Dk does not add any information to ak+1, so it can be omitted.
This turns fak+1

(ak+1|ak, Dk) into fak+1
(ak+1|ak). By applying the conditional distribution in

reverse, and by subsequently marginalizing over ak, we find

fak+1
(ak+1|Dk) =

∫ 1

0

fak,ak+1
(ak, ak+1)fak(ak|Dk)

fak(ak)
dak. (11)

The resulting distribution is once more one in basis form. We can hence solve the integral and
derive the resulting coefficients ck+1,i. For the mathematically curious, the full derivation is
given in Appendix A. We only present the final outcome here as

ck+1,i =
ns∑
j=0

(
i+ j

i

)(
n∗ + ns − i− j

n∗ − j

)
c∗k,j, (12)

where afterwards the coefficients must be normalized as usual. Note that the coefficients c∗k,j
describe fak(ak|Dk) (the success rate of execution k given the data on the result of execution k)
while ck+1,i describe fak+1

(ak+1|Dk) (the success rate of execution k + 1 without knowing the
result of execution k+1). Also note that the order of this new set of coefficients ck+1,i is always
the smoothing order ns.

When applying the joint prior in this way, the distribution of ak+1 is always slightly flatter
(less peaked) than the distribution of ak. As a result, this step is known as the smoothing step. By
applying this smoothing, we effectively incorporate the uncertainty of the learning effect. The
smaller ns is, the more smoothing is applied, while a large value of ns leaves the distribution
nearly unaffected.

The only unanswered question is how to choose ns. In practice this is done based on various
settings. The full method is discussed in Appendix B but it can be summarized in a few simple
rules. If a student has practiced the skill a lot, then the learning effect is smaller so ns is chosen
to be larger to have less smoothing. Similarly, if the time since the last skill execution is large,
the student may have forgotten a lot, so ns is chosen to be smaller to have more smoothing. In
practice, because the smoothing step is time-dependent, the coefficients that are stored in the
database for each student are always the coefficients c∗k after incorporating new observations yet
prior to smoothing.

3. HANDLING EXERCISES COMBINING MULTIPLE SKILLS

So far we have considered exercises in which only a single skill needed to be applied. In practice,
many exercises require a variety of skills. How can we incorporate results of these exercises into
the corresponding skill success rate distributions? And how do we use this to predict exercise
success rates?

3.1. MATHEMATICALLY DEFINING THE EXERCISE SET-UP

The first step is to describe the exercise. Consider an exercise X requiring skills A and B. The
exact way this exercise is set up can be described through various operators.

• The and-operator: if a successful execution of the exercise requires a successful execution
of both A and B, then we write X = and(A,B). The chance x that a student does both A
and B correctly is x = ab.

7

• The or-operator: if an exercise can be solved by either doing A or B, with each method
being suitable, then we write X = or(A,B). In this case x = 1−(1−a)(1−b) = a+b−ab.
Note that x ≥ max(a, b) because a student can use the other method/skill to check his/her
answer.

In theory an exercise can have any kind of set-up. For instance, we may have X = and(A, or(A,B)),
in which case x(a, b) = a2 + ab− a2b. The first expression ‘and(A, or(A,B))’ is known as the
exercise set-up while the second expression ‘a2 + ab − a2b’ is the corresponding probability
polynomial. Note that any set-up can be readily turned into a probability polynomial.

3.2. UPDATING THE SKILL SUCCESS RATE DISTRIBUTIONS

Suppose that a student does exercise X correctly, or alternatively he/she fails it. This then
provides another data point DX that can be used to update the distributions of both a and b.
We consider how to update the distribution of a. It works identically for b, as well as any other
potentially involved skill.

Our goal is to find the posterior fa(a|DX). (All previously known data DA and DB on
skills A and B is also taken into account, but this is left out of the notation for brevity.) By
marginalizing the joint distribution fa,b(a, b|DX) with respect to b, followed up with Bayes’ law,
we find

fa(a|DX) =

∫ 1

0

fa,b(a, b|DX) db =

∫ 1

0

p(DX |a, b)fa,b(a, b)
p(DX)

db. (13)

Note that p(DX) is a constant, not depending on a, so we can leave it out if we normalize co-
efficients afterwards. Also note that p(DX |a, b) follows from the probability polynomial x(a, b)
as

p(DX |a, b) =

{
x(a, b) on success,

1− x(a, b) on failing.
(14)

We generally also assume independence of a and b. In this case we can write fa,b(a, b) as
fa(a)fb(b) and hence get

fa(a|DX) ∼
(∫ 1

0

p(DX |a, b)fb(b) db
)
fa(a) = ha(a)fa(a), (15)

where we have defined ha(a) as the part between brackets in the above equation. Note that ha(a)
is merely, for a given a, the expected value of (on success) the probability polynomial x(a, b) or
(upon failure) the inverse 1− x(a, b), with respect to all other random variables.

ha(a) is a polynomial that only depends on a. This means we can write it as

ha(a) =

np∑
i=0

kia
i, (16)

for some polynomial order np and some set of constants k0, . . . , knp . The exact value of these
constants can be found from the probability polynomial with the help of (5).

Before we continue, we must first put ha(a) in an alternate form. We want to write ha(a) as

ha(a) =

np∑
i=0

k′
i

(
np

i

)
ai(1− a)np−i, (17)

8

for another set of constants k′
0, . . . , k

′
np

. The link between these two sets of constants is

(
np

np − i

)
k′
i =

i∑
j=0

(
np − j

np − i

)
kj. (18)

Thanks to this alternate way of writing ha(a), we can now update the coefficients of fa(a). If this
PDF used to have order n, with coefficients ci for 0 ≤ i ≤ n, then the posterior PDF fa(a|DX)
will be of order n∗ = n+ np. Its coefficients c∗i , with 0 ≤ i ≤ n∗, can be found through

c∗i =

min(np,i)∑
j=max(0,i−n)

(
i

j

)(
n∗ − i

np − j

)
ci−jk

′
j, (19)

where afterwards coefficients must once more be normalized. Note that this method is a gener-
alization of the update law of (8). It allows us to update the distributions of any skills A, B, and
potentially more, based on exercises with any set-up involving these skills.

In practice this update law has some intuitive consequences. Consider the situation where
a student has mostly mastered skill A and is still struggling with skill B. If he/she then tries
an exercise with set-up and(A,B) and fails, then the probability theory inherent in the above
method automatically searches for ‘blame’. In this case, the fault most likely lies in skill B, so
that skill is more strongly penalized, while the success rate for skill A is only slightly adjusted
downwards. This behavior is exactly what seems sensible, showing that the system works in the
desired way.

3.3. INFERRING THE SUCCESS RATE FOR THE EXERCISE

When considering which exercise to present to the student, it is useful to know how likely the
student is to successfully complete each exercise. Given an exercise X with known set-up and
probability polynomial, we want to know the success rate x, or more simply put the expected
value E[x] of it.

The expected value E[x] is actually straightforward to find. If we assume that a and b are
independent, then the expected value of the probability polynomial E[x(a, b)] follows directly
from the application of (5).

In some cases it is also useful to know the complete distribution of x. This tells us (among
others) how certain we are of the estimated success rate E[x]. Finding the distribution of x
is rather involved, mostly because it generally cannot be described through our basis functions.
However, we can define a nearly identical random variable x̂ whose distribution can be described
through basis functions.

We want the exercise success rate x and this new random variable x̂ to have as similar
distributions as possible. To capture this similarity, we define the prior fx̂,x(x̂, x), identically
to (9), as

fx̂,x(x̂, x) =
gni

T (x̂)gni
(x)

ni + 1
, (20)

for some inference smoothing order ni. In practice, the order ni for this application is often
chosen to be on the lower side (ni ≈ 10) for practical reasons we will soon see.

9

We want to find the posterior distribution fx̂(x̂|DA,B) given all data DA,B on skills A and B.
Identically to how we found (11) we can find

fx̂(x̂|DA,B) =

∫ 1

0

fx̂,x(x̂, x)fx(x|DA,B)

fx(x)
dx. (21)

This integral can subsequently be solved and rewritten into the basis function form. This gives
us a set of coefficients cx,i describing the posterior distribution of x̂. These coefficients satisfy

cx,i =

∫ 1

0

∫ 1

0

gi,ni
(x(a, b))fa(a|DA)fb(b|DB) da db, (22)

where subsequent normalization must be applied, as usual. Alternatively, we can say that

cx = E[gni
(x(a, b))]. (23)

So the coefficients cx,i are simply the expected values of the basis functions gi,ni
when inserting

the probability polynomial into these basis functions. This idea works identically if more than
two skills A and B are involved, and it is known as the inference step of the algorithm.

The remaining question is how to calculate these coefficients from the coefficients of a and
b. Note here that each basis function gi,ni

is also a polynomial function. Inserting a polynomial
into a polynomial function once more gives a polynomial. If gi,ni

does not have too large pow-
ers (that is, we keep ni reasonably small) this can be expanded through a binomial expansion.
Subsequently, the expected value can be found through (5).

Finally, it might be interesting to discuss the intuitive view of this new variable x̂: how
can we interpret it? Some may argue that x, which follows directly from a and b through the
probability polynomial x(a, b), is not the most accurate way to describe whether the student
will successfully complete exercise X . After all, when doing exercise X , the student must also
recognize the steps to take, which has nothing to do with A and B individually, but does affect
the success rate for exercise X . As a result, we must define a true success rate x̂, which takes
the estimated success rate x based on the skills A and B, and adds some uncertainty (read:
smoothing of the distribution) on top of this.

4. DESCRIBING RELATIONS BETWEEN SKILLS

The strength of the PDT algorithm lies in its ability to link related skills. A course generally
does not consist of a collection of unrelated skills. The skills build up on each other in an
often complex way. This can be modeled and incorporated. The complete method may seem
convoluted at first, but the overview at the end (Figure 3) should clarify this.

4.1. DEFINING THE SKILL SET-UP

A composite skill is a skill made up of multiple smaller subskills. For instance, to calculate
2 + 3 · 4 you must first figure out the order of operations, then apply multiplication and finally
apply addition. In this simple example, we could say that skill S (evaluating basic expressions)
has a set-up of and(A,B,C), with A, B and C the aforementioned subskills.

Skills have a set-up similar to exercises, but while exercises always have a deterministic set-
up, only using and and or operations, skills may have a non-deterministic set-up. In the above
example, instead of using addition, we may perhaps require subtraction half the times, resulting
in a varying set-up. We therefore add the following non-deterministic operations.

10

• The pick-operator: from a list of subskills, we select only one. For instance, if a skill
first requires either A or B (but always only one of them) followed by C, then we write
S = and(pick(A,B), C). To find the probability polynomial, we may reduce pick(A,B)
to 1

2
a + 1

2
b. Extensions exist where multiple skills from a list are selected and/or weights

are applied upon selection.

• The part-operator: if a skill only requires a skill A in a part p of the cases, always followed
by a skill B, then we may write S = and(part(A, p), B). Alternatively, if sometimes we
can apply either A or B, and sometimes only B, we may write S = or(part(A, p), B).

For the part-operator, the probability polynomial depends on the surrounding operator.
On a surrounding and-operator we reduce part(A, p) to 1 − p(1 − a), while on a sur-
rounding or-operator part(A, p) becomes pa.

With these extra operators, it is still always possible to turn a skill set-up into a probability
polynomial. As a result, using the merging methods from Section 3.3, we can always predict the
success rate of a skill S based on data from its subskills, just like for an exercise X .

4.2. MERGING OBSERVATIONS ON SKILLS AND SUBSKILLS

Consider the situation where a composite skill S has subskills A and B, and where data is
available on all these skills.

• First the student practices subskills A and B, giving data DA,B. Using the methods from
Section 3.3 – specifically the coefficients from (23) – we can hence infer fs(s|DA,B).

• Subsequently the student practices skill S directly, giving data DS . Using only this data,
we can also find a distribution fs(s|DS). This is done through (8) or more generally
with (19).

How can this data then be ‘merged’ into fs(s|DA,B, DS)? To answer this question, we must
apply Bayes’ law,

fs(s|DA,B, DS) =
p(DA,B, DS|s)fs(s)

p(DA,B, DS)
. (24)

Assuming that the observation sets DA,B and DS are conditionally independent given s, we
may reduce p(DA,B, DS|s) to p(DA,B|s)p(DS|s). Applying Bayes’ law in the reverse direction
subsequently gives

fs(s|DA,B, DS) =
p(DA,B)p(DS)

p(DA,B, DS)

fs(s|DA,B)fs(s|DS)

fs(s)
. (25)

Note that all terms apart from fs(s|DA,B) and fs(s|DS) are constants. We can therefore find
the posterior distribution of s simply by multiplying these separately inferred distributions and
normalizing the result.

Let’s say that fs(s|DA,B) has order nA,B and coefficients cA,B
i , and identically fs(s|DS) has

order nS and coefficients cSi . The resulting posterior distribution fs(s|DA,B, DS) then has order
nm = nA,B + nS and coefficients cmi satisfying

cmi =

min(nS ,i)∑
j=max(0,i−nA,B)

(
i

j

)(
nm − i

nS − j

)
cA,B
i−j c

S
j , (26)

11

where the coefficients must be normalized afterwards. Note the similarity of the above inference
law with the update law (19).

The above method effectively shows how to merge two distributions of fs(s), based on
different, separate and conditionally independent data, together into one distribution. As a
result the above method is known as merging distributions, which is also why we use a sub-
script/superscript m here.

4.3. INCORPORATING CORRELATIONS BETWEEN SKILLS

Next to parent/child dependencies between skills, we in practice also encounter correlated skills.
For instance, the skill ‘expand brackets with numbers’ with example exercise ‘expand (2+3) ·4’
is generally strongly correlated with the skill ‘expand brackets with letters’ with example exer-
cise ‘expand (a+ b) · c’. Note that these skills are similar but not identical: many a mathematics
teacher can confirm that students who have mastered the first skill often still struggle with the
second one. Nevertheless, someone’s performance on the first skill does give a little bit of infor-
mation about the expected performance on the second skill.

To model this, we consider a skill S with a correlated skill R. We write their success rates
as s and r, respectively. We now want to use data DR on skill R to infer the distribution of s.
Once more, the first step is to define a joint prior between r and s. Identically to (9) we assume

fr,s(r, s) =
gnc

T (r)gnc(s)

nc + 1
, (27)

for some correlation smoothing order nc. The stronger the correlation, the higher nc must be.
In practice correlations are often weak, so nc does not go above a value of 10.

Once the joint prior is defined, we notice that the problem we have here is exactly the same
as that from Section 2.3. The distribution fs(s|DR) is hence simply the smoothed version of
fr(r|DR), using smoothing order nc. The coefficients follow from (12).

Once fs(s|DR) has been determined, we can merge it into fs(s|DS) using the methods from
Section 4.2; specifically through (26). This gives us the posterior fs(s|DR, DS). After all, the
problem is identical to when we tried to derive the posterior distribution of s based on data from
subskills. Additionally, in case data from subskills is also present, we can merge that in too. The
order of merging does not matter.

A more complex problem appears when there are groups of correlated skills. Imagine there
are two skills Q and R that are both correlated with skill S. You could treat all these correlations
individually and separately merge fs(s|DQ) and fs(s|DR) into fs(s|DS). However, this neglects
correlations between skills Q and R which are most likely present. To take this into account, we
can define a joint prior like

fq,r,s(q, r, s) =
1

nc + 1

nc∑
i=0

gi,nc(q)gi,nc(r)gi,nc(s). (28)

By applying Bayes’ law back and forth a few times, similar to what we did for (25), we can find
that the joint posterior distribution given data on Q and R is proportional to

fq,r,s(q, r, s|DQ, DR) ∼ fq(q|DQ)fr(r|Dr)fq,r,s(q, r, s). (29)

Marginalizing over q and r then results in the posterior distribution fs(s|DQ,R). The lengthy
mathematics are omitted for reasons of brevity, but the final procedure is as follows.

12

• Start with the coefficients cqi and cri describing fq(q|DQ) and fr(r|DR). (Ensure that the
learning effect and time decay are already taken into account.)

• Smooth these distributions separately with (12) giving coefficients cq
′

i and cr
′

i describing
fs(s|DQ) and fs(s|DR).

• Multiply the coefficients cq
′

i and cr
′

i element-wise as

cs
′

i = cq
′

i · cr
′

i (30)

to find the coefficients cs′i describing fs(s|DQ, DR).
• Merge the distributions fs(s|DS) (described by csi) and fs(s|DQ, DR) (described by cs

′
i)

using (26). The resulting coefficients describe fs(s|DQ, DR, DS) as intended.

This allows us to even take into account groups of correlated skills. In practice this is hardly
ever necessary: correlated duos do occur, but triplets or quadruplets are extremely rare and often
indicate an inconveniently chosen course set-up.

4.4. OVERVIEW OF PERFORMANCE DISTRIBUTION TRACING STEPS

We have so far seen how, given data on a skill S, its subskills A,B, . . . and its correlated skills
Q,R, . . ., the posterior distribution of s is determined. Let’s create an overview. The entire
procedure is summarized in Figure 3.

Figure 3: Overview of how to incorporate data from subskills and correlated skills. The star dis-
tributions – stored in the database – denote the distributions after incorporating a new observation
from an exercise, but before applying any smoothing for practice and time decay. For smoothing
use (12), for inference use (23) and for merging use (26).

Effectively, the coefficients stored in the database are always the ones describing a distribu-
tion of s after data on an exercise execution has been incorporated, but before smoothing has
been performed to take into account the learning effect (practice decay) as well as time decay.
So before anything is done, the stored coefficients c∗ are first always smoothed using (12) with
smoothing order ns. Note that, as explained in Appendix B, the value of ns depends (among
others) on the time passed since the last exercise, so it is likely to have a different value for every
skill.

If a skill is a composite skill, and hence has subskills, an inference step is applied using the
skill set-up. This is done through (23). Afterwards distributions are merged using (26).

Similarly, if a skill is correlated with other skills, then these other skills are first smoothed
with order nc using (12). Here nc depends on the strength of the correlation. If there is more than

13

one correlated skill, the resulting coefficients for each of these correlated skills are multiplied
element-wise using (30). This distribution is then once more merged in using (26). The merging
order is irrelevant.

Through this method, we can always find the most informed distribution of s, incorporat-
ing as much data as is possible/sensible. And, because we always use distributions, the cer-
tainty/accuracy of said data is always correctly taken into account. In theory, if correlated skills
Q,R, . . . also have subskills, or if subskills A,B, . . . also have correlated skills or further sub-
skills, these can be taken into account as well. In practice, due to the repetitive smoothing, the
tiny bit of extra information resulting from this is generally not considered worth the effort.
Hence the plan of Figure 3 suffices.

Once the PDT algorithm has determined, for every relevant skill S, the most well-informed
performance distribution fs(s|Dall), this information can then be applied. It can be used to
inform a student of his/her progress, to recommend skills to practice, or to select exercises to try
out. And once a new data point becomes available – the student tries and succeeds at or fails a
certain exercise – update law (19) can be used to directly update all relevant stored coefficients.

Note that, when using update law (19), the coefficients ci are the coefficients of fs(s|DS)
without any additional information, while the polynomial coefficients k′

j do have all available
data taken into account, also from subskills and correlated skills. This may seem strange: why
store the distributions fs(s|DS) and not the distributions fs(s|Dall)? The reason here is practical:
if we did, then when a user practices a subskill A, we would have to update all its parent skills.
For very fundamental subskills like solving a linear equation, there may be countless parent
skills, possibly also including future skills that have not been added to the system yet. As a
result, storing coefficients for distributions of s based on only observations directly related to
skill S is practically much more sensible.

5. PRACTICAL APPLICATION

Because the PDT is fundamentally different from other somewhat similar algorithms, it is diffi-
cult to make a direct comparison. Existing data sets often do not have sufficient domain knowl-
edge documented, which is required by PDT. Instead, to test the PDT algorithm, it has been built
into an existing tutoring web-app called Step-Wise for some limited tests. We will study how this
app works, what students thought of the success rate estimates, and how the recommendations
made by the app turned out.

5.1. GENERAL FUNCTIONING OF THE STEP-WISE APP

The Step-Wise app is a practice support app. A university-level Thermodynamics course has
been split up into a large learning tree of 35 skills, many with complex interdependencies. The
students were taught about the theory in regular lectures. They were then instructed to practice
using the Step-Wise app. For each of the 35 skills, a set of randomly generated exercises has
been added, effectively resulting in an infinite amount of practice material for the students. An
example Step-Wise exercise is shown in Figure 4.

When using the Step-Wise app, students are continuously kept up-to-date on their estimated
performance for every skill. This is done through the skill indicator: a small colored sphere, as
shown in Figure 4. For a skill S, the color of the sphere would be determined by the expected
success rate E[s]: red for 20%, gradually shifting to green at 80% and even turning blue on

14

Figure 4: A screenshot of an exercise from the Step-Wise app. Numbers are randomly generated.
Every exercise is connected to a skill, and the success rate estimate is continuously shown as a
colored sphere on the top right. By hovering over the sphere, the student sees an explanation of
what this score is and is based on. Exercises are programmed to provide individualized feedback.

higher percentages. In addition, if the estimate was rather uncertain – the distribution of s would
be flat – this color would be partly grayed out. The more certain the PDT algorithm gets of its
estimates, the brighter the colors become.

Each exercise in the Step-Wise app also has an extra feature. If the student cannot figure
it out, he/she can choose the option ‘Solve this Step-Wise’. This splits the exercise up into
steps, each representing a subskill needed to solve the exercise. The student can then do these
steps one by one. Students appreciate this approach, as it helps them to better understand the
content matter. Also, because they have earlier proven mastery for each of these subskills, they
are certain they will always eventually be able to solve the exercise. For the PDT algorithm
this Step-Wise approach proves very useful too, as it allows it to pinpoint in which subskill the
student is deficient. The Step-Wise app can then recommend the student to practice this subskill
some more separately.

A numerical analysis of the results of applying the Step-Wise app could not be provided.
After all, the sample group (60 students) was too small, the regular variation between students
was too large, and even if there were significant changes then, due to the corona crisis, these
could not necessarily be attributed to this intervention. However, through a study of how students
used the app, and detailed interviews held with said students, conclusions can still be drawn.

5.2. EXPERIENCE WITH SUCCESS RATE ESTIMATES

Students are generally happy with the continuous success rate estimates provided by the app.
Observations can be grouped into three categories.

• In advance, when starting to practice a new skill, the PDT algorithm can use data on
subskills to estimate how proficient a student would be on that skill. One student for
instance said, ‘I know when I’m going to study a difficult skill, so I can mentally prepare.
That helped.’

• During practice, the success rate indicators mainly motivated students to work harder.
‘I really wanted the indicator to be bright green. I worked deep into the night to get

15

there.’ This was often not without any frustration. ‘On a silly calculation error the app
already counts it as a fail, dropping my carefully accumulated score. On an exam I do get
partial points for a correct method!’ This actually shows that the PDT algorithm works
as intended. After all, it only counts successes and failures and not partial successes. A
positive side-effect is that the students started checking their own work for errors more
often, resulting in fewer calculation errors down the line.

• After practice, students were once more happy with the skill level indicator. ‘It is very
reassuring to have an app tell me that I have practiced enough.’

All in all, providing students with skill level estimates has shown to increase motivation, increase
the time spent practicing and help students become more consistent in their work.

In general there were no reported cases where the PDT algorithm gave illogical skill level
estimates. As a result, it can be concluded that the PDT works as intended. In addition, the data
on the certainty of the estimates, as provided to the students in the coloring scheme, had a mild
increase on the motivation of the students. They wanted to get the indicator to be bright green.
We can conclude that this extra information was also useful, albeit only mildly.

5.3. RECOMMENDATIONS OF SKILLS AND EXERCISES

Based on the skill level estimates, students are also given recommendations on what skills to
practice. If students practice a skill they have already mastered, they would be advised, ‘Try
[this more complex] skill instead.’ Or similarly, if students would practice a skill for which a
prerequisite was not mastered, they would be advised, ‘You may want to try practicing [this more
basic skill] first.’ (See Figure 4 for an example of the latter.) In the thermodynamics course, the
students initially liked these recommendations since it structured their learning process, and they
eagerly and obediently followed them. This did reduce significantly over time. Often at some
point a student would skip a skill. ‘I think I already mastered it, but the app doesn’t believe
it, because I keep making small calculation errors.’ Afterwards, the app would continuously
send the student back to this skipped skill, much to the chagrin of said student. This caused
the recommendations to be ignored more often. Small tweaks in the user-friendliness of the
recommendation system are hence still necessary.

The Step-Wise app also includes an intelligent exercise selection method, roughly similar
to (Wu et al., 2020). Effectively, every skill has three or four exercises connected to it, each
with randomly chosen parameters. Though they are similar, each exercise does have minor
variations, like a different step somewhere along the way or simply an entire extra step. As a
result, when we use the inference step of the PDT algorithm to estimate the success rate of all
these exercises, we do get different values. The Step-Wise app was programmed to take this into
account. Exercises were still chosen randomly, but if an exercise had an estimated success rate
close to 50% then it would be much more likely to be chosen than an exercise with a 20% (too
hard) or 80% (too easy) success rate. For the teachers this add-on was positive: they noticed
the students starting with the easier exercises and later on getting harder ones. However, for
the students this functionality caused a more monotonous practice session. ‘I keep getting the
balloon exercise. Give me something else for a change!’ Adding more exercises for each skill
will mostly circumvent this problem.

16

6. CONCLUSIONS AND RECOMMENDATIONS

This paper has presented the Performance Distribution Tracing algorithm. For any skill S, this
algorithm continuously traces the distribution of the success rate s of this skill, directly applying
updates when new observations become available. This is done while taking into account the
learning effect and practice decay. If there is an exercise X requiring the usage of multiple
skills, in any possible set-up, then the success rate x of this exercise can also be inferred, and
observations from this exercise can be taken into account for all related skills. In addition, if
domain knowledge is present, in terms of links between skills, then this knowledge can be taken
into account, resulting in more informed estimates of the success rates of all respective skills.

An application to a university Thermodynamics course with 60 students has shown that the
PDT algorithm works in practice. The data it provides, including data on the uncertainty of its
estimates, has proven to be helpful at automatically coaching students in their learning process,
and it increases the motivation of students to practice longer and more extensively. Due to
limited numbers, no concrete numeric information about the accuracy of the algorithm could be
obtained.

An extension of the PDT algorithm may concern individualization: can the algorithm be
tuned to a specific student, resulting in better updates to give more accurate estimates? Possibly
the smoothing order ns or even the prior fs(s) can be adjusted on-the-go, although the latter
would require a renewed derivation of all equations in the PDT algorithm. Or possibly a non-
symmetrical smoothing step can be used, to better take into account the learning effect.

Another possible extension includes taking into account the cooperation of multiple students.
If two students work together, and the distributions of their individual success rates s1 and s2
for some skill S are known, how can we predict the success rate s1,2 of the two students work-
ing together? And if they together successfully execute an exercise, how can we update their
individual skill distributions?

A. MATHEMATICAL DERIVATION OF COEFFICIENT EQUATIONS

This appendix has as goal to show how an expression with PDFs like (11) can be turned into
an expression for coefficients like (12). We will go through the full derivation, first isolating
coefficients and then solving the integral inside their expression.

A.1. ISOLATING THE COEFFICIENTS

Our first task is isolating the coefficients. We start at (11), for easy reading repeated as

fak+1
(ak+1|Dk) =

∫ 1

0

fak,ak+1
(ak, ak+1)fak(ak|Dk)

fak(ak)
dak. (31)

In this expression we have the joint prior fak,ak+1
(ak, ak+1) defined by (9), or written in its sum

notation as

fak,ak+1
(ak, ak+1) =

1

ns + 1

ns∑
i=0

gi,ns(ak)gi,ns(ak+1). (32)

Similarly, the posterior distribution of ak, described by fak(ak|Dk), follows from (2) as

fak(ak|Dk) =
n∗∑
i=0

c∗k,igi,n∗(ak), (33)

17

where c∗k,i are the coefficients describing ak. These coefficients are known from (8) or alterna-
tively (19). Finally, we have the prior fak(ak) which equals 1 and can hence be ignored.

Inserting all the above expressions into (31) turns it into∫ 1

0

1

ns + 1

(
ns∑
i=0

gi,ns(ak)gi,ns(ak+1)

)(
n∗∑
i=0

c∗k,igi,n∗(ak)

)
dak. (34)

We can rearrange the above to write it as

ns∑
i=0

(
1

ns + 1

∫ 1

0

(
n∗∑
j=0

c∗k,jgj,n∗(ak)

)
gi,ns(ak)dak

)
gi,ns(ak+1). (35)

Comparing this with the standard basis function notation (2), we can directly see that the coeffi-
cients ck+1,i describing fak+1

(ak+1|Dk) equal

ck+1,i =
1

ns + 1

∫ 1

0

n∗∑
j=0

c∗k,jgj,n∗(ak)gi,ns(ak) dak. (36)

The coefficients have hence been isolated. What remains is solving the above integral.

A.2. SOLVING THE INTEGRAL

Consider (36). Note that, if we normalize the coefficients ck+1,i afterwards, we can safely ignore
constant multiplications: factors not depending on i. Hence 1

ns+1
drops out. If we expand the

basis functions using their definition (1), and ignore the constant factors (n+ 1) within, we can
write the above expression for ck+1,i as

ck+1,i =

∫ 1

0

n∗∑
j=0

c∗k,j

(
n∗

j

)
ajk(1− ak)

n∗−j

(
ns

i

)
aik(1− ak)

ns−i dak. (37)

Rearranging the above turns it into

ck+1,i =
n∗∑
j=0

c∗k,j

(
ns

i

)(
n∗

j

)∫ 1

0

ai+j
k (1− ak)

n∗+ns−i−j dak. (38)

Note that in general, for any integer values of i and n with 0 ≤ i ≤ n, it holds that∫ 1

0

gi,n(x) dx =

∫ 1

0

(n+ 1)

(
n

i

)
xi(1− x)n−i dx = 1. (39)

After all, integrating over the PDF of a beta distribution must result in one. Using the above
relation, we can solve the integral from (38). Ignoring constant multiplications as well, we find

ck+1,i =
n∗∑
j=0

(
ns

i

)(
n∗
j

)(
n∗+ns

i+j

) c∗k,j. (40)

18

By applying the definition of the binomial, the above can be expanded into

ck+1,i =
n∗∑
j=0

ns!
i!(ns−i)!

n∗!
j!(n∗−j)!

(n∗+ns)!
(i+j)!(n∗+ns−i−j)!

c∗k,j =
n∗∑
j=0

(i+j)!
i!j!

(n∗+ns−i−j)!
(n∗+ns)!(i+j)!

(n∗+ns)!
n∗!ns!

c∗k,j. (41)

The denominator here equals
(
n∗+ns

n∗

)
, which is a constant, so it can be ignored. We remain with

ck+1,i =
ns∑
j=0

(
i+ j

i

)(
n∗ + ns − i− j

n∗ − j

)
c∗k,j, (42)

which is the final result (12) that we wanted to get. Note that in theory it is possible to take into
account all constants in the derivation of ck+1,i too, but in practice it is much easier to ignore
constants and simply normalize coefficients afterwards.

B. CHOOSING AND APPLYING THE SMOOTHING ORDER ns

In Section 2.3 it was discussed that, to incorporate the learning effect and practice decay, the
distribution of the success rate a would be smoothed after every exercise. This is done with
some smoothing order ns. The question remains: how should ns be chosen? This is not a
mathematical matter, but one of settings and preferences.

B.1. LINKS BETWEEN ORIGINAL AND SMOOTHED DISTRIBUTIONS

Consider a skill A. Let’s write the success rate before smoothing as ak and the success rate after
smoothing as ak+1. In this case, based on (12), a link can be determined between their expected
values E[ak] and E[ak+1]. To be precise, this link satisfies(

E[ak+1]−
1

2

)
=

ns

ns + 2

(
E[ak]−

1

2

)
. (43)

In words, the smoothed success rate ak+1 always has a mean closer to 1/2 than the original
success rate ak. To be precise, the reduction factor that is applied is

r =
ns

ns + 2
. (44)

We call r the decay ratio. If it equals 1 there is no smoothing, while a decay ratio of 0 means
everything is forgotten. There are now two questions: which decay ratio r is appropriate? And
how do we turn it into a smoothing order ns?

B.2. CHOOSING A DECAY RATIO

Smoothing should take into account both the learning effect and time decay. For time decay an
exponential decay seems appropriate. Something like

r = (1/2)t/t1/2 , (45)

where t is the time since the last exercise and t1/2 is the time after which the student has ‘lost’
half of its skills. The latter is generally set to a year.

19

For practice decay, we could introduce another factor. But instead, slightly more intuitively,
we use the concept of equivalent time. We say that practicing one more exercise is equivalent
to a time te (set as two months) of not practicing. We call te the equivalent inactive time. This
gives a decay ratio of

r = (1/2)(t+te)/t1/2 . (46)

However, we still go one step further. The first time a student does an exercise, the learning
effect is still strong. It’s the student’s first time, so he/she is expected to learn a lot from it.
However, after ten exercises or so, this effect is a lot smaller, and exercise fifty is unlikely to
still have much of a learning effect at all. To incorporate that, we reduce the equivalent inactive
time te based on the amount of practice a student has had. If the student has already practiced
the skill n times, then we define

te = te,0 (1/2)
n/n1/2 . (47)

Here te,0 is the initial equivalent inactive time, set to two months, and n1/2 is the number of times
a student must practice a skill to get half the learning effect. Generally we set n1/2 = 8, although
ideally this is larger for smaller (more simple) skills and smaller for larger (more complex) skills.

Using the above equations, we can always calculate an appropriate decay ratio r. It only
needs to be applied.

B.3. APPLYING A DECAY RATIO

To apply a given decay ratio r, we could simply choose a smoothing order. From (44) you would
expect it to equal

ns =
2r

1− r
. (48)

However, the smoothing order ns must be an integer, which complicates matters. A rough
solution would be to round ns to the nearest integer value and apply that, but this results in
discontinuities. Perhaps, from one day to the next, a student’s score suddenly jumps. That is not
desirable and may result in confusion/frustration.

A cleaner and more continuous solution would be to write r = r1 · r2 · r3 · . . ., for which
each individual decay subratio ri does result in an integer smoothing order ns,i =

2ri
1−ri

. We can
then apply smoothing multiple times. Choosing the subratios r1, r2, . . . is done by applying the
following steps for i = 1, 2,

• Choose the smoothing order ns,i = ⌈ 2r
1−r
⌉.

• Pick ri = ns,i/(ns,i + 2) accordingly.
• Update the remaining decay ratio r using r ← r/ri.
• If ns,i > ns,max then stop: ignore ri and further.

In practice, for numerical/practical reasons, usually ns,max is set around 100 or 120 or so. This
also ensures that we often get at most three subratios r1, r2, r3, or in very rare cases four.

It must be noted here that the subratios r1, r2, . . . are automatically sorted largest to small-
est, meaning their corresponding smoothing orders ns,1, ns,2, . . . are sorted smallest to largest.
Mathematically the order in which these smoothing orders are applied does not matter, but in
practice it is wisest to apply them largest to smallest, ending with ns,1. This ensures that the final
coefficient vector c we wind up with has order ns,1. This reduces the number of coefficients we
need to work with later on, slightly speeding up further computations.

20

REFERENCES

BAKER, R. S. J. D., CORBETT, A. T., AND ALEVEN, V. 2008. More accurate student modeling through
contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In Intelligent Tu-
toring Systems, B. P. Woolf, E. Aı̈meur, R. Nkambou, and S. Lajoie, Eds. Springer Berlin Heidelberg,
Berlin, Heidelberg, 406–415.

CEN, H., KOEDINGER, K., AND JUNKER, B. 2006. Learning factors analysis – a general method for
cognitive model evaluation and improvement. In Intelligent Tutoring Systems, M. Ikeda, K. D. Ashley,
and T.-W. Chan, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 164–175.

CORBETT, A. T. AND ANDERSON, J. R. 1994. Knowledge tracing: Modeling the acquisition of proce-
dural knowledge. User Modeling and User-Adapted Interaction 4, 253–278.

CUI, Y., CHU, M.-W., AND CHEN, F. 2019. Analyzing student process data in game-based assessments
with bayesian knowledge tracing and dynamic bayesian networks. Journal of Educational Data Min-
ing 11, 1 (06), 80–100.

GUO, X., HUANG, Z., GAO, J., SHANG, M., SHU, M., AND SUN, J. 2021. Enhancing Knowledge Trac-
ing via Adversarial Training. Association for Computing Machinery, New York, NY, USA, 367–375.

JOHNSON, N. L., KOTZ, S., AND BALAKRISHNAN, N. 1995. Continuous Univariate Distribuations, 2
ed. Vol. 2. Wiley.

KAPLAN, A. M. AND HAENLEIN, M. 2016. Higher education and the digital revolution: About MOOCs,
SPOCs, social media, and the Cookie Monster. Business Horizons 59, 4, 441–450.

KIM, B. AND DOSHI-VELEZ, F. 2021. Machine learning techniques for accountability. AI Maga-
zine 42, 1 (Apr), 47–52.

KOEDINGER, K., CORBETT, A., AND PERFETTI, C. 2012. The knowledge-learning-instruction (KLI)
framework: Toward bridging the science-practice chasm to enhance robust student learning. Cogni-
tive science 36, 757–98.

KÄSER, T., KLINGLER, S., SCHWING, A. G., AND GROSS, M. 2017. Dynamic bayesian networks for
student modeling. IEEE Transactions on Learning Technologies 10, 4, 450–462.

LEVY, R. 2019. Dynamic bayesian network modeling of game-based diagnostic assessments. Multivari-
ate Behavioral Research 54, 6, 771–794.

LEVY, R. AND MISLEVY, R. J. 2016. Bayesian Psychometric Modeling. Chapman & Hall.

LIU, Q., SHEN, S., HUANG, Z., CHEN, E., AND ZHENG, Y. 2021. A survey of knowledge tracing.

NEWELL, A. AND ROSENBLOOM, P. 1993. Mechanisms of skill acquisition and the law of practice.
Cognitive Skills and Their Acquisition Vol. 1.

PARDOS, Z. A. AND HEFFERNAN, N. T. 2011. Kt-idem: Introducing item difficulty to the knowledge
tracing model. In User Modeling, Adaption and Personalization - 19th International Conference,
UMAP 2011, Girona, Spain, July 11-15, 2011. Proceedings, J. A. Konstan, R. Conejo, J. L. Marzo,
and N. Oliver, Eds. Lecture Notes in Computer Science, vol. 6787. Springer, 243–254.

PAVLIK JR, P., CEN, H., AND KOEDINGER, K. 2009. Performance factors analysis - a new alternative
to knowledge tracing. In Frontiers in Artificial Intelligence and Applications. Frontiers in Artificial
Intelligence and Applications 200, 531–538.

PIECH, C., BASSEN, J., HUANG, J., GANGULI, S., SAHAMI, M., GUIBAS, L. J., AND SOHL-
DICKSTEIN, J. 2015. Deep knowledge tracing. In Advances in Neural Information Processing Sys-
tems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds. Vol. 28. Curran Associates,
Inc.

21

REICHENBERG, R. E. 2018. Dynamic bayesian networks in educational measurement: Reviewing and
advancing the state of the field. Applied Measurement in Education 31, 4 (10), 335–350.

SAPOUNTZI, A., BHULAI, S., CORNELISZ, I., AND KLAVEREN, C. 2019. Dynamic knowledge tracing
models for large-scale adaptive learning environments. International Journal on Advances in Intelli-
gent Systems 12, 93 – 110.

SHEIDAEI, A., FOROUSHANI, A. R., GOHARI, K., AND ZERAATI, H. 2022. A novel dynamic bayesian
network approach for data mining and survival data analysis. BMC Medical Informatics and Decision
Making 22, 1 (09).

VIE, J.-J. AND KASHIMA, H. 2019. Knowledge tracing machines: Factorization machines for knowl-
edge tracing. Proceedings of the AAAI Conference on Artificial Intelligence 33, 750–757.

WU, Z., LI, M., TANG, Y., AND LIANG, Q. 2020. Exercise recommendation based on knowledge
concept prediction. Knowledge-Based Systems 210, 106481.

YANG, S., ZHU, M., AND LU, X. 2021. Deep knowledge tracing with learning curves.

YUDELSON, M. 2021. Individualization of Bayesian Knowledge Tracing Through Elo-infusion. Springer,
412–416.

YUDELSON, M. V., KOEDINGER, K. R., AND GORDON, G. J. 2013. Individualized bayesian knowledge
tracing models. In Artificial Intelligence in Education, H. C. Lane, K. Yacef, J. Mostow, and P. Pavlik,
Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 171–180.

22

	Introduction
	Modeling the proficiency of a single skill
	Mathematically describing the probability of success
	Updating the skill success rate distribution
	Inferring the success rate for the next execution

	Handling exercises combining multiple skills
	Mathematically defining the exercise set-up
	Updating the skill success rate distributions
	Inferring the success rate for the exercise

	Describing relations between skills
	Defining the skill set-up
	Merging observations on skills and subskills
	Incorporating correlations between skills
	Overview of performance distribution tracing steps

	Practical application
	General functioning of the Step-Wise app
	Experience with success rate estimates
	Recommendations of skills and exercises

	Conclusions and recommendations
	Mathematical derivation of coefficient equations
	Isolating the coefficients
	Solving the integral

	Choosing and applying the smoothing order ns
	Links between original and smoothed distributions
	Choosing a decay ratio
	Applying a decay ratio

